JPS5822379A - Target for sputtering - Google Patents

Target for sputtering

Info

Publication number
JPS5822379A
JPS5822379A JP11983781A JP11983781A JPS5822379A JP S5822379 A JPS5822379 A JP S5822379A JP 11983781 A JP11983781 A JP 11983781A JP 11983781 A JP11983781 A JP 11983781A JP S5822379 A JPS5822379 A JP S5822379A
Authority
JP
Japan
Prior art keywords
target
thin film
sputtering
film resistor
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11983781A
Other languages
Japanese (ja)
Inventor
Yuzuru Ono
譲 小野
Seiya Nishimura
西村 誠也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMA DENKI KOGYO KK
Tama Electric Co Ltd
Original Assignee
TAMA DENKI KOGYO KK
Tama Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMA DENKI KOGYO KK, Tama Electric Co Ltd filed Critical TAMA DENKI KOGYO KK
Priority to JP11983781A priority Critical patent/JPS5822379A/en
Publication of JPS5822379A publication Critical patent/JPS5822379A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To facilitate the adjustment of electrical characteristics, by containing a proper amount of Si and Al respectively in Ni-Cr alloy having a specific composition to enhance the stability degree of the value of resistivity of a thin film resistor using the obtained title target. CONSTITUTION:A main target for sputtering is obtained by containing 1.5-5.0wt Si and 2.5-8.0wt% Al in a Ni-Cr alloy of which the component ration of Ni and Cr is in a range of 3:2-2:3. In preparing a thin film resistor by using this target, even if presice management of a sputtering condition is not carried out, the thin film resistor having the stable value of resistivity and excellent in reproducibility of electrical characteristics can be obtained.

Description

【発明の詳細な説明】 本発明は、スノくツタリングに使用するターゲット(薄
膜抵抗材料)の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a target (thin film resistance material) used for snow climbing.

近年、電子工業の飛躍的な発展に伴って抵抗器の電気的
特性に対する要求も次第に厳し−1ものとなり、蒸着方
式によるニクロム系薄膜抵抗体やスパッタリング方式に
よる窒化メンタル薄膜抵抗体が開発され実用化されてき
た。しかし、抵抗値の安定度や電気的特性の再現性を得
るための厳密な製造管理の点において、なお問題カーあ
った。
In recent years, with the rapid development of the electronics industry, the requirements for the electrical characteristics of resistors have become increasingly strict, and nichrome thin film resistors made by vapor deposition and nitride mental thin film resistors made by sputtering were developed and put into practical use. It has been. However, there were still problems in terms of strict manufacturing control to obtain stability of resistance values and reproducibility of electrical characteristics.

一方、マクネトロン・スノ(ツタ装置カー、その実用化
に伴りてスノくツタ・レート(速度)カを増加し、薄膜
抵抗体の着膜装置として実用に供されるまで釦なってい
る。スパッタリング方式は、着膜後の薄膜の組成比の再
現性に問題のある蒸着方式に比べて、薄膜の組成の制御
が非常に容易であるという利点がある。
On the other hand, with the commercialization of the McNetron Suno (Ivy device), the Sunoki Tsuta rate (speed) was increased, and it became a button until it was put into practical use as a film deposition device for thin film resistors. Sputtering This method has the advantage that the composition of the thin film can be controlled much more easily than the vapor deposition method, which has problems with reproducibility of the composition ratio of the thin film after deposition.

本発明は、上述の諸点に鑑み、抵抗値の安定度において
優れ電気的特性の調整が容易なスパッタリング用ターゲ
ットを提供しようとするものである。本発明のターゲッ
トは、ニッケルとクロムの成分比率が3:2から2:3
までのニッケルクロム合金にシリコンを1.5〜5.0
重量%、アルきニエームを2.5〜8.0重量寓添加し
たもので、上記の数値範囲内で従来のものより優れた特
性が得られることを確認した。本発明のターゲットは、
従来の窒化タンタル薄膜抵抗体を製作する際のスパッタ
リング条件を維持しなくてもその影響が少なく、条件の
1づであるガス圧は、単に放電を維持すればよく窒化タ
ンタルの場合のように微妙な調整を必要としない。また
、電気的特性も、着膜後加熱処理を施すことによって抵
抗温度係数を調整することが可能であり、同時に、薄膜
抵抗体の安定度をも著しく向上させ、従来の蒸着方式に
よるニクロム系薄膜抵抗体やスパッタリング方式による
窒化タンタル薄膜抵抗体をしのいでいる。以下、図面に
より本発明を具体的に説明する。
In view of the above-mentioned points, the present invention aims to provide a sputtering target which has excellent resistance value stability and whose electrical characteristics can be easily adjusted. The target of the present invention has a nickel and chromium component ratio of 3:2 to 2:3.
Silicon to nickel chromium alloy up to 1.5~5.0
It was confirmed that by adding 2.5 to 8.0% by weight of alkyleneme, superior properties than conventional products could be obtained within the above numerical range. The target of the present invention is
There is little effect even if sputtering conditions are not maintained when manufacturing conventional tantalum nitride thin film resistors, and the first condition, gas pressure, is fine as in the case of tantalum nitride, where it is sufficient to simply maintain discharge. No adjustment required. In addition, regarding the electrical properties, the temperature coefficient of resistance can be adjusted by applying heat treatment after film deposition, and at the same time, the stability of the thin film resistor can be significantly improved. It outperforms resistors and tantalum nitride thin film resistors made by sputtering. Hereinafter, the present invention will be specifically explained with reference to the drawings.

第1図は、ニクロム系合金KRする従来のターゲットと
本発明のターゲットとをスパッタリング方式により絶縁
基体に着膜させた場合の、それぞれの薄膜抵抗体の面積
抵抗値と抵抗温度係数の関係を示″f特性曲線図である
。図から判るように、本発明のターゲットを用いた薄膜
抵抗体は、広い抵抗値範囲に亘って抵抗温度係数が負又
は正の小さい値を示している。本発明の代表的な3つの
実施例については、後で説明する。
Figure 1 shows the relationship between the sheet resistance value and the temperature coefficient of resistance of each thin film resistor when a conventional target made of nichrome alloy KR and the target of the present invention are deposited on an insulating substrate by sputtering. FIG. 2 is a diagram of the "f characteristic curve. As can be seen from the figure, the thin film resistor using the target of the present invention exhibits a small negative or positive temperature coefficient of resistance over a wide resistance value range. Three representative examples will be described later.

92図は、上述の薄膜抵抗器の無負荷、150Cにおけ
る加速寿命試験結果を示すもので、これより、本発明の
寿命(抵抗値変化率)は、ニッケルクロム合金のみ及び
ニッケルクロム合金にシリコン又はアルミニュームを単
独で添加した材料に比べ遥かに優れていることが判る。
Figure 92 shows the results of an accelerated life test at 150C under no load for the above-mentioned thin film resistor.From this, the life (resistance change rate) of the present invention is determined by the nickel-chromium alloy alone and the nickel-chromium alloy with silicon or It can be seen that this material is far superior to materials to which aluminum is added alone.

因みに、蒸着方式によるニクロム系薄膜抵抗器は第2図
中のNiCr8i化タンタル薄膜抵抗器はN1CrAJ
の却命特性とほぼ近似の寿命特性である。
Incidentally, the nichrome thin film resistor made by vapor deposition is N1CrAJ, and the NiCr8i tantalum thin film resistor in Figure 2 is N1CrAJ.
This is a lifespan characteristic that is almost similar to the lifespan characteristic of .

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

下記の実施例においては、着膜装置として市販のバレル
・コーチインク式マグネトロン・スパッタ装置を用い、
膜組成の変更は、ニッケルクロム合金板にシリコン及び
アルミニューム板を埋込み又は貼着により装着し、その
鉄層面積比を変えて実験した結果に基き、最終的に溶層
法で所望の組成の合金板を作製してターゲットとするこ
とにより行なったが、両者の間には、着膜した膜の組成
比に差が殆ど昭められなかった。
In the following examples, a commercially available barrel coach ink type magnetron sputtering device was used as the film deposition device.
The change in film composition was based on the results of experiments in which silicon and aluminum plates were embedded or attached to a nickel-chromium alloy plate, and the iron layer area ratio was changed.Finally, the desired composition was achieved using the molten layer method. This was carried out by preparing an alloy plate and using it as a target, but there was almost no difference in the composition ratio of the deposited film between the two.

実施例1 合金組成比がニッケル48重量%、クロム48重量%、
シリコン1.5重量%、アルミニューム2.5重量%の
ターゲットを、アルゴンガス圧1〜103 X 10  torr 、電力0.5〜3.5KWでス
パッタリングして薄膜抵抗体を得た。その面積抵抗値と
抵抗温度係数の関係を示す特性曲線は、第1図の実施例
1のとおりであった。先にも述べた如く、本発明の4元
合金ターゲツトは、アルゴンガス圧及び着膜速度に抵抗
温度係数が全く影響されないため、ガス圧と電力は単に
所望の面積抵抗値が得られ易い値に設定するだけでよい
Example 1 Alloy composition ratio is nickel 48% by weight, chromium 48% by weight,
A thin film resistor was obtained by sputtering a target containing 1.5% by weight of silicon and 2.5% by weight of aluminum at an argon gas pressure of 1 to 10 3 X 10 torr and a power of 0.5 to 3.5 KW. The characteristic curve showing the relationship between the sheet resistance value and the temperature coefficient of resistance was as shown in Example 1 in FIG. As mentioned earlier, in the quaternary alloy target of the present invention, the temperature coefficient of resistance is not affected at all by the argon gas pressure and the film deposition rate, so the gas pressure and electric power are simply set to values that make it easy to obtain the desired sheet resistance value. Just set it up.

実施例2 合金組成比がニッケル45重量%、クロム47重量%、
シリコン3重量%、アルミニューム5重量%のターゲッ
トを、実施例1のスノくツタリング条件と同一条件でス
パッタリングして薄膜抵抗体を得た。その面積抵抗値と
抵抗温度係数の特性曲線は、第1図の実施例2のとおり
であった。
Example 2 Alloy composition ratio is nickel 45% by weight, chromium 47% by weight,
A thin film resistor was obtained by sputtering a target containing 3% by weight of silicon and 5% by weight of aluminum under the same conditions as the slatting conditions of Example 1. The characteristic curve of the sheet resistance value and the temperature coefficient of resistance was as shown in Example 2 in FIG.

第3図は、この薄膜抵抗体を空気中で熱処理をした場合
の熱処理温度と抵抗温度係数の関係を示す特性曲線図で
ある。この図から判るように、熱処理温度を高くすると
抵抗温度係数は正の方向に変化する傾向があり、適切な
熱処理条件で処理すれば、数オームから数百オームの広
い面積抵抗値範囲に亘って抵抗温度係数の絶対値を±5
 PPM/C内に入れることが可能である。
FIG. 3 is a characteristic curve diagram showing the relationship between the heat treatment temperature and the temperature coefficient of resistance when this thin film resistor is heat treated in air. As can be seen from this figure, the resistance temperature coefficient tends to change in the positive direction as the heat treatment temperature is increased, and if the heat treatment is performed under appropriate heat treatment conditions, the resistance temperature coefficient will change over a wide range of areal resistance values from several ohms to several hundred ohms. Absolute value of resistance temperature coefficient ±5
It can be placed within PPM/C.

実施例3 合金組成比がニッケル45重量%、クロム43重量%、
シリコン5重量%、アルミニューム8重量Sのターゲッ
トを、実施例1のスパッタリング条件と同一条件でスパ
ッタリングして薄膜抵抗体を得た。その面積抵抗値と抵
抗温度係数の特性曲線は、第1図の実施例3のとおりで
あった。
Example 3 Alloy composition ratio is nickel 45% by weight, chromium 43% by weight,
A thin film resistor was obtained by sputtering using a target of 5% by weight silicon and 8% by weight aluminum under the same sputtering conditions as in Example 1. The characteristic curve of the sheet resistance value and the temperature coefficient of resistance was as shown in Example 3 in FIG.

以上説明したとおり、本発明ターゲットによれば、抵抗
値が安定で電気的特性の再現性に優れた薄膜抵抗体を得
ることができるのみならず、従来例に比し厳密な製造管
理を必要としない利点がある。
As explained above, according to the target of the present invention, it is possible not only to obtain a thin film resistor with a stable resistance value and excellent reproducibility of electrical characteristics, but also to require stricter manufacturing control than conventional examples. There are advantages to not doing so.

なお、上述の実施例においては本発明ターゲットを作る
のに溶解法により合金板を作製してターゲットとしたが
、ホットプレス法により合金板を作製してターゲットと
しても、何ら変わらない特性が得られることは勿論であ
る。
In addition, in the above-mentioned example, to make the target of the present invention, an alloy plate was prepared by a melting method and used as a target, but the same characteristics can be obtained even if an alloy plate is prepared by a hot press method and used as a target. Of course.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のターゲットと本発明のターゲットを用
いて得た薄膜抵抗体の面積抵抗値と抵抗温度係数の関係
を示す特性曲線図、第2図は、加速寿命試験における抵
抗値変化率と試験時間の関係を示″f%性図、第3図は
、本発明ターゲットによって得た薄膜抵抗体の熱処理温
度と抵抗温度係数の関係を示す特性曲線図である。 第1図 一輯汰汎4(0ん) 第2図 ト 1 g 元 イ。 書 (?P・ 4f!、%’L”A<’e>
Figure 1 is a characteristic curve diagram showing the relationship between sheet resistance value and temperature coefficient of resistance of thin film resistors obtained using a conventional target and the target of the present invention, and Figure 2 is a diagram showing the rate of change in resistance value in an accelerated life test. Figure 3 is a characteristic curve diagram showing the relationship between heat treatment temperature and resistance temperature coefficient of a thin film resistor obtained using the target of the present invention. Pan 4 (0n) Figure 2 To 1 g Gen I. Book (?P・4f!, %'L"A<'e>

Claims (1)

【特許請求の範囲】[Claims] ニッケルとクロムの成分比率が3:2力)ら2:3まで
のニッケルクロム合金にシリコンを1.5重量%から5
.0重量%、アルミニュームを2.5重量96カ1ら8
.0重量お含有させたス/<ツタリング用ターゲット。
Silicon is added from 1.5% by weight to 5% by weight in a nickel-chromium alloy with a nickel to chromium component ratio of 3:2 to 2:3.
.. 0% by weight, 2.5% by weight of aluminum 96 kg 1 to 8
.. Target for Tsutaring that contains 0 weight.
JP11983781A 1981-07-30 1981-07-30 Target for sputtering Pending JPS5822379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11983781A JPS5822379A (en) 1981-07-30 1981-07-30 Target for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11983781A JPS5822379A (en) 1981-07-30 1981-07-30 Target for sputtering

Publications (1)

Publication Number Publication Date
JPS5822379A true JPS5822379A (en) 1983-02-09

Family

ID=14771478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11983781A Pending JPS5822379A (en) 1981-07-30 1981-07-30 Target for sputtering

Country Status (1)

Country Link
JP (1) JPS5822379A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157282A (en) * 1983-02-24 1984-09-06 Toyo Soda Mfg Co Ltd Target of high silicon nichrome for sputtering
JPS6277436A (en) * 1985-09-30 1987-04-09 Susumu Kogyo Kk Chromium-aluminum alloy and thin film element using same
US5718778A (en) * 1995-03-31 1998-02-17 Hitachi Metals, Ltd. Chromium target and process for producing the same
JP2008010604A (en) * 2006-06-29 2008-01-17 Sumitomo Metal Mining Co Ltd Resistor thin film material, resistor thin film, sputtering target for forming the same, and thin-film resistor and its manufacturing method
JP2011119234A (en) * 2009-10-29 2011-06-16 Sumitomo Metal Mining Co Ltd Resistor material, sputtering target for forming resistor thin film, resistor thin film, thin film resistor, and method of manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157282A (en) * 1983-02-24 1984-09-06 Toyo Soda Mfg Co Ltd Target of high silicon nichrome for sputtering
JPH0323630B2 (en) * 1983-02-24 1991-03-29 Tosoh Corp
JPS6277436A (en) * 1985-09-30 1987-04-09 Susumu Kogyo Kk Chromium-aluminum alloy and thin film element using same
JPH0457740B2 (en) * 1985-09-30 1992-09-14 Susumu Ind Co Ltd
US5718778A (en) * 1995-03-31 1998-02-17 Hitachi Metals, Ltd. Chromium target and process for producing the same
JP2008010604A (en) * 2006-06-29 2008-01-17 Sumitomo Metal Mining Co Ltd Resistor thin film material, resistor thin film, sputtering target for forming the same, and thin-film resistor and its manufacturing method
JP4622946B2 (en) * 2006-06-29 2011-02-02 住友金属鉱山株式会社 Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
JP2011119234A (en) * 2009-10-29 2011-06-16 Sumitomo Metal Mining Co Ltd Resistor material, sputtering target for forming resistor thin film, resistor thin film, thin film resistor, and method of manufacturing same

Similar Documents

Publication Publication Date Title
US4746896A (en) Layered film resistor with high resistance and high stability
GB1570841A (en) Electrical film resistors
KR830001873B1 (en) Resistor composition
JPH06158272A (en) Resistance film and production thereof
JPS5822379A (en) Target for sputtering
US4338145A (en) Chrome-tantalum alloy thin film resistor and method of producing the same
Schippel The influence of silicon on properties of deposited Ni-Cr films
JPH04370901A (en) Electric resistance material
JPS62291101A (en) Metal film resistor and manufacture of the same
RU2063081C1 (en) Composite resistor material
SU953672A1 (en) Resistive material
JPS59157282A (en) Target of high silicon nichrome for sputtering
JPS6034241B2 (en) Manufacturing method of thin film resistor
SU809410A1 (en) Resistive material for thin-film resistor
JPS6024564B2 (en) resistive thin film
JPS6277436A (en) Chromium-aluminum alloy and thin film element using same
JPH04170001A (en) Thin-film thermistor and its manufacture
JPH0287501A (en) Electric resistance material
JPH04170002A (en) Thin-film thermistor and its manufacture
JPS63261804A (en) Method of adjusting resistance- temperature coefficient of metal thin film
JPS6024562B2 (en) resistive thin film
JPS63135260A (en) Thermal head
JP4121270B2 (en) NTC thermistor made of quaternary alloy material and resistor using the same material
SU834778A1 (en) Resistive material
JPS639731B2 (en)