JPS5845163B2 - How to make resistors - Google Patents

How to make resistors

Info

Publication number
JPS5845163B2
JPS5845163B2 JP14840879A JP14840879A JPS5845163B2 JP S5845163 B2 JPS5845163 B2 JP S5845163B2 JP 14840879 A JP14840879 A JP 14840879A JP 14840879 A JP14840879 A JP 14840879A JP S5845163 B2 JPS5845163 B2 JP S5845163B2
Authority
JP
Japan
Prior art keywords
temperature
nickel
film
temperature coefficient
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14840879A
Other languages
Japanese (ja)
Other versions
JPS5670604A (en
Inventor
泰夫 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14840879A priority Critical patent/JPS5845163B2/en
Publication of JPS5670604A publication Critical patent/JPS5670604A/en
Publication of JPS5845163B2 publication Critical patent/JPS5845163B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は、近年電子回路の温度補正、熱保護や各種の温
度制御に用いられる、ニッケルを主成分とする皮膜を有
した温度変化に対してほぼ直線的な抵抗値の互変化をす
る感温抵抗器と称される抵抗器の温度係数を大きくする
目的をもって発明された抵抗器の製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a film that has a nickel-based film that has a nearly linear resistance value against temperature changes, which has recently been used for temperature correction, thermal protection, and various temperature controls in electronic circuits. The present invention relates to a method of manufacturing a resistor, which was invented for the purpose of increasing the temperature coefficient of a resistor called a temperature-sensitive resistor, which has a tautic change.

従来、この種の皮膜にはニッケルを主成分とし、クロム
やコバルト等の不純物の種類や量の変化に**よって温
度係数を調整してきたが、近年ニッケルの温度係数に近
い大きな温度係数(3900pprn/℃以上)を有し
、且つ大きな抵抗値を有する皮膜の感温抵抗器の要望が
強くなった。
Traditionally, this type of film has nickel as its main component, and the temperature coefficient has been adjusted according to changes in the type and amount of impurities such as chromium and cobalt. /°C or higher) and a film temperature-sensitive resistor with a large resistance value has become increasingly desirable.

そのため、温度係数を大きくする目的をもって、基体上
に無電解メッキ皮膜によって数ミクロンの厚みをつけ(
この時の抵抗値は0.1〜0.50である。
Therefore, for the purpose of increasing the temperature coefficient, we coated the substrate with an electroless plating film several microns thick (
The resistance value at this time is 0.1 to 0.50.

)、250℃以上の高温エージングを行い、温度係数を
太きくしてきた。
), high-temperature aging at 250°C or higher has been performed to increase the temperature coefficient.

しかし、この方法のみでは、温度係数が大きくても溝切
りを施した状態で抵抗値が最高数」−Ωにしか上がらず
、いままで要望が満たされなかった。
However, with this method alone, even if the temperature coefficient is large, the resistance value can only be increased to a maximum of several "-Ω" in the grooved state, and the demand has not been met until now.

本発明は皮膜として真空蒸着またはスパッタ等による薄
膜を使用して高抵抗膜とし、温度係数も大きくする方法
を提供するものである。
The present invention provides a method of using a thin film formed by vacuum deposition or sputtering to obtain a high resistance film and also increasing the temperature coefficient.

本発明の実施例を参考のために従来例と並記しながら説
明する。
An embodiment of the present invention will be described along with a conventional example for reference.

本発明は基体(セラミック)上に温度係数を高めるため
、純度の違うニッケル(純度が高ければその皮膜の温度
係数は薄膜であってもニッケル線材の温度係数に近づく
ことは公知である)を抵抗加熱の真空蒸着またはスパッ
タにより、ニッケル皮膜を数百オングストローム以下に
生成した。
In order to increase the temperature coefficient on the base (ceramic), the present invention resists nickel of different purity (it is well known that if the purity is high, the temperature coefficient of the coating approaches that of the nickel wire even if it is a thin film). A nickel film with a thickness of several hundred angstroms or less was produced by heated vacuum deposition or sputtering.

この場合の抵抗値は2−100であった。The resistance value in this case was 2-100.

その時使デ 用したニッケルの純度は下記表の如くであ
り、試料Aは純度の悪い通常市販されているニッケルで
あり、試料Bはニッケルの純度を上げるため特別に生成
した高価なニッケルである。
The purity of the nickel used at that time is as shown in the table below; sample A is commercially available nickel with poor purity, and sample B is expensive nickel specially produced to increase the purity of nickel.

同じく上記の表にこれらを真空蒸着により皮膜生成し、
エージングなしに感温抵抗器とした時の温度係数を示し
ている。
Similarly, in the above table, a film was formed using vacuum evaporation,
It shows the temperature coefficient when used as a temperature sensitive resistor without aging.

第1図にその感湿抵抗器の略を示しており、1は基体(
セラミック)、2はニッケル主成分の皮膜、3は金属キ
ャップ、4はリード線を示している。
Figure 1 shows an abbreviation of the humidity-sensitive resistor, where 1 is the base (
(ceramic), 2 is a film mainly composed of nickel, 3 is a metal cap, and 4 is a lead wire.

ここでは、純度の高いニッケルでは要望の3900 p
pm/℃に近づいているが、この材料の製造コストが
通常のニッケルより高くなるため、なるべく試料Aの成
分のニッケルで行うほうが工業E有利である。
Here, we use the desired 3900p for high purity nickel.
pm/°C, but since the manufacturing cost of this material is higher than that of ordinary nickel, it is advantageous for industry E to use nickel, which is a component of sample A, as much as possible.

そこで、A成分のニッケルを使用し、基体上に生成され
た皮膜を250℃以上でエージングして温度係数を大き
くしようと試みたが、第2図に示す如く温度係数は大き
くなる(実線A−で示す)が、温度係数が大きくなるに
従い破線Bで示す如く抵抗値が飛躍的に上昇し、なかに
は抵抗値が無限大となってしまうものを発生する。
Therefore, an attempt was made to increase the temperature coefficient by using nickel as component A and aging the film formed on the substrate at 250°C or higher, but the temperature coefficient increased as shown in Figure 2 (solid line A- ), but as the temperature coefficient increases, the resistance value increases dramatically as shown by the broken line B, and in some cases the resistance value becomes infinite.

これはニッケルが酸化等で劣化するためであり、この酸
化等で劣化した皮膜を感温抵抗器に使用すると、この抵
抗器の電気特性が極端に悪くなる。
This is because nickel deteriorates due to oxidation, etc., and if a film deteriorated due to oxidation or the like is used in a temperature-sensitive resistor, the electrical characteristics of this resistor will deteriorate extremely.

そこで、本発明に示す様に、ニッケル皮膜の表面に従来
一般の抵抗器の皮膜の機械強度保護に使用されていた酸
化ケイ素(Sin)を真空蒸着により生成した後に25
0℃以上の熱エージングを行うと、エージングによる皮
膜の酸化等の劣化を招くことなく温度係数の上昇が図れ
る。
Therefore, as shown in the present invention, silicon oxide (Sin), which has conventionally been used to protect the mechanical strength of general resistor films, is formed on the surface of the nickel film by vacuum deposition, and then
When thermal aging is performed at 0° C. or higher, the temperature coefficient can be increased without causing deterioration such as oxidation of the film due to aging.

この時の基体上に生成された皮膜を第3図に示し、5は
基体、6はニッケル主成分の皮膜、γは酸化ケイ素皮膜
を示す。
The film formed on the substrate at this time is shown in FIG. 3, where 5 is the substrate, 6 is a film mainly composed of nickel, and γ is a silicon oxide film.

この素体(溝切り前の初抵抗値が2〜10Ω)を使用し
、第1図に示す様な感温抵抗器を製作したところ、溝切
り後の抵抗値として数白′〜数にΩのものが得られた。
Using this element (initial resistance before grooving is 2 to 10Ω), a temperature-sensitive resistor as shown in Fig. I got something like this.

本発明の応用として、試料Hの純度の高いニッケルを皮
膜とし、不発面の方法を使用すると、第4図に示す如く
試料Aの純度の悪いものよりさらに大きな温度係数を得
る事が可能となる。
As an application of the present invention, if the high-purity nickel of sample H is used as a film and the unexploded surface method is used, it is possible to obtain a temperature coefficient even larger than that of sample A with poor purity, as shown in Figure 4. .

それぞれ破線は抵抗値、実線は温度係数を示す。The broken line shows the resistance value, and the solid line shows the temperature coefficient.

この時のエージング時間はそれぞれ3時間であった。The aging time at this time was 3 hours.

また、エージング雰囲気を酸化雰囲気でなく窒素ガス等
の非酸化ガス中で行うと、第5図に示す様に抵抗値の増
加がより一層防止できる。
Further, if the aging atmosphere is not an oxidizing atmosphere but a non-oxidizing gas such as nitrogen gas, the increase in resistance value can be further prevented as shown in FIG.

ここで、実線は酸化雰囲気中、破線は非酸化雰囲気中で
行った場合を示す。
Here, the solid line shows the case in an oxidizing atmosphere, and the broken line shows the case in a non-oxidizing atmosphere.

このように、本発明を使用すれは皮膜の劣化なしに高抵
抗でもって温度係数を大きくでき、且つ市販されている
通常のニッケルでもそれが可能となる。
As described above, by using the present invention, it is possible to increase the temperature coefficient with high resistance without deteriorating the film, and it is also possible to do this with ordinary commercially available nickel.

また、特に純度の高いニッケルを使用すれば、尚一層大
きな温度係数を有する薄膜タイプの感温抵抗器の製造が
容易となる。
Further, if nickel of particularly high purity is used, it becomes easier to manufacture a thin film type temperature sensitive resistor having an even larger temperature coefficient.

これにより、電子回路の熱保護、温度補正がより簡単と
なり、工業的にみて価値は大きいものである。
This makes thermal protection and temperature compensation of electronic circuits easier, and is of great value from an industrial perspective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例における感温抵抗器の半断面正面図、第
2図は従来方法を説明するためのエージング温度に対す
る温度係数、抵抗値上昇率の変化を示す図、第3図は本
発明方法により得られた感温抵抗器の要部断面図、第4
図は本発明を説明するためのエージング温度に対する温
度係数、抵抗値上昇率の変化を示す図、第5図は本発明
方法を説明するためエージング雰囲気を酸化雰囲気中、
非酸化雰囲気中で行った時のエージング温度に対する抵
抗値−上昇率の変化を示す図である。 5・・・・・・基体、6・・・・・・ニッケル主成分皮
膜、7・・・・・・酸化ケイ素皮膜。
Fig. 1 is a half-sectional front view of a conventional temperature-sensitive resistor, Fig. 2 is a diagram showing changes in temperature coefficient and resistance increase rate with respect to aging temperature to explain the conventional method, and Fig. 3 is a diagram of the present invention. Cross-sectional view of the main parts of the temperature-sensitive resistor obtained by the method, No. 4
The figure is a diagram showing changes in temperature coefficient and resistance increase rate with respect to aging temperature for explaining the present invention, and Fig. 5 is a diagram showing changes in temperature coefficient and resistance increase rate with respect to aging temperature for explaining the present invention.
FIG. 3 is a diagram showing changes in resistance value vs. rate of increase with respect to aging temperature when performed in a non-oxidizing atmosphere. 5...Substrate, 6...Nickel main component film, 7...Silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims] 1 基体上にニッケルを主成分とする皮膜を生威し、そ
の皮膜−ヒに酸化ケイ素を生成させ、250℃以上の温
度エージングを行うことによって3000p prrv
”C以上の温度係数を有しめた抵抗器を得ることを特徴
とする抵抗器の製造法。
1. A film containing nickel as a main component is formed on a substrate, silicon oxide is formed on the film, and 3000p prrv is produced by aging at a temperature of 250°C or higher.
``A method for manufacturing a resistor, characterized by obtaining a resistor having a temperature coefficient of C or more.
JP14840879A 1979-11-15 1979-11-15 How to make resistors Expired JPS5845163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14840879A JPS5845163B2 (en) 1979-11-15 1979-11-15 How to make resistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14840879A JPS5845163B2 (en) 1979-11-15 1979-11-15 How to make resistors

Publications (2)

Publication Number Publication Date
JPS5670604A JPS5670604A (en) 1981-06-12
JPS5845163B2 true JPS5845163B2 (en) 1983-10-07

Family

ID=15452113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14840879A Expired JPS5845163B2 (en) 1979-11-15 1979-11-15 How to make resistors

Country Status (1)

Country Link
JP (1) JPS5845163B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519688U (en) * 1991-08-26 1993-03-12 幹治 石田 Drum brake cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855762A (en) * 1981-09-30 1983-04-02 Hitachi Ltd Heating resistor for hot wire type flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519688U (en) * 1991-08-26 1993-03-12 幹治 石田 Drum brake cooling device

Also Published As

Publication number Publication date
JPS5670604A (en) 1981-06-12

Similar Documents

Publication Publication Date Title
US4276535A (en) Thermistor
JPS5955001A (en) Resistor
EP0220926A2 (en) Thin film chromium-silicon-carbon resistor and method of manufacture thereof
US4042479A (en) Thin film resistor and a method of producing the same
US4100524A (en) Electrical transducer and method of making
JPS5845163B2 (en) How to make resistors
US5001454A (en) Thin film resistor for strain gauge
US3912611A (en) Film material and devices using same
JPH02152201A (en) Thin-film resistor for strain gauge
JPS6334414B2 (en)
KR102170210B1 (en) High temperature environment stabilization process of platinum detection sensor
JPH04370901A (en) Electric resistance material
JPS5941283B2 (en) Electronic component manufacturing method
JP2001110602A (en) Thin-film resistor forming method and sensor
JPS6395601A (en) Resistance thin film
JPH0620803A (en) Thin film resistor and manufacture thereof
JPS6295805A (en) Thermistor
JP3664655B2 (en) High resistivity material and manufacturing method thereof
JPS58143501A (en) Film resistor
Olson et al. Nitrides of Chromium and Chromium‐Titanium Alloys: New Film‐Type Resistance Elements
JPH0287501A (en) Electric resistance material
JPS5853484B2 (en) thin film resistor
GB2136213A (en) Method for producing a thin film resistor
JPH044722B2 (en)
JPH04192302A (en) Thin film thermistor element