JPH0287501A - Electric resistance material - Google Patents

Electric resistance material

Info

Publication number
JPH0287501A
JPH0287501A JP63239135A JP23913588A JPH0287501A JP H0287501 A JPH0287501 A JP H0287501A JP 63239135 A JP63239135 A JP 63239135A JP 23913588 A JP23913588 A JP 23913588A JP H0287501 A JPH0287501 A JP H0287501A
Authority
JP
Japan
Prior art keywords
resistance
aluminum
boron
thin film
resistance material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63239135A
Other languages
Japanese (ja)
Other versions
JPH0577321B2 (en
Inventor
Sadao Yoshizaki
吉崎 完生
Shizuka Takeyama
竹山 静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUSUMU IND CO Ltd
Original Assignee
SUSUMU IND CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUSUMU IND CO Ltd filed Critical SUSUMU IND CO Ltd
Priority to JP63239135A priority Critical patent/JPH0287501A/en
Publication of JPH0287501A publication Critical patent/JPH0287501A/en
Publication of JPH0577321B2 publication Critical patent/JPH0577321B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To obtain electric resistance material whose resistivity is large, whose resistance temperature coefficient is small, and whose environmental resistance is excellent, by adding a specific amount of oxygen to ternary alloy wherein boron is added to chromium aluminum alloy containing a specific amount of aluminum. CONSTITUTION:Oxygen of 10-30atomic percent is added to ternary alloy wherein boron of 30-70atomic percent is added to chromium aluminum alloy containing aluminum of 10-40atomic percent. That is, composition ratio of chromium, aluminum, and boron of such a Cr-Al-B-O system ternary alloy is in a region of 3 componentscomposition figure surrounded by the following four points; A(63, 7, 30), B(27, 3, 70), C(18, 12, 70) and D(42, 28, 30). Thereby, electric resistance material whose resistivity is large, whose resistance temperature coefficient is small, and whose environmental resistance is excellent can be obtained. In this case, the structure of the electric resistance material is preferable to be amorphous. As a result, a chip resistor, a high density integrated resistance network, etc. with high precision and reliability can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば薄膜抵抗器、抵抗ネットワーク、熱
印字素子の発熱体、その他に用いられる電気抵抗材料に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrically resistive material used for, for example, thin film resistors, resistance networks, heating elements of thermal printing elements, and others.

〔従来の技術とその課題〕[Conventional technology and its issues]

薄膜抵抗器に従来から用いられているニッケル・クロム
合金やタンタル化合物等の薄膜抵抗材料の比抵抗は、セ
ラミック基板上で0.2mΩ・cm程度と小さく、従っ
てこれを用いたチップ抵抗器等のような小型の抵抗器で
は高い抵抗値を得るのが困難であった0例えばこのよう
なチップ抵抗器の抵抗値の上限は数十にΩ〜百にΩであ
った。
The specific resistance of thin film resistive materials such as nickel-chromium alloys and tantalum compounds conventionally used in thin film resistors is as low as 0.2 mΩ・cm on ceramic substrates, so it is difficult to make chip resistors etc. using these materials. It is difficult to obtain a high resistance value with such a small resistor.For example, the upper limit of the resistance value of such a chip resistor is from tens of ohms to hundreds of ohms.

また、熱印字素子の発熱体のために比抵抗の大きな薄膜
材料が幾つか開発されてはいるが、その抵抗温度係数は
数百ppm/deg以上と著しく大きく、従ってこれを
精密抵抗器に用いることはできない。−例を示せば、T
a−3iC系材料では、比抵抗は4.2mΩ・cm程度
と比較的大きいものの、抵抗温度係数が一600PPm
/deg程度と著しく大きい。
In addition, although some thin film materials with high specific resistance have been developed for the heating elements of thermal printing elements, their temperature coefficients of resistance are extremely large, at several hundred ppm/deg or more, and therefore they are used in precision resistors. It is not possible. -For example, T
Although the specific resistance of a-3iC material is relatively large at around 4.2 mΩ・cm, the temperature coefficient of resistance is 1600 PPm.
/deg, which is extremely large.

一方、チップ抵抗器に従来から多用されている厚膜抵抗
材料は、極めて高い抵抗値が容易に得られるものの、信
鎖性や長期の安定性に乏しく、また抵抗温度係数も大き
いため、高精度・高信顛性を要求される用途には適用で
きない0例えば、TaBz系材料やLaBb系材料では
、150 ’Cで1000時間放置による抵抗値変化率
は1%程度と比較的大きく、また抵抗温度係数も150
〜250ppm/deg程度と比較的大きい。
On the other hand, although thick film resistance materials, which have traditionally been widely used in chip resistors, can easily obtain extremely high resistance values, they lack reliability and long-term stability, and have a large resistance temperature coefficient, making it difficult to achieve high precision.・Cannot be applied to applications that require high reliability. For example, with TaBz-based materials and LaBb-based materials, the rate of change in resistance value when left at 150'C for 1000 hours is relatively large, about 1%, and the resistance temperature The coefficient is also 150
It is relatively large at ~250 ppm/deg.

そこでこの発明は、比抵抗が大きく、しかも抵抗温度係
数が小さく、かつ耐環境性に優れた電気抵抗材料を提供
することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an electrical resistance material that has a large specific resistance, a small temperature coefficient of resistance, and excellent environmental resistance.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の電気抵抗材料は、Cr−AI−B−0系のも
のであり、アルミニウムを10ないし40原子%含むク
ロム・アルミニウム合金にホウ素を30ないし70原子
%添加した三元合金に対して、酸素を10ないし30原
子%添加した組成をしている。
The electrical resistance material of the present invention is of the Cr-AI-B-0 series, and is a ternary alloy in which boron is added to a chromium-aluminum alloy containing 10 to 40 atomic % of aluminum and 30 to 70 atomic % of boron. It has a composition in which 10 to 30 atomic percent of oxygen is added.

上記三元合金は、換言すれば、その(クロム。In other words, the above ternary alloy is (chromium).

アルミニウム、ホウ素)の組成比(原子%)が、第1図
に示す三成分組成図におけるA(63,7゜30)、B
 (27,3,70)、C(18,12゜70)および
D (42,28,30)の4点で囲まれる領域内にあ
ると言うこともできる。
The composition ratio (atomic %) of aluminum, boron) is A (63,7°30) and B in the ternary composition diagram shown in Figure 1.
It can also be said that it is within a region surrounded by four points: (27, 3, 70), C (18, 12° 70), and D (42, 28, 30).

ここで、クロム・アルミニウム合金中のアルミニウム濃
度を10〜40at(原子)%の範囲に限定したのは、
アルミニウム濃度が10at%未満ては比抵抗が小さく
、また40at%を越えると抵抗温度係数が著しく負方
向に増大すると共に熱処理による電気的特性の変化も大
きくなるからである。
Here, the aluminum concentration in the chromium-aluminum alloy was limited to a range of 10 to 40 at% (atomic)% because
This is because if the aluminum concentration is less than 10 at %, the specific resistance is small, and if it exceeds 40 at %, the temperature coefficient of resistance increases significantly in the negative direction, and the change in electrical characteristics due to heat treatment becomes large.

また、三元合金中のホウ素濃度を30〜70at%の範
囲に限定したのは、ホウ素濃度が30at%未満では比
抵抗が小さく、また70at%を越えると抵抗温度係数
が負方向に大きく増大するからである。
In addition, the reason why the boron concentration in the ternary alloy is limited to a range of 30 to 70 at% is that when the boron concentration is less than 30 at%, the specific resistance is small, and when it exceeds 70 at%, the temperature coefficient of resistance increases significantly in the negative direction. It is from.

また、当該電気抵抗材料中の酸素濃度を10〜30at
%の範囲に限定したのは、酸素濃度が10at%未満で
は比抵抗が小さく、また30at%を越えると抵抗温度
係数が負方向に大きく増大するからである。
In addition, the oxygen concentration in the electrical resistance material is 10 to 30at.
The reason why the oxygen concentration is limited to this range is that when the oxygen concentration is less than 10 at %, the specific resistance is small, and when it exceeds 30 at %, the temperature coefficient of resistance increases greatly in the negative direction.

〔実施例〕〔Example〕

20at%のアルミニウムを含んだクロム・アルミニウ
ム二元合金ターゲットの表面にホウ素の粒を並べて三元
系としたターゲットを用い、酸素を添加したアルゴンガ
スによりスパッタリングを行い、種々の組成のCr−A
I−B−0系電気抵抗材料の薄膜をセラミック基板上に
堆積させた。この薄膜におけるクロム・アルミニウム合
金に対するホウ素の濃度はクロム・アルミニウム二元合
金ターゲットの表面に並べるホウ素の量を変えることに
より、また、クロムとアルミニウムとの組成比は20a
t%のアルミニウムを含んだクロム・アルミニウム二元
合金ターゲットの表面にクロムあるいはアルミニウムを
追加することにより、更に、Cr−AI−B三元合金に
対する酸素濃度はアルゴンガスに添加する酸素の濃度を
変化させることにより調整した。このCr−AI−B−
0系薄膜電気抵抗材料の電気的特性と耐環境性を図面に
基づいて説明する。
Using a ternary system target with boron grains arranged on the surface of a chromium-aluminum binary alloy target containing 20 at% aluminum, sputtering was performed with oxygen-added argon gas to produce Cr-A of various compositions.
A thin film of I-B-0 series electrically resistive material was deposited onto a ceramic substrate. The concentration of boron relative to the chromium-aluminum alloy in this thin film can be determined by changing the amount of boron arranged on the surface of the chromium-aluminum binary alloy target, and the composition ratio of chromium and aluminum can be adjusted to 20a.
By adding chromium or aluminum to the surface of the chromium-aluminum binary alloy target containing t% aluminum, the oxygen concentration for the Cr-AI-B ternary alloy can be changed by changing the concentration of oxygen added to the argon gas. It was adjusted by This Cr-AI-B-
The electrical properties and environmental resistance of the 0 series thin film electrical resistance material will be explained based on the drawings.

第2図は、セラミック基板上に堆積させて薄膜化したC
r−AI−B−0系電気抵抗材料における電気的特性の
三元合金中のホウ素濃度依存性の一例を示す図であり、
このときのCr −A 1合金中のアルミニム濃度は2
0at%、薄膜中の酸素濃度は15〜30at%であっ
た。
Figure 2 shows a thin film of C deposited on a ceramic substrate.
FIG. 2 is a diagram showing an example of the dependence of electrical properties on boron concentration in a ternary alloy in an r-AI-B-0 based electrical resistance material,
At this time, the aluminum concentration in the Cr-A 1 alloy is 2
The oxygen concentration in the thin film was 15 to 30 at%.

この図から分かるように、当該Cr−AI−B−0系薄
膜は、およそ20at%のホウ素が添加されることによ
り、その比抵抗が減少すると共に抵抗温度係数(TCP
)の絶対値が急減する。しかし、20〜30at%以上
のホウ素濃度域では、ホウ素濃度の増加に伴い比抵抗が
著しく(例えば従来のNi−Cr合金の一桁以上に)増
大するものの、70at%程度までは抵抗温度係数の絶
対値にあまり大きな変化は生じなく電気抵抗材料として
実用的な値を示す。
As can be seen from this figure, when approximately 20 at% boron is added to the Cr-AI-B-0 thin film, its specific resistance decreases and its temperature coefficient of resistance (TCP) decreases.
) suddenly decreases in absolute value. However, in the boron concentration range of 20 to 30 at% or more, as the boron concentration increases, the resistivity increases significantly (for example, by one order of magnitude or more in conventional Ni-Cr alloys), but up to about 70 at%, the temperature coefficient of resistance increases. There is no significant change in the absolute value, and it shows a practical value as an electrical resistance material.

更に、これらの薄膜に数百°Cでの安定化熱処理(第3
図および第4図の熱処理も同様)を施すと、比抵抗は若
干減少するものの、抵抗温度係数の絶対値は半減し、よ
り高精度の抵抗材料として使用し得る特性が得られるこ
とが分かる。
Furthermore, these thin films were subjected to stabilization heat treatment (third stage) at several hundred degrees Celsius.
It can be seen that when the heat treatment shown in FIG. 4 and FIG. 4 is applied, although the specific resistance is slightly reduced, the absolute value of the temperature coefficient of resistance is halved, and characteristics that can be used as a resistor material with higher precision are obtained.

尚、上記の20〜30at%以上のホウ素濃度域におけ
る薄膜の構造は、X線回折によれば非晶質化しているも
のと認められ、このような非晶質構造を維持することが
、上記のような°優れた電気的特性を維持する上で好ま
しいと言える。
In addition, the structure of the thin film in the boron concentration range of 20 to 30 at% or more is recognized to be amorphous according to X-ray diffraction, and maintaining such an amorphous structure is necessary to maintain such an amorphous structure. It can be said that this is preferable in terms of maintaining excellent electrical characteristics such as °.

第3図は、セラミック基板上に堆積させて薄膜化したC
r−AI−B−0系電気抵抗材料における電気的特性の
Cr−A1合金中のアルミニウム濃度依存性の一例を示
す図であり、このときのCr−A1合金に対するホウ素
濃度は45at%、薄膜中の酸素濃度はlO〜30at
%であった。
Figure 3 shows a thin film of C deposited on a ceramic substrate.
It is a diagram showing an example of the dependence of the electrical properties of the r-AI-B-0 series electrical resistance material on the aluminum concentration in the Cr-A1 alloy. The oxygen concentration is lO~30at
%Met.

この図から分かるように、当該Cr−AI−B−0系薄
膜は、Cr−A1合金中のアルミニウム濃度が10at
%未満では比抵抗が小さく、また40at%を越えると
抵抗温度係数(TCR)が負方向に増大し熱処理での電
気的特性の変化も太き(なる。
As can be seen from this figure, the Cr-AI-B-0 thin film has an aluminum concentration of 10at in the Cr-A1 alloy.
If it is less than 40 at %, the specific resistance is small, and if it exceeds 40 at %, the temperature coefficient of resistance (TCR) increases in the negative direction, and the change in electrical characteristics during heat treatment becomes large.

従って、当該アルミニウム濃度は、10〜40at%の
範囲内にするのが好ましい。
Therefore, the aluminum concentration is preferably within the range of 10 to 40 at%.

第4図は、セラミック基板上に堆積させて薄膜化したC
r−AI−B−0系電気抵抗材料における電気的特性の
酸素濃度依存性の一例を示す図であり、このときの20
at%Al−Cr合金に対するホウ素濃度は55at%
であった。
Figure 4 shows a thin film of C deposited on a ceramic substrate.
FIG. 2 is a diagram showing an example of the dependence of electrical properties on oxygen concentration in r-AI-B-0-based electrical resistance materials, where 20
boron concentration for at% Al-Cr alloy is 55 at%
Met.

この図から分かるように、当該Cr−AI−B−0系薄
膜は、酸素濃度が10at%未満では比抵抗が小さく、
また30at%越えると抵抗温度係数(TCR)が負方
向に大きく増大して、厚膜抵抗材料と同様の電気的特性
を示す、従って、当該酸素濃度は、10〜30at%の
範囲内にするのが好ましい。
As can be seen from this figure, the specific resistance of the Cr-AI-B-0 thin film is small when the oxygen concentration is less than 10 at%.
Furthermore, if the oxygen concentration exceeds 30 at%, the temperature coefficient of resistance (TCR) increases greatly in the negative direction and exhibits electrical characteristics similar to those of thick film resistive materials. Therefore, the oxygen concentration should be within the range of 10 to 30 at%. is preferred.

第5図は、セラミック基板上に堆積させて薄膜化したC
r−AI−B−0系電気抵抗材料における電気的特性の
耐環境性の一例を示す図であり、このときの20at%
Al−Cr合金に対するホウ素濃度は55at%、薄膜
中の酸素濃度は約20at%であった。
Figure 5 shows a thin film of C deposited on a ceramic substrate.
It is a figure showing an example of the environmental resistance of the electrical characteristics of r-AI-B-0 series electrical resistance material, in which 20at%
The boron concentration in the Al-Cr alloy was 55 at%, and the oxygen concentration in the thin film was about 20 at%.

尚、用いた試片はセラミック基板上の薄膜表面が露出し
たものであり、耐湿性は純水中での煮沸、また耐酸化性
は150°Cの空気中での放置による電気抵抗の変化に
より評価した。ちなみに、この純水煮沸試験は、−船釣
な抵抗器の評価に適用される湿中負荷試験(60℃、9
5%RI(、定格負荷)に比べて4桁以上厳しい試験に
なる。
The sample used was a thin film on a ceramic substrate with the surface exposed, and moisture resistance was determined by boiling in pure water, and oxidation resistance was determined by changes in electrical resistance when left in air at 150°C. evaluated. By the way, this pure water boiling test is a humidity load test (60℃, 90℃) applied to the evaluation of resistors used in boat fishing.
The test is four orders of magnitude more severe than 5% RI (rated load).

この図から分かるように、当該Cr−AI−B−〇系薄
膜は、耐湿・耐酸化性のどちらも時間の経過と共に電気
抵抗が増大するものの、その変化率は極めて小さく、従
って高安定の抵抗材料であることが分かる。
As can be seen from this figure, although the electrical resistance of the Cr-AI-B-〇-based thin film increases over time for both moisture resistance and oxidation resistance, the rate of change is extremely small, and therefore it has a highly stable resistance. You can see that it is the material.

尚、上記実施例では、Cr−AI−B−0系電気抵抗材
料を薄膜化して作製するのに、制御の比較的簡単なスパ
ッタリングを用いたが、真空蒸着等の他の薄膜形成手段
を用いても良い。
In the above example, sputtering, which is relatively easy to control, was used to form a thin film of the Cr-AI-B-0 based electrical resistance material, but other thin film forming means such as vacuum evaporation could also be used. It's okay.

また、上記実施例では、薄膜を堆積させる基板にセラミ
ック基板を用いたが、ガラス基板や表面に電気絶縁層を
設けた金属板等の他の電気絶縁性基板を用いても良い、
ガラス基板を用いれば、周知のように、比抵抗はセラミ
ック基板の場合の約半分になる。
Further, in the above embodiment, a ceramic substrate was used as the substrate on which the thin film was deposited, but other electrically insulating substrates such as a glass substrate or a metal plate with an electrically insulating layer provided on the surface may be used.
As is well known, if a glass substrate is used, the specific resistance will be approximately half that of a ceramic substrate.

また、当該Cr−AI−B−0系電気抵抗材料は、上記
のように電気絶縁性基板上に薄膜化するようにすれば比
較的簡単に作製することができるが、勿論必要に応じて
、厚膜化したリバルクとして用いることも可能である。
Further, the Cr-AI-B-0 based electrical resistance material can be produced relatively easily by forming it into a thin film on an electrically insulating substrate as described above, but of course, if necessary, It is also possible to use it as a thicker rebulk.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、比抵抗が大きく、しか
も抵抗温度係数が小さく、かつ耐環境性に優れた電気抵
抗材料が得られる。その場合、当該電気抵抗材料の構造
が非晶質である方が、上記のような優れた電気的特性を
維持する上で好ましい。
As described above, according to the present invention, an electrical resistance material having a large specific resistance, a small temperature coefficient of resistance, and excellent environmental resistance can be obtained. In this case, it is preferable that the electric resistance material has an amorphous structure in order to maintain the above-mentioned excellent electric properties.

従って当該電気抵抗材料を用いれば、例えば、抵抗値が
高くかつ高精度・高信軌性のチップ抵抗器や高集積抵抗
ネットワーク等の実現が可能になる。
Therefore, by using the electrical resistance material, it is possible to realize, for example, a chip resistor with a high resistance value, high accuracy, and high reliability, a highly integrated resistance network, and the like.

より具体例を示せば、表面実装部品等として用いられる
薄膜チップ抵抗器の抵抗値の上限が従来は数十にΩ〜百
にΩ程度であったものを、当該電気抵抗材料を用いれば
、これを−桁程度増大させることが可能になる。
To give a more specific example, the upper limit of the resistance value of a thin film chip resistor used as a surface mount component, etc., was previously on the order of tens of ohms to hundreds of ohms. It becomes possible to increase the amount by -order of magnitude.

また、従来は厚膜抵抗材料を用いていたため精度・信頼
性の点で劣っていた百にΩ程度以上の抵抗値のチップ抵
抗器も、当該電気抵抗材料を用いれば、高精度でかつ信
頼性の高いものとすることができる。
In addition, chip resistors with a resistance value of more than 100 ohms, which conventionally used thick-film resistance materials and were inferior in terms of accuracy and reliability, can now be made with high precision and reliability by using this electrical resistance material. It can be made to have a high value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る電気抵抗材料における三元合
金の組成比を示す三成分組成図である。 第2図は、セラミック基板上に堆積させて薄膜化したC
r−AI−B−0系電気抵抗材料における電気的特性の
三元合金中のホウ素濃度依存性の一例を示す図である。 第3図は、セラミック基板上に堆積させて薄膜化したC
r−AI−B−0系電気抵抗材料における電気的特性の
Cr −A I合金中のアルミニウム濃度依存性の一例
を示す図である。第4図は、セラミック基板上に堆積さ
せて薄膜化したCr−AI−B−0系電気抵抗材料にお
ける電気的特性の酸素濃度依存性の一例を示す図である
。 第5図は、セラミック基板上に堆積させて薄膜化したC
r−AI−B−0系電気抵抗材料における電気的特性の
耐環境性の一例を示す図である。
FIG. 1 is a ternary composition diagram showing the composition ratio of the ternary alloy in the electrical resistance material according to the present invention. Figure 2 shows a thin film of C deposited on a ceramic substrate.
It is a figure which shows an example of the boron concentration dependence in a ternary alloy of the electrical property in r-AI-B-0 type|system|group electric resistance material. Figure 3 shows a thin film of C deposited on a ceramic substrate.
It is a figure which shows an example of the aluminum concentration dependence in Cr-AI alloy of the electrical property in r-AI-B-0 type electric resistance material. FIG. 4 is a diagram showing an example of the dependence of electrical characteristics on oxygen concentration in a Cr-AI-B-0 based electrical resistance material deposited on a ceramic substrate to form a thin film. Figure 5 shows a thin film of C deposited on a ceramic substrate.
It is a figure which shows an example of the environmental resistance of the electrical property of r-AI-B-0 type|system|group electric resistance material.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウムを10ないし40原子%含むクロム
・アルミニウム合金にホウ素を30ないし70原子%添
加した三元合金に対して、酸素を10ないし30原子%
添加した組成の電気抵抗材料。
(1) For a ternary alloy in which 30 to 70 atom% of boron is added to a chromium-aluminum alloy containing 10 to 40 atom% of aluminum, 10 to 30 atom% of oxygen is added.
Electrical resistance material with added composition.
(2)当該材料の構造が非晶質である請求項1記載の電
気抵抗材料。
(2) The electrical resistance material according to claim 1, wherein the structure of the material is amorphous.
JP63239135A 1988-09-24 1988-09-24 Electric resistance material Granted JPH0287501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63239135A JPH0287501A (en) 1988-09-24 1988-09-24 Electric resistance material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63239135A JPH0287501A (en) 1988-09-24 1988-09-24 Electric resistance material

Publications (2)

Publication Number Publication Date
JPH0287501A true JPH0287501A (en) 1990-03-28
JPH0577321B2 JPH0577321B2 (en) 1993-10-26

Family

ID=17040294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63239135A Granted JPH0287501A (en) 1988-09-24 1988-09-24 Electric resistance material

Country Status (1)

Country Link
JP (1) JPH0287501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227231A (en) * 1991-06-19 1993-07-13 Susumu Co., Ltd. Electrical resistive material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109301A (en) * 1985-11-08 1987-05-20 株式会社日立製作所 Heat sensitive recording head
JPS62165302A (en) * 1986-01-16 1987-07-21 進工業株式会社 High resistance material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109301A (en) * 1985-11-08 1987-05-20 株式会社日立製作所 Heat sensitive recording head
JPS62165302A (en) * 1986-01-16 1987-07-21 進工業株式会社 High resistance material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227231A (en) * 1991-06-19 1993-07-13 Susumu Co., Ltd. Electrical resistive material

Also Published As

Publication number Publication date
JPH0577321B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
US4746896A (en) Layered film resistor with high resistance and high stability
KR830001873B1 (en) Resistor composition
US4454495A (en) Layered ultra-thin coherent structures used as electrical resistors having low temperature coefficient of resistivity
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
JPH06158272A (en) Resistance film and production thereof
US5001454A (en) Thin film resistor for strain gauge
JPH0287501A (en) Electric resistance material
US5227231A (en) Electrical resistive material
Schippel The influence of silicon on properties of deposited Ni-Cr films
US4774491A (en) Metal film resistors
Schabowska et al. Electrical conduction in Cr-SiO cermet thin films
JP2001110602A (en) Thin-film resistor forming method and sensor
JPH044722B2 (en)
JP3664655B2 (en) High resistivity material and manufacturing method thereof
JPH0620803A (en) Thin film resistor and manufacture thereof
Olson et al. Nitrides of Chromium and Chromium‐Titanium Alloys: New Film‐Type Resistance Elements
JPS63147305A (en) Metal thin-film resistor
JP2004303804A (en) Ternary alloy material
Chang et al. The influence of iron on properties of deposited Ni Cr Si resistors
JPS5845163B2 (en) How to make resistors
JPH07120573B2 (en) Method for manufacturing amorphous binary alloy thin film resistor
JPH0331780B2 (en)
JPS6395601A (en) Resistance thin film
JPS6277436A (en) Chromium-aluminum alloy and thin film element using same
SU434487A1 (en) CURRENT CONDUCTING MATERIAL

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 15

EXPY Cancellation because of completion of term