JPS5855762A - Heating resistor for hot wire type flowmeter - Google Patents

Heating resistor for hot wire type flowmeter

Info

Publication number
JPS5855762A
JPS5855762A JP56153645A JP15364581A JPS5855762A JP S5855762 A JPS5855762 A JP S5855762A JP 56153645 A JP56153645 A JP 56153645A JP 15364581 A JP15364581 A JP 15364581A JP S5855762 A JPS5855762 A JP S5855762A
Authority
JP
Japan
Prior art keywords
resistor
ceramic
metallizing
metallized
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56153645A
Other languages
Japanese (ja)
Other versions
JPS6335082B2 (en
Inventor
Kanemasa Sato
佐藤 金正
Sadayasu Ueno
上野 定寧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56153645A priority Critical patent/JPS5855762A/en
Publication of JPS5855762A publication Critical patent/JPS5855762A/en
Publication of JPS6335082B2 publication Critical patent/JPS6335082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor

Abstract

PURPOSE:To provide a titled resistor which withstands mechanical external forces such as oscillations sufficiently with less secular variation by joining and forming a metallized resistor on ceramic surfaces. CONSTITUTION:Metallic leads 5 are firmly joined to both ends of a ceramic pipe 1 or a ceramic plate 2 respectively by platinum paste or with plating layers formed beforehand of a metallic alloy. Since the ceramic material receives a metallizing treatment as a pretreatment for the purpose of bonding a resistor 10 firmly thereto, the ceramic material having a coefft. of expansion roughly equal to that of a metallizing material 8 and having good wettability with said material is selected. After the ceramic surfaces are cleaned, the ceramics are heated in a vacuum, and the metallizing material is metallized thereon by vapor deposition or the like to form film. Thereafter, the metallized material is joined to the resistor and is resistance-trimmed by a laser or the like, whereby a coating 15 of glass is applied on the surface of the resistor.

Description

【発明の詳細な説明】 本発明は、たとえば内燃機関の吸入空気流量検出に好適
な熱線式流量計用発熱抵抗体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating resistor for a hot wire flowmeter suitable for detecting the intake air flow rate of an internal combustion engine, for example.

従来、熱線式流量計用発熱抵抗体は、両端にリードを有
するアルミナパイプボビンに白金の細線を巻線する構造
からなっていた。゛しかしφ50μ以下の細線の等ピッ
チ巻する巻線装置が市販されていないことから、巻線作
業は自家製作を余儀なくされ、端末の点溶接装置と一体
となった装置を生産数量に合わせて開発していく必要が
あった。
Conventionally, a heating resistor for a hot wire flowmeter has a structure in which a thin platinum wire is wound around an alumina pipe bobbin having leads at both ends.゛However, since there is no commercially available winding device for winding thin wires with a diameter of 50μ or less at equal pitches, the winding work had to be made in-house, and a device integrated with a terminal spot welding device was developed to match the production volume. I needed to go on.

また、巻線が白金の細線であることから、巻線位置決め
のだめの口金は内径部が異常に小さく、超硬々どで作っ
ても摩耗が激しく、頻繁に交換を要した。
In addition, since the windings were made of thin platinum wire, the inner diameter of the cap for positioning the windings was abnormally small, and even when made of super hard material, it was subject to severe wear and had to be replaced frequently.

一方、白金細線はφ6μから六十回以上のダイス引出し
により作られるため、その大半が加工費である。このた
め、重量3■の材料費にほぼ近い原価構成にする必要が
あり、そこで、アルミナパイプホビンの表面に白金の厚
膜を形成する方法が考え出された。
On the other hand, platinum thin wire is made from a diameter of 6μ by drawing a die more than 60 times, so most of the cost is processing cost. For this reason, it was necessary to have a cost structure that was close to the material cost of 3cm in weight, so a method was devised to form a thick platinum film on the surface of the alumina pipe hobbin.

厚膜は予めバインダを配合した白金厚膜ペースト攪拌液
中にボビンごとディップして乾燥焼成して形成し、着膜
した白金厚膜層をレーザでスパイラル状にトリミングし
て所要の抵抗値を得る。このサンプルを300Cに自己
加熱させ、電源を4秒0N14秒OFFのサイクルテス
トを継続すると5万サイクル前後で、流速Q(Kg/H
)に対する出力電圧V。(V)  の変化がΔQ/Qに
換算して15%以上であることが判明した。しかし“流
量計としては自動車の10万一走行耐久テスト前後の変
化で13%以下が許容値とされている。
The thick film is formed by dipping the bobbin in a platinum thick film paste stirring solution containing a binder in advance, drying and firing, and trimming the deposited platinum thick film layer in a spiral shape with a laser to obtain the required resistance value. . When this sample was self-heated to 300C and a cycle test of 4 seconds ON and 14 seconds OFF was continued, the flow rate Q (Kg/H) was approximately 50,000 cycles.
) with respect to the output voltage V. It was found that the change in (V) was 15% or more in terms of ΔQ/Q. However, the permissible value for a flowmeter is 13% or less after a 100,000-mile durability test on a car.

このような変化の要因として、白金の厚膜とアルミナの
接合部間で互いの膨張係数の差(アルミナ7.7X10
=、白金8.9 X 10−’)が結合力を弱め白金粒
子の内部歪を促進せしめ抵抗値を変化せしめると考えら
れる。また、白金の厚膜は10μ〜20μに厚く着膜さ
れるが焼成後は緻密な膜は得られず白金層に割れが入シ
電流はそのランドからランドへの架橋路を通って流れる
。このような割れは温度の変化による白金自身の膨張収
縮により変化することが考えられ、電流の流れによるイ
オンの移動は、さらに微妙な継時変化の要因とされる。
The reason for this change is the difference in expansion coefficient between the platinum thick film and alumina joint (alumina 7.7 x 10
=, platinum 8.9 x 10-') weakens the bonding force and promotes internal distortion of the platinum particles, changing the resistance value. Further, although a thick platinum film is deposited to a thickness of 10 to 20 μm, a dense film is not obtained after firing, and the platinum layer is cracked, and the current flows through the bridge path from land to land. It is thought that such cracks change due to the expansion and contraction of platinum itself due to changes in temperature, and the movement of ions due to the flow of current is considered to be a cause of even more subtle changes over time.

さらに、レーザによる抵抗のトリミングにおいて、厚膜
抵抗体をつきゃぶったレーザのエネルギーはアルミナ表
面に達しアルミナに切り込み溝を形成し、ボビンの60
Gに達しる振動荷重に耐えられない程の強度低下をきた
していた。
Furthermore, when trimming a resistor using a laser, the energy of the laser that penetrates the thick-film resistor reaches the alumina surface, cuts into the alumina, and forms a groove in the bobbin.
The strength had deteriorated to the extent that it could not withstand vibration loads reaching G.

本発明の目的は、加工工数が少なく、また安価で流量セ
ンサエレメントとして継時変化が少なく、振動などの機
械的外力に対しても十分耐え得る熱線式流量計用発熱抵
抗体を提供するにある。
An object of the present invention is to provide a heating resistor for a hot-wire flowmeter that requires fewer processing steps, is inexpensive, has little change over time as a flow rate sensor element, and has sufficient resistance to external mechanical forces such as vibrations. .

以下本発明の詳細な説明する。アルミナパイプと、その
表面に形成せられる抵抗体の接合強度をメタライズ層に
よって向上せしめメタライズ層上に抵抗体を形成せしめ
て、各接合材料同志の密着性をよくして緻密な抵抗体の
膜を得る。セラミックスと接合する材料との間のメタラ
イズの最適条件とは、熱膨張係数が互いにほぼ近似して
いて、メタライジング材料の方が約10%以内で大きく
セラミックに常時圧縮力が加わるような組合せが望まし
い。この理由は、一般にセラミックの圧縮強度が引張強
度に対して約10%以内有するからである。次にセラミ
ックスはアルミナに限定せず、メタライジング材料との
間で互いに濡れ性のよい、。
The present invention will be explained in detail below. The bonding strength between the alumina pipe and the resistor formed on its surface is improved by the metallized layer, and the resistor is formed on the metallized layer to improve the adhesion between each bonding material and form a dense resistor film. obtain. The optimal conditions for metallization between the ceramic and the material to be bonded are such that the coefficients of thermal expansion are approximately similar to each other, and the metallizing material is larger by within about 10%, so that a constant compressive force is applied to the ceramic. desirable. The reason for this is that the compressive strength of ceramics is generally within about 10% of the tensile strength. Next, ceramics are not limited to alumina, and have good wettability with metallizing materials.

なじみのよい材料を選択して組合わせるとよい。It is best to select and combine materials that are compatible with each other.

このようにしてこれらの材料同志の接合部での拡散を促
進せしめて接合強度を向上せしめる。
In this way, the diffusion of these materials at the joint is promoted and the joint strength is improved.

メタライジング材料としては酸化金属あるいは無機質材
料とする。メタライジング材料の電気抵抗は大きくし、
抵抗体はこのメタライジング材料上に着膜形成して、緻
密で安定な抵抗層を得るようにする。この場合、メタラ
イジング層は抵抗体層のみをレーザカッティングするト
リミングにおいて余剰のレーザエネルギーを吸収しセラ
ミックに有香な傷を与えない防護壁となる。抵抗体はメ
タライジング材料との接合条件の最適なものを選択でき
るが、たとえば温度係数、膨張係数の比較的小さい白金
、比較的大きいNi、Cuなどがあげられる。白金は化
学的に安定である。
The metallizing material is a metal oxide or an inorganic material. The electrical resistance of the metallizing material is increased,
The resistor is deposited on this metallizing material to obtain a dense and stable resistive layer. In this case, the metallizing layer absorbs excess laser energy during trimming in which only the resistor layer is laser cut, and serves as a protective wall to prevent aromatic scratches from occurring on the ceramic. The resistor can be selected from a resistor that meets the optimum bonding conditions with the metallizing material, such as platinum, which has a relatively small temperature coefficient and expansion coefficient, and Ni, Cu, which has a relatively large coefficient of expansion. Platinum is chemically stable.

一方抵抗体が酸化しないよう還元性雰囲気あるいは不活
性ガス雰囲気中で作業をすることが要求されるがNiや
Cuは比較的安価であり、温度係数が大きい点で有利で
ある。
On the other hand, although it is required to work in a reducing atmosphere or an inert gas atmosphere to prevent the resistor from oxidizing, Ni and Cu are advantageous in that they are relatively inexpensive and have a large temperature coefficient.

母材のセラミック材料としては膨張係数の大きい順にマ
グネシア、ホルステライト、ベリリア、ステアタイト、
アルミナ、ジルコニア、スピネル、ムライトなどがあげ
られ、メタライズ材料としてはFeNiCu合金、Nb
+ Ti、Ta、Mo、Wなどがあげられ名が接合には
金属の酸化、濡れ、吸着、拡散などの複雑な過程が関係
するので、相性を考慮して選択組合せることが必要とな
る。
The base ceramic materials include magnesia, holsterite, beryllia, steatite, and
Examples include alumina, zirconia, spinel, mullite, etc., and metallizing materials include FeNiCu alloy, Nb
+ Examples include Ti, Ta, Mo, and W. Bonding involves complex processes such as oxidation, wetting, adsorption, and diffusion of metals, so it is necessary to select and combine them in consideration of compatibility.

メタライジング処理法として高融点金属注力;ある。メ
タライジング組成としては、MO9MOO3゜w、wo
、、MO−Mn、MO−Mn−T i。
Focusing on high melting point metals as a metallizing treatment method. The metallizing composition is MO9MOO3゜w, wo.
, , MO-Mn, MO-Mn-T i.

MO8102,MOMOO2TlO21MO()z−M
n−T i、MO−sio2.w−Mno2−Tio2
−8in、 、 W−Re−Mn02−Ti02などが
あげられる。メタライジング接合機構の一例を説明する
と、メタライジング時の加湿フォーミングガスM n+
 H20−4M n O+ H2このMnOはアルミナ
セラミックス中のガラス相と接触し、その中に溶は込む
。ガラス相は流動しやすくなり、焼結が進行しているメ
タライジング層の空隙部に進入して、アルミナセラミッ
クスとメタライジング層を結合させる。また同時にMn
OはA tt Os  と反応しMn0−A40mを形
成し、中間層となる。MO2Mnの表面は加湿ガスフォ
ーミングガス中において、わずかに酸化されておリ、ガ
ラス相によく濡れる状態となり、また、MO9Mn表面
の酸化物が侵入してきたガラス相に溶は込んで完全に接
合する。さらに抵抗体としてNiを化学メッキなどで着
膜し、キュアするとキュア時の加熱温度により未だ残っ
ているメタライジング層の空隙部にNiがMo、Mnと
相互拡散して完全な接合が行なわれる。メタライジング
は、蒸着、イオンブレーティング、スパッタ、などの真
空処理法によっても処理可能である。−例を説明すると
、メタライジング前にセラミックスの表面をダイヤモン
ド粉末で研磨し、水洗した後1000Cで空気焼きして
清浄化する。
MO8102, MOMOO2TlO21MO()z-M
n-T i, MO-sio2. w-Mno2-Tio2
-8in, W-Re-Mn02-Ti02, etc. To explain an example of the metallizing bonding mechanism, humidified forming gas M n+ during metallizing
H20-4M n O+ H2 This MnO contacts the glass phase in the alumina ceramic and melts into it. The glass phase becomes more fluid and enters the voids in the metallizing layer where sintering is progressing, bonding the alumina ceramic and the metallizing layer. At the same time, Mn
O reacts with AttOs to form Mn0-A40m, which becomes an intermediate layer. The surface of MO2Mn is slightly oxidized in the humidifying gas forming gas, and becomes well wetted with the glass phase, and the oxide on the MO9Mn surface melts into the glass phase that has entered and is completely bonded. Furthermore, Ni is deposited as a resistor by chemical plating or the like, and when cured, Ni interdiffuses with Mo and Mn into the remaining voids of the metallizing layer due to the heating temperature during curing, resulting in complete bonding. Metallizing can also be performed by vacuum processing methods such as vapor deposition, ion blasting, and sputtering. - To explain an example, before metallizing, the surface of the ceramic is polished with diamond powder, washed with water, and then air fired at 1000C to clean it.

更に、その後プラズマアーク処理により清浄化する。こ
のセラミックス材料を5 X 10−”I’orr以下
の真空中において、セラミックス基板を抵抗炉により5
00〜1000 Cに加熱する。その上にMOを10μ
m程度蒸着する。メタライジングされたセラミックス上
には1IJiなどをメッキして抵抗体を形成するか、金
属ロー材を介して金属抵抗体を接合することもできる。
Furthermore, it is then cleaned by plasma arc treatment. This ceramic material was heated in a vacuum of 5 x 10-"I'orr or less, and the ceramic substrate was heated in a resistance furnace for 5
Heat to 00-1000C. Add 10μ of MO on top of that.
Deposit about m. A resistor may be formed by plating 1IJi or the like on the metallized ceramics, or a metal resistor may be joined via a metal brazing material.

次のメタライジング処理法として溶射がある。溶射の機
構によって炎溶射法、プラズマ溶射法、爆裂溶射法、線
爆発溶射法などがあるが、金属、酸化物、炭化物、ケイ
化物など溶かして基板上に吹き付は一様な皮膜を形成さ
せる。また、金属ソルダー、酸化物ソルダーを使用する
方法がある。金属ソルダーを使用する方法は、各種金属
ソルダーをセラミックスと金属との間にはさみ、空気中
、不活性ガス中、還元雰囲気中あるいは真空中において
加熱し、金属ソルダーを溶融させ結合する。金属ソルダ
ーとしては、 (1)  インジュウム及びインジュウム合金(2) 
 アルミニウム (3)  Pb−8n−Zn−8b系合金(4)  T
i−Ni、 Ti−cu、zr−Nj、zr−Cuがあ
る。
The next metallizing treatment method is thermal spraying. Thermal spraying methods include flame spraying, plasma spraying, explosion spraying, and line explosion spraying, but spraying melts metals, oxides, carbides, and silicides and forms a uniform film on the substrate. . There is also a method of using metal solder or oxide solder. In the method using metal solder, various types of metal solder are sandwiched between ceramics and metal, and heated in air, inert gas, reducing atmosphere, or vacuum to melt and bond the metal solder. Metal solders include (1) indium and indium alloys (2)
Aluminum (3) Pb-8n-Zn-8b alloy (4) T
There are i-Ni, Ti-cu, zr-Nj, and zr-Cu.

ここで(4)について詳しく述べるとsTi、Zrなど
と比較的低融点の合金を作るNi、(:uとをセラミッ
クスと金属との間に挿入し、真空中または不活性ガス中
で1回の加熱操作により結合する。
Here, to explain (4) in detail, Ni, (:u), which forms an alloy with a relatively low melting point with sTi, Zr, etc., is inserted between the ceramic and the metal, and it is heated once in vacuum or in an inert gas. Combine by heating operation.

Ti、ZnO代シにこれらの水素化合物であるTiH,
ZrHなどを使用する場合もある。Ti−Niソルダを
用いアルミナとNiを接合する場合は、次のような過程
を経るものとされている。
In place of Ti and ZnO, these hydrogen compounds TiH,
ZrH or the like may also be used. When alumina and Ni are joined using Ti--Ni solder, the following process is considered to occur.

接合操作の加熱時にTi、Niがソルダーとアルミナと
の界面付近に集合し、第゛1図に示すように、アルミナ
側にはTiが選択吸収される。第1図はTr−1ンルダ
ーを用いてアルミナにNjをつけた状態をXMAで分析
した元素分析図である。
During heating during the bonding operation, Ti and Ni gather near the interface between the solder and alumina, and as shown in FIG. 1, Ti is selectively absorbed on the alumina side. FIG. 1 is an elemental analysis diagram obtained by XMA analysis of a state in which Nj was attached to alumina using a Tr-1 ruler.

このTiはアルミナ中に拡散、反応する。特にアルミナ
セラミックス中に少量含有されているSiO2とTiが
反応し5io2が還元されるとともにT 102 、 
T ’ 0. T 1202などが生成される。Ti。
This Ti diffuses into alumina and reacts. In particular, SiO2, which is contained in a small amount in alumina ceramics, reacts with Ti, reducing 5io2 and reducing T102,
T'0. T 1202 etc. are generated. Ti.

Si、これらの酸化物は相互に拡散、反応して界面部に
中間層が形成され、気密で機械にも安定な接合体が構成
される。酸化物をソルダーとして用い、同様にこのソル
ダーをセラミックスと金属との間に挿入し加熱処理して
接合する方法である。
Si and these oxides diffuse and react with each other to form an intermediate layer at the interface, forming an airtight and mechanically stable bonded body. This is a method in which an oxide is used as a solder, and the solder is similarly inserted between ceramic and metal and heat-treated to join them.

接合時の雰囲気は高温の場合、封着金属の過酸化防止の
ため不活性、還元雰囲気または真空中で行なわれる。酸
化物ソルダには接合後非晶質であるか結晶質であるかに
より分類されるが、特に高耐熱性結晶質ソルダとしては
Cao−A 120.−M g 0−B2O3系、ca
o  kt20B  MgOS’02系などがある。こ
れらのソルダによる接合は板状セラミックスへのメタラ
イジングに最適となる。なお第2図は酸化物ソルダを介
してアルミナにNbを着膜接合した状態をXMAで分析
した元素分析図を示すものである。
When the atmosphere during bonding is high, the bonding is performed in an inert or reducing atmosphere or in a vacuum to prevent overoxidation of the sealing metal. Oxide solders are classified according to whether they are amorphous or crystalline after bonding, and Cao-A 120. -M g 0-B2O3 system, ca
o kt20B MgOS'02 series, etc. Bonding using these solders is ideal for metallizing plate-shaped ceramics. Note that FIG. 2 shows an elemental analysis diagram obtained by analyzing by XMA a state in which Nb is bonded to alumina via an oxide solder.

以下本発明の一実施例を説明する。An embodiment of the present invention will be described below.

第3図(a)に示すようにセラミックパイプ1、または
第3図(b)に示すようにセラミック板2、または第3
図(C)に示すようにセラミック棒3の両端にそれぞれ
金属リード5を白金ペーストあるいは予め金属合金、金
属酸化物をセラミックスヘメタライズした後形成される
メッキ層あるいはロー材を介して強固に接合する。この
場合、セラミックス材料は、第4図に示すように、抵抗
体10を強固につけるための予備の処理としてメタライ
ジング処理があるため、このメタライジング材料8との
膨張係数のほぼ近い濡れ性の良いものを条件に選択され
る。ここではセラミックス材料としてアルミナを用いた
。アルミナの膨張係数は7.7 Xl0−’(1/ll
’)である。メタライジング材料8はMO−M nを有
機バインダに混合してペイント状にし、これをセラミッ
クスの表面に塗布し水素ガスあるいは不活性ガスあるい
はこれらの混合ガス中で1000〜1500Cの温度で
メタライジングして形成される。メタライジング時の加
湿フォーミングガス中においてメタライジング層中のM
nの一部はMnOとなる。このMnOはアルミナ中のガ
ラス相と接触しその中に溶は込み、メタライジング層の
空隙部に入ってアルミナとメタライジングノーが接合す
る。MnOはA t203と反応し中間層M n O−
At、03が形成される。さらに抵抗体はNiをメッキ
することにより形成される。あるいはCuローを着膜し
て形成される。Niやcuはメッキ後の加熱処理時ある
いはCuロー付時の加熱において残存している、メタラ
イジング層の空 −疎部に入り込みMo、Mnと相互拡
散して完全な接合となる。Niは抵抗体とし温度係数が
6700p9m/Cであり高感度を得ることができる。
Ceramic pipe 1 as shown in FIG. 3(a), ceramic plate 2 as shown in FIG. 3(b), or ceramic plate 3 as shown in FIG.
As shown in Figure (C), metal leads 5 are firmly connected to both ends of the ceramic rod 3 through platinum paste or a plating layer or brazing material formed after metallizing a metal alloy or metal oxide into the ceramic in advance. . In this case, as shown in FIG. 4, the ceramic material is metallized as a preliminary treatment to firmly attach the resistor 10, so the ceramic material has a wettability similar to that of the metallized material 8 in terms of expansion coefficient. Selected based on quality. Here, alumina was used as the ceramic material. The expansion coefficient of alumina is 7.7 Xl0-' (1/ll
'). The metallizing material 8 is made by mixing MO-Mn with an organic binder to form a paint, which is applied to the surface of ceramics, and metallized at a temperature of 1000 to 1500 C in hydrogen gas, inert gas, or a mixture thereof. It is formed by M in the metallizing layer in the humidified forming gas during metallizing
A part of n becomes MnO. This MnO comes into contact with the glass phase in the alumina, melts into it, enters the voids in the metallizing layer, and joins the alumina and the metallizing layer. MnO reacts with At203 to form an intermediate layer MnO-
At,03 is formed. Further, the resistor is formed by plating Ni. Alternatively, it is formed by depositing a Cu raw film. Ni and Cu enter the empty and sparse portions of the metallizing layer that remain during the heat treatment after plating or the heating during Cu brazing, and interdiffuse with Mo and Mn to form a perfect bond. Ni is used as a resistor and has a temperature coefficient of 6700p9m/C, so high sensitivity can be obtained.

ここでメタライズとして酸化銅法による場合を説明する
。C11094,2%、At2035.8%の組成の粉
末を混合し、空気中において1250t:”30分間加
熱して冷却後微粉砕する。これを噴霧または浸漬法など
でセラミックス表面に塗布する。−そして塗布物質の融
点1190C以上に加熱し、次に還元雰囲気中で約10
00Cに加熱して銅をメタライジングする。金属ソルダ
法では活性金属TiやNiあるいはCuを予めセラミッ
クスに蒸着により形成し、これに抵抗体とするNibあ
るいは仕Cuのシートをあてて不活性ガス中例えばAr
ガス1000〜15001:’で加熱して接合する。
Here, the case where copper oxide method is used as metallization will be explained. Powders with a composition of C11094.2% and At2035.8% are mixed, heated in air for 1250 tons for 30 minutes, cooled, and pulverized. This is applied to the ceramic surface by spraying or dipping. - Then The coating material is heated to a melting point of 1190C or above, and then heated for about 10 minutes in a reducing atmosphere.
Copper is metallized by heating to 00C. In the metal soldering method, active metals Ti, Ni, or Cu are formed in advance on ceramics by vapor deposition, a sheet of Nib or Cu as a resistor is applied to this, and then the active metals Ti, Ni, or Cu are deposited on ceramics, and then a sheet of Nib or Cu as a resistor is applied to the ceramics.
Weld by heating with gas 1000-15001:'.

酸化物ソルダ法ではたとえばCa OA t20s−M
gO系、Ca O−Altos−MgO−8io系など
の酸化物ソルダを高耐熱性結晶質ソルダとして用い、る
が、これらのソルダをセラミックスと金属との間に直接
入れて加熱処理して接合する。シート状の場合にはこの
ような方法は比較的簡単であるが1円筒状や棒状の外周
をメタライズする場合にはメタライズ材料を予め蒸着あ
るいはスパッタなどにより着膜しておく方法をとる。
In the oxide soldering method, for example, Ca OA t20s-M
Oxide solders such as gO-based and CaO-Altos-MgO-8io-based are used as highly heat-resistant crystalline solders, but these solders are directly inserted between ceramics and metals and heat treated to bond them. . In the case of a sheet, such a method is relatively simple, but when metalizing the outer periphery of a cylinder or rod, a method is used in which a metallizing material is deposited in advance by vapor deposition or sputtering.

メタライズの方法としては、前述のようにセラミックス
表面を予め清浄処理した後、真空中で加熱し、蒸着、ス
パッタ、イオンプレーテングナトにより着膜メタライズ
する方法、溶射による方法などがある。
Examples of metallizing methods include cleaning the ceramic surface in advance as described above, heating it in a vacuum, depositing a metallizing film by vapor deposition, sputtering, ion plating, and thermal spraying.

このようなセラミックスのメタライズ後抵抗体接合を行
ない、レーザなどによる抵抗トリミングして、抵抗体表
面には、継時変化防止のためのガラスのコーティング1
5をほどこす。
After metalizing such ceramics, the resistor is bonded, the resistor is trimmed using a laser, etc., and the resistor surface is coated with glass to prevent deterioration over time.
Apply 5.

上述した実施例によれば次の効果が得られる。According to the embodiment described above, the following effects can be obtained.

(1)セラミックスにメタライズ層を介して抵抗体を接
合できるので、接合強度が向上し、自己加熱300C,
ON4w、0FF4sec冷熱サイクルテストにも十分
耐え、継時変化が少なく精度のよい流量センサエレメン
トが得られる。第5図はこのような効果を立証する実験
データであり、白丸を結ぶメタライズ品は黒丸を結ぶメ
タライズなしの品と比較して、極めて顕著な精度  。
(1) Since the resistor can be bonded to ceramics through the metallized layer, the bonding strength is improved, and the self-heating 300C,
It can withstand ON4w, 0FF4sec cooling and heating cycle tests, and provides a highly accurate flow rate sensor element with little change over time. Figure 5 shows experimental data proving this effect, and the metallized product that connects the white circles has extremely remarkable accuracy compared to the product that does not have metallization that connects the black circles.

向上を図ることができ、流量8〜320Kg/H(1〜
40 m / s )の範囲において継時変化は±3%
以下におさえることができる。
The flow rate is 8~320Kg/H (1~320Kg/H).
40 m/s), the change over time is ±3%.
It can be summarized below.

(2)抵抗体材料としてCu、 Niなどの安価な材料
が使用可能となり、コスト低減を計ることができる。
(2) Inexpensive materials such as Cu and Ni can be used as resistor materials, resulting in cost reduction.

(3)  抵抗体として、温度係数のもつとも大きい6
700 p9m/UN i 材料を選択テキルf)テ、
 流量計としての感度を向上せしめることができる。
(3) As a resistor, it has a very large temperature coefficient6.
700 p9m/UN i Select material
The sensitivity as a flowmeter can be improved.

(4)既製の設備で十分加工ができ、生産性の向上が計
れる。
(4) It can be processed sufficiently using ready-made equipment, and productivity can be improved.

以上述べたことから明らかなように1本発明による熱線
式流量計用発熱抵抗体によれば、加工工数が少なく、ま
た安価で、流量センサエレメントとして継時変化が少な
く、振動などの機械的外力に対して十分耐え得るように
なる。
As is clear from the above description, (1) the heating resistor for a hot-wire flowmeter according to the present invention requires fewer processing steps, is inexpensive, has little change over time as a flow rate sensor element, and is susceptible to mechanical external forces such as vibrations. be able to withstand enough.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTi−Niソルダを用いてアルミナにNiをつ
けた状態でXMAで分析した元素分析図、第2図は酸化
物ソルダを介してアルミナにNbを着膜接合した状態を
XMAで分析した元素分析図、第3図(a)、 (b)
、 (C)は本発明の実施例を示す構成図で各流量セン
サエレメントの断面図、第4図は流量センサエレメント
の着膜接合状態を示す断面拡大図、第5図は流量センサ
エレメントの継時変化を示すグラフである。 1・・・セラミックパイプ、2・・・セラミック板、3
・・・セラミック棒、5・・・金属リード、10・・・
抵抗体、算1(2)
Figure 1 is an elemental analysis diagram analyzed by XMA with Ni applied to alumina using Ti-Ni solder, and Figure 2 is an XMA analysis of a state in which Nb is bonded to alumina via oxide solder. Elemental analysis diagram, Figure 3 (a), (b)
, (C) is a configuration diagram showing an embodiment of the present invention, and is a cross-sectional view of each flow sensor element, FIG. 4 is an enlarged cross-sectional view showing the state of film bonding of the flow sensor element, and FIG. It is a graph showing changes over time. 1... Ceramic pipe, 2... Ceramic plate, 3
...Ceramic rod, 5...Metal lead, 10...
Resistor, Arithmetic 1 (2)

Claims (1)

【特許請求の範囲】[Claims] 1、両端にリードが固定されたセラミックの外周表面に
抵抗体を形成し、流量計のセンサエレメントとして用い
る発熱抵抗体の構成において、前記セラミック表面にメ
タライズされた抵抗体を接合形成せしめたことを特徴と
する熱線式流量計用発熱抵抗体。
1. A resistor is formed on the outer peripheral surface of a ceramic with leads fixed to both ends, and a metallized resistor is bonded to the ceramic surface in the configuration of a heating resistor used as a sensor element of a flow meter. Features a heating resistor for hot wire flowmeters.
JP56153645A 1981-09-30 1981-09-30 Heating resistor for hot wire type flowmeter Granted JPS5855762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153645A JPS5855762A (en) 1981-09-30 1981-09-30 Heating resistor for hot wire type flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153645A JPS5855762A (en) 1981-09-30 1981-09-30 Heating resistor for hot wire type flowmeter

Publications (2)

Publication Number Publication Date
JPS5855762A true JPS5855762A (en) 1983-04-02
JPS6335082B2 JPS6335082B2 (en) 1988-07-13

Family

ID=15567054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153645A Granted JPS5855762A (en) 1981-09-30 1981-09-30 Heating resistor for hot wire type flowmeter

Country Status (1)

Country Link
JP (1) JPS5855762A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263402A (en) * 1985-05-16 1986-11-21 モリト株式会社 Production of rubber shoes sole
US4870860A (en) * 1985-02-14 1989-10-03 Nippon Soken, Inc. Direct-heated flow measuring apparatus having improved response characteristics
US5129732A (en) * 1989-11-14 1992-07-14 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Sensor for determining the temperature averaged on the basis of mass flow density
JPH05207903A (en) * 1992-10-21 1993-08-20 Achilles Corp Production of injection molded shoe sole
US5367906A (en) * 1987-09-30 1994-11-29 Hitachi, Ltd. Hot wire air flow meter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658207A (en) * 1979-10-18 1981-05-21 Matsushita Electric Ind Co Ltd Method of manufacturing electronic part
JPS5670604A (en) * 1979-11-15 1981-06-12 Matsushita Electric Ind Co Ltd Method of manufacturing resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658207A (en) * 1979-10-18 1981-05-21 Matsushita Electric Ind Co Ltd Method of manufacturing electronic part
JPS5670604A (en) * 1979-11-15 1981-06-12 Matsushita Electric Ind Co Ltd Method of manufacturing resistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870860A (en) * 1985-02-14 1989-10-03 Nippon Soken, Inc. Direct-heated flow measuring apparatus having improved response characteristics
US4912975A (en) * 1985-02-14 1990-04-03 Nippon Soken, Inc. Direct-heated flow measuring apparatus having improved response characteristics
JPS61263402A (en) * 1985-05-16 1986-11-21 モリト株式会社 Production of rubber shoes sole
JPH0222641B2 (en) * 1985-05-16 1990-05-21 Morito & Co Ltd
US5367906A (en) * 1987-09-30 1994-11-29 Hitachi, Ltd. Hot wire air flow meter
US5129732A (en) * 1989-11-14 1992-07-14 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Sensor for determining the temperature averaged on the basis of mass flow density
JPH05207903A (en) * 1992-10-21 1993-08-20 Achilles Corp Production of injection molded shoe sole

Also Published As

Publication number Publication date
JPS6335082B2 (en) 1988-07-13

Similar Documents

Publication Publication Date Title
US5730543A (en) Electrically conducting connection
JPS606910B2 (en) metal-ceramics joint
KR102202323B1 (en) Method for producing a metal-ceramic soldered connection
IE904277A1 (en) Pressure Sensor and Method Manufacturing same
JP2002305102A (en) Thermistor and manufacturing method therefor
KR20060110303A (en) Ceramic heater and method for manufacture thereof
JP2004203706A (en) Joined product of different kinds of materials and its producing method
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
JPS5855762A (en) Heating resistor for hot wire type flowmeter
RU2536840C2 (en) Reactive soldering assembly method and vacuum chuck assembled by this method
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JP3064113B2 (en) Method for joining ZrO2 ceramics
JP6462408B2 (en) Sensor substrate and detection device
JPH05319946A (en) Ceramic substrate joined to metallic plate
JPH0223498B2 (en)
JP3112769B2 (en) Resistor element and thermal flow meter
JP3112765B2 (en) Thermal flow meter
JPS63282648A (en) Manufacture of enzyme sensor
JP2597704B2 (en) Metal-coated superconducting ceramics compact and metal-coated superconducting ceramic-metal joint using the same
JP2001048670A (en) Ceramics-metal joined body
JP2003048785A (en) Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member
JP3084167B2 (en) Resistor element and thermal flow meter
JPH07157373A (en) Joining method of ceramic material and metallic material and production of airtight vessel
JP2666865B2 (en) Metallization of aluminum nitride ceramics
JPH07300374A (en) Joined structure of heat-shielding member and method for joining the same