JPH07300374A - Joined structure of heat-shielding member and method for joining the same - Google Patents

Joined structure of heat-shielding member and method for joining the same

Info

Publication number
JPH07300374A
JPH07300374A JP11176394A JP11176394A JPH07300374A JP H07300374 A JPH07300374 A JP H07300374A JP 11176394 A JP11176394 A JP 11176394A JP 11176394 A JP11176394 A JP 11176394A JP H07300374 A JPH07300374 A JP H07300374A
Authority
JP
Japan
Prior art keywords
dense
thin plate
porous
joining
heat shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11176394A
Other languages
Japanese (ja)
Inventor
Hidenori Kita
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP11176394A priority Critical patent/JPH07300374A/en
Publication of JPH07300374A publication Critical patent/JPH07300374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a joined structure of the heat-shielding members, secured in a joined strength in the joining of a porous ceramic to a fine ceramic, and to provide a method for joining the same. CONSTITUTION:In the joined structure of the heat-shielding member, a thin plate 3 comprising fine Si3N4 is placed between a porous Si3N4 member 2 having a porosity of <=1% and a fine Si3N4 member 1 having a porosity of <=1%. The porous Si3N4 member 2 and the thin plate 3 are joined to each other through an oxide 4 containing Ca-Si-O, and the thin plate 3 and the fine Si3N4. member 1 are joined to each other through a Ni-containing metal 5 with solid phase diffusion. A fused phase 6 is formed between the porous Si3N4 member 2 and the oxide 4, and a reaction layer 7 is formed between the oxide 4 and the thin plate 3. CrN layers 8,9 are formed between the thin plate 3 and the metal 5, and between the metal 5 and the fine Si3N4 member 1, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、多孔質セラミックス
と緻密質セラミックスとを接合する遮熱部材の接合構造
及びその接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat shield member joining structure for joining porous ceramics and dense ceramics and a joining method thereof.

【0002】[0002]

【従来の技術】従来、断熱ピストンを低熱伝導材で構成
する場合に、ピストンクラウンの燃焼ガスに晒される上
面にジルコニアZr2 O被膜等の低熱伝導膜の溶射コー
ティングする方法、或いは高強度セラミックスの上面に
これとは別に作製した低熱伝導材を配置し、両者を化学
的に接合する方法等で作製されている。
2. Description of the Related Art Conventionally, when an adiabatic piston is made of a low heat conductive material, a method of spray coating a low heat conductive film such as a zirconia Zr 2 O coating on the upper surface of the piston crown exposed to the combustion gas, or a high strength ceramics A low thermal conductive material separately prepared is placed on the upper surface, and the two are chemically bonded together.

【0003】また、Si3 4 セラミックス同士を接合
させ、600〜800℃の高い温度下でも接合部の強度
が確保される接合方法として、CaO−SiO2 系のガ
ラスソルダーを用いて接合する酸化物ソルダー法、或い
はNi−Cr等の高融点耐酸化金属を介在させ、加圧加
熱することによって成分を拡散させ、反応層で形成する
固相接合法が既に知られている。
Further, as a joining method for joining Si 3 N 4 ceramics to each other to secure the strength of the joined portion even at a high temperature of 600 to 800 ° C., oxidation is carried out by using a CaO--SiO 2 system glass solder. There is already known a solid soldering method or a solid phase bonding method in which a high melting point oxidation resistant metal such as Ni—Cr is interposed, and components are diffused by heating under pressure to form a reaction layer.

【0004】また、特開平3−193675号公報には
セラミックスの電気接合方法が開示されている。該セラ
ミックスの電気接合方法は、セラミックスと金属又はセ
ラミックス同士の電気接合方法であり、被接合部材間
に、通電端子を除いて発熱体が埋設された絶縁性セラミ
ックスを備えた電気接合用インサート材を介在させて突
合せ、前記通電端子間に電流を通じることにより、前記
発熱体に生じるジュール熱によって、前記突合せ部及び
その近傍を直接加熱して接合するものである。
Further, Japanese Patent Laid-Open No. 3-193675 discloses a method for electrically connecting ceramics. The ceramic electrical joining method is an electrical joining method between a ceramic and a metal or between ceramics, and an electrical joining insert material including insulating ceramics in which a heating element is buried between members to be joined except for a current-carrying terminal is provided. By abutting and abutting and passing a current between the energizing terminals, Joule heat generated in the heating element directly heats and abuts the abutting portion and its vicinity.

【0005】また、特開平3−295868号公報には
セラミックスの電気接合用電源の出力制御方法が開示さ
れている。該公報には、セラミックス同士の突合せ部を
電気的に加熱させて接合することが開示されており、S
iCセラミックスを接合する際に接合剤としてCaO/
SiO2 /Al2 3 を主成分とする酸化物ソルダー或
いはCu−Ti合金の薄板を使用することが開示されて
いる。
Further, Japanese Patent Application Laid-Open No. 3-295868 discloses a method of controlling the output of a power supply for electric connection of ceramics. The publication discloses that the abutting portions of the ceramics are electrically heated and joined together.
CaO / as a bonding agent when bonding iC ceramics
It is disclosed to use an oxide solder mainly composed of SiO 2 / Al 2 O 3 or a thin plate of Cu—Ti alloy.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、セラミ
ックス傾斜組成部品について、セラミックス部材に低熱
伝導膜を被覆するものでは、遮熱性は不十分であり、ま
た、高強度セラミックスと低熱伝導材とを化学的に接合
するものは、高強度セラミックスと低熱伝導材とがソル
ダー材に対する反応性が異なるため、いずれか一方と接
合されない場合がある。また、高強度セラミックスと低
熱伝導材とを別々に作製し、加工するために、加工工程
が多くなり、製造コストも高くなるという問題がある。
However, in the ceramics gradient composition component, the one in which the ceramic member is coated with the low thermal conductive film has insufficient heat shielding property, and the high strength ceramics and the low thermal conductive material are chemically combined. The high strength ceramics and the low thermal conductive material may not be bonded to one of the two because they have different reactivities to the solder material. Moreover, since the high-strength ceramics and the low thermal conductive material are separately manufactured and processed, there are problems that the number of processing steps increases and the manufacturing cost also increases.

【0007】また、酸化物を分散させた反応焼結Si3
4 が低熱伝導材となることが既に開発されているが、
該低熱伝導材を高強度のSi3 4 と結合して遮熱部品
とする場合、上記の接合方法とも一長一短がある。即
ち、上記酸化物ソルダー法による接合では、高い接合強
度が得られるが、1550℃と接合温度が高いため、被
接合体である緻密質Si3 4 の内部で再結晶化等の組
成変化が起こり、緻密質Si3 4 自体の強度が元の強
度に比較して約250MPa程度低下するという現象が
ある。また、上記固相接合法による接合では、Ni−C
r中のCrに対する親和力が多孔質Si3 4 と緻密質
Si3 4 で異なるため、CrがSi3 4 側に凝集す
る結果、多孔質Si3 4 側を濡らさず、接合強度が極
めて低くなるという現象が起こる。
Further, reaction-sintered Si in which oxide is dispersed3
NFourHas already been developed to be a low heat conductive material,
The low heat conductive material is made of high strength Si.3NFourCombined with heat shield parts
In this case, there are advantages and disadvantages to the above joining method. Immediately
The above-mentioned bonding by the oxide solder method has a high bonding strength.
However, due to the high joining temperature of 1550 ° C,
Dense Si that is a bonded body3NFourRecrystallization etc. inside the group
Changes in composition occur and dense Si3NFourThe strength of itself is the original strength
The phenomenon of a decrease of about 250 MPa
is there. Further, in the joining by the solid phase joining method, Ni--C is used.
Porous Si has an affinity for Cr in r3NFourAnd precision
Si3NFourSince Cr is different,3N FourAgglomerate to the side
As a result, porous Si3NFourThe joint strength is extremely high without wetting the sides.
The phenomenon of becoming extremely low occurs.

【0008】そこで、この発明の目的は、上記の課題を
解決することであり、上記酸化物ソルダー法と上記固相
接合法との接合の長所を活かして多孔質セラミックスと
緻密質Si3 4 とを強固に接合することであり、緻密
質Si3 4 の厚さ0.5mm程度の薄肉プレート即ち
薄板を多孔質セラミックスと緻密質Si3 4 との間に
介在させ、多孔質セラミックスと薄板とを酸化物ソルダ
ー法により接合し、薄板と緻密質Si3 4 とを固相接
合法により接合し、両者を全体として強固に接合する遮
熱部材の接合構造及びその接合方法を提供することであ
る。
[0008] Therefore, an object of the present invention is to solve the above-mentioned problems, and by taking advantage of the bonding between the oxide solder method and the solid-phase bonding method, porous ceramics and dense Si 3 N 4 are used. Is strongly bonded to each other, and a thin plate of the dense Si 3 N 4 having a thickness of about 0.5 mm, that is, a thin plate is interposed between the porous ceramic and the dense Si 3 N 4 to form a porous ceramic. Provided are a heat shield member joining structure and a joining method for joining a thin plate by an oxide solder method, a thin plate and a dense Si 3 N 4 by a solid phase joining method, and firmly joining the both as a whole. That is.

【0009】[0009]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、次のように構成されている。即ち、
この発明は、気孔率が15%以上の多孔質セラミック部
材と気孔率が1%以下の緻密質Si3 4 部材との間に
は緻密質Si3 4 から成る薄板が介在されており、前
記多孔質セラミック部材と前記薄板とはCa−Si−O
を含む酸化物を介して結合され、前記薄板と前記緻密質
Si3 4 部材とはNiを含む金属を介して固相拡散に
より結合されていることを特徴とする遮熱部材の接合構
造に関する。また、この遮熱部材の接合構造において、
前記多孔質セラミック部材と前記Ca−Si−Oを含む
酸化物との間には融着相が形成され、前記Ca−Si−
Oを含む酸化物と前記薄板との間には反応層が形成さ
れ、また、前記薄板と前記Niを含む金属との間にはC
rN層が形成され、前記Niを含む金属と前記緻密質S
3 4 部材との間にはCrN層が形成されているもの
である。特に、前記多孔質セラミック部材は、酸化物が
分散された多孔質Si3 4 部材で構成されているもの
である。
In order to achieve the above object, the present invention is configured as follows. That is,
According to the present invention, a thin plate made of dense Si 3 N 4 is interposed between a porous ceramic member having a porosity of 15% or more and a dense Si 3 N 4 member having a porosity of 1% or less, The porous ceramic member and the thin plate are made of Ca-Si-O.
A bonding structure for a heat shield member, characterized in that the thin plate and the dense Si 3 N 4 member are bonded to each other by solid phase diffusion via a metal containing Ni, and are bonded via an oxide containing . Also, in the joint structure of this heat shield member,
A fusion phase is formed between the porous ceramic member and the Ca-Si-O-containing oxide, and the Ca-Si-
A reaction layer is formed between the oxide containing O and the thin plate, and C is formed between the thin plate and the metal containing Ni.
An rN layer is formed, and the metal containing Ni and the dense S
A CrN layer is formed between the i 3 N 4 member. In particular, the porous ceramic member is composed of a porous Si 3 N 4 member in which an oxide is dispersed.

【0010】又は、この発明は、気孔率が15%以上の
多孔質セラミック部材と気孔率が1%以下の緻密質Si
3 4 部材との間には緻密質Si3 4 から成る薄板が
介在されており、前記多孔質セラミック部材と前記薄板
とはCa−Si−Oを含む酸化物を介して結合され、前
記薄板と前記緻密質Si3 4 部材とはCu,Tiを含
む金属を介して固相拡散により結合されていることを特
徴とする遮熱部材の接合構造に関する。また、この遮熱
部材の接合構造において、前記多孔質セラミック部材と
前記Ca−Si−Oを含む酸化物との間には融着相が形
成され、前記Ca−Si−Oを含む酸化物と前記薄板と
の間には反応層が形成され、また、前記薄板と前記C
u,Tiを含む金属との間にはTiN層が形成され、前
記Cu,Tiを含む金属と前記緻密質Si3 4 部材と
の間にはTiN層が形成されているものである。特に、
前記多孔質セラミック部材は、酸化物が分散された多孔
質Si3 4 部材で構成されているものである。
Alternatively, according to the present invention, a porous ceramic member having a porosity of 15% or more and a dense Si having a porosity of 1% or less.
A thin plate made of dense Si 3 N 4 is interposed between the 3 N 4 member, and the porous ceramic member and the thin plate are bonded via an oxide containing Ca—Si—O. The thin plate and the dense Si 3 N 4 member are bonded to each other by solid-phase diffusion through a metal containing Cu and Ti, and a bonding structure of a heat shield member. Further, in the joint structure of the heat shield member, a fusion phase is formed between the porous ceramic member and the oxide containing Ca-Si-O, and the oxide containing Ca-Si-O is formed. A reaction layer is formed between the thin plate and the thin plate and the C
A TiN layer is formed between the metal containing u and Ti, and a TiN layer is formed between the metal containing Cu and Ti and the dense Si 3 N 4 member. In particular,
The porous ceramic member is composed of a porous Si 3 N 4 member in which an oxide is dispersed.

【0011】また、この遮熱部材の接合構造は、前記多
孔質セラミック部材で構成された燃焼室側に配置される
面を形成するヘッド部と前記緻密質Si3 4 部材で構
成されたピストンスカートに取り付けられるヘッド本体
とから成るピストンヘッドに適用されて好ましいもので
ある。
Further, the joint structure of the heat shield member is such that a piston formed of the dense Si 3 N 4 member and a head portion which is formed of the porous ceramic member and is arranged on the combustion chamber side. It is preferably applied to a piston head composed of a head body attached to a skirt.

【0012】或いは、この発明は、気孔率が15%以上
で酸化物が分散された多孔質Si34 部材と緻密質S
3 4 から成る薄板とをCa−Si−Oを含む酸化物
を介して結合し、次いで前記薄板と気孔率が1%以下の
緻密質Si3 4 部材とをNiを含む金属又はCu,T
iを含む金属を介して固相拡散により結合したことを特
徴とする遮熱部材の接合方法に関する。
Alternatively, according to the present invention, a porous Si 3 N 4 member having a porosity of 15% or more and an oxide dispersed therein and a dense S.
A thin plate made of i 3 N 4 is bonded via an oxide containing Ca—Si—O, and then the thin plate and a dense Si 3 N 4 member having a porosity of 1% or less are contained in Ni-containing metal or Cu. , T
The present invention relates to a method for joining a heat shield member, characterized in that the members are joined by solid phase diffusion via a metal containing i.

【0013】[0013]

【作用】この発明による遮熱部材の接合構造及びその接
合方法は、以上のように構成されており、次のように作
用する。この遮熱部材の接合構造は、気孔率が15%以
上の多孔質セラミック部材と緻密質Si3 4 から成る
薄板とをCa−Si−Oを含む酸化物を介して結合して
いるので、酸化物即ちソルダー材との接合時に緻密質S
3 4 から成る前記薄板の強度は低下するが、その
時、前記薄板自体は700MPa程度を有し、接合強度
に比較して十分に高いレベルの強度を有している。
The joining structure of the heat shield member and the joining method according to the present invention are configured as described above, and act as follows. In the joint structure of this heat shield member, since the porous ceramic member having a porosity of 15% or more and the thin plate made of dense Si 3 N 4 are bonded via the oxide containing Ca—Si—O, Dense S when bonded to oxides or solder materials
Although the strength of the thin plate made of i 3 N 4 decreases, at that time, the thin plate itself has a strength of about 700 MPa, which is a sufficiently high level of strength as compared with the bonding strength.

【0014】しかるに、被接合体のうち、一方が窒化ケ
イ素であり、他方が成分の異なる多孔材である場合に、
これらを接合する時、酸化物ソルダー法では、接合が可
能であるが、接合温度が高いために被接合体自身の強度
が劣化してしまう。これに対して、Cu−Ti等のろう
材或いはNi−Crの接合材で接合する場合、被接合体
を強固に接合するには各々のTi或いはCrが両サイド
に均一に凝集することが必要条件となる。被接合体の材
料が異なっていると、化学的親和力が異なるために、一
方の被接合体にだけにTi或いはCrが寄って凝集し、
接合が達成できない現象が発生する。そこで、この発明
では、Cu−Ti等のろう材或いはNi−Crの接合材
で接合する場合、両側の材料を同材質の緻密質Si3
4 を配置し、強固に接合するものである。
However, when one of the objects to be joined is silicon nitride and the other is a porous material having different components,
When these are joined, the oxide solder method enables joining, but since the joining temperature is high, the strength of the article itself deteriorates. On the other hand, in the case of joining with a brazing material such as Cu-Ti or a joining material of Ni-Cr, each Ti or Cr must be uniformly aggregated on both sides in order to firmly join the objects to be joined. It becomes a condition. If the materials of the objects to be joined are different, the chemical affinities are different, so that Ti or Cr approaches only one object to be agglomerated,
A phenomenon occurs in which joining cannot be achieved. Therefore, in the present invention, when joining with a brazing material such as Cu-Ti or a joining material of Ni-Cr, the materials on both sides are dense Si 3 N of the same material.
4 are arranged and firmly joined.

【0015】この遮熱部材の接合構造は、強度が200
MPa程度の多孔質Si3 4 と緻密質Si3 4 とが
高強度に接合され、緻密質Si3 4 の強度を900M
Pa〜1000MPaの本来の強度を確保するものであ
る。ここで、接合強度は多孔質セラミックスの強度を超
えることはないから、多孔質セラミックスと同等の接合
強度を確保すればよいことになる。基本的には、被接合
体をCaO−SiO2系の酸化物ソルダー法によって、
1550℃以上の高い温度で接合すれば、接合強度を確
保することができる。
The joint structure of the heat shield member has a strength of 200.
Porous Si 3 N 4 of about MPa and dense Si 3 N 4 are bonded with high strength, and the strength of dense Si 3 N 4 is 900M.
The original strength of Pa to 1000 MPa is secured. Here, since the bonding strength does not exceed the strength of the porous ceramics, it is sufficient to secure the bonding strength equivalent to that of the porous ceramics. Basically, the oxide solder method of CaO-SiO 2 system the object to be bonded,
Bonding can be ensured by bonding at a high temperature of 1550 ° C. or higher.

【0016】しかるに、高温酸化物ソルダー法による接
合の欠点は、被接合体である緻密質Si3 4 自身の強
度が約30%程度低下することである。この発明による
遮熱部材の接合構造では、多孔質セラミックスの接合相
手材の緻密質Si3 4 の薄板の強度は約700MPa
程度に劣化するが、接合部分における接合強度即ち多孔
質セラミックスの強度に比較して十分に高いレベルであ
る。この接合部分と緻密質Si3 4 部材とは、ろう材
或いはNi−Crを使用して接合強度の劣化が発生しな
い接合温度で接合されるため、緻密質Si3 4 の強度
はそれ自身の強度が維持されることになる。また、活性
ろう材、或いはNi−Crの接合材を用いた接合では被
接合体自体の材質はできるだけ同質であることが好まし
い。そこで、この発明では、被接合体間に挿入される薄
板を緻密質Si3 4 で作製したものを使用している。
これに対して、従来技術では、1550℃以上に接合温
度を上げることは困難であるので、比較的に低融点のソ
ルダー材が用いられている。
However, a drawback of the high temperature oxide soldering method is that the strength of the dense Si 3 N 4 itself, which is the object to be bonded, decreases by about 30%. In the joining structure of the heat shield member according to the present invention, the strength of the dense Si 3 N 4 thin plate that is the joining member of the porous ceramics is about 700 MPa.
Although it deteriorates to some extent, it is a sufficiently high level as compared with the bonding strength at the bonded portion, that is, the strength of the porous ceramics. Since the joining portion and the dense Si 3 N 4 member are joined at a joining temperature that does not cause deterioration of the joining strength by using a brazing material or Ni-Cr, the strength of the dense Si 3 N 4 is itself. Will be maintained. Further, in the joining using the active brazing material or the Ni-Cr joining material, it is preferable that the materials of the articles to be joined are as homogeneous as possible. Therefore, in the present invention, a thin plate made of dense Si 3 N 4 is used to be inserted between the objects to be joined.
On the other hand, in the prior art, it is difficult to raise the bonding temperature to 1550 ° C. or higher, so that a solder material having a relatively low melting point is used.

【0017】[0017]

【実施例】以下、この発明による遮熱部材の接合構造及
びその接合方法の実施例を説明する。図1はこの発明に
よる遮熱部材の接合構造を遮熱ピストンのピストンヘッ
ドに適用した一実施例を示す断面図、及び図2はこの発
明による遮熱部材の接合構造の一実施例を示す図1にお
ける符号A部分の拡大断面図である。図1及び図2で
は、同一の部材には同一の符号を付している。
Embodiments of a heat shield member joining structure and joining method according to the present invention will be described below. FIG. 1 is a sectional view showing an embodiment in which the joining structure of the heat shield member according to the present invention is applied to a piston head of a heat shield piston, and FIG. 2 is a diagram showing an embodiment of the joint structure of the heat shield member according to the present invention. It is an expanded sectional view of the code | symbol A part in 1. 1 and 2, the same reference numerals are given to the same members.

【0018】この発明による遮熱部材の接合構造の一実
施例を図2を参照して説明する。図2に示すように、こ
の遮熱部材の接合構造は、気孔率が15%以上の多孔質
セラミック部材と気孔率が1%以下の緻密質窒化ケイ素
部材即ち緻密質Si3 4 部材1との間には緻密質Si
3 4 から成る薄板3が介在されている。この実施例で
は、多孔質セラミック部材は、酸化物が分散されている
多孔質窒化ケイ素部材即ち多孔質Si3 4 部材2で構
成されているものである。薄板3は、例えば、その厚さ
が0.5mm程度である。多孔質Si3 4 部材2と薄
板3とは、Ca−Si−Oを含む酸化物4を介して結合
され、また薄板3と緻密質Si3 4 部材1とはNiを
含む金属5を介して固相拡散により結合されている。更
に、多孔質Si3 4 部材2とCa−Si−Oを含む酸
化物4との間には融着相6が形成され、Ca−Si−O
を含む酸化物4と薄板3との間には反応層7が形成され
ている。また、薄板3とNiを含む金属5との間にはC
rN層8が形成され、Niを含む金属5と緻密質Si3
4 部材1との間にはCrN層9が形成されている。
An embodiment of the joining structure of the heat shield member according to the present invention will be described with reference to FIG. As shown in FIG. 2, the bonding structure of the heat shield member comprises a porous ceramic member having a porosity of 15% or more and a dense silicon nitride member having a porosity of 1% or less, that is, a dense Si 3 N 4 member 1. Between the dense Si
A thin plate 3 made of 3 N 4 is interposed. In this embodiment, the porous ceramic member is composed of a porous silicon nitride member, that is, a porous Si 3 N 4 member 2 in which an oxide is dispersed. The thin plate 3 has a thickness of, for example, about 0.5 mm. The porous Si 3 N 4 member 2 and the thin plate 3 are bonded via an oxide 4 containing Ca-Si-O, and the thin plate 3 and the dense Si 3 N 4 member 1 are made of a metal 5 containing Ni. Through solid phase diffusion. Furthermore, a fusion phase 6 is formed between the porous Si 3 N 4 member 2 and the oxide 4 containing Ca-Si-O, and Ca-Si-O is formed.
A reaction layer 7 is formed between the oxide 4 containing oxide and the thin plate 3. In addition, C is present between the thin plate 3 and the metal 5 containing Ni.
The rN layer 8 is formed, and the metal 5 containing Ni and the dense Si 3
A CrN layer 9 is formed between the N 4 member 1 and the N 4 member 1.

【0019】この発明による遮熱部材の接合構造は、例
えば、図1に示すように、シリンダ内を往復運動する遮
熱ピストンを構成するAl又は鋳鉄等の金属から作製さ
れているピストンスカート(図示せず)に固定したセラ
ミックス製のピストンヘッド15に適用して極めて好ま
しいものである。ピストンヘッド15は、ピストンスカ
ートの中央に形成された取付孔に嵌合する環状軸部16
を有するヘッド本体13から構成されている。ヘッド本
体13の環状軸部16をピストンスカートの取付孔に嵌
合してメタルフロー等で結合リングを塑性変形してピス
トンヘッド15をピストンスカートに固定できるもので
ある。更に、ヘッド本体13は周辺に筒部17を有し、
筒部17で形成される空所14即ち燃焼室側には低熱伝
導率の材料から成る遮熱部材が配置されている。遮熱部
材は、燃焼ガスに晒される側に位置しているので、燃焼
ガスに晒される面には、遮熱部材中に燃焼ガス、燃料等
の侵入防止するため、緻密質Si3 4 薄膜18が被覆
されている。このようなピストンヘッド15において、
ヘッド本体13が緻密質Si3 4 部材1で作製され、
遮熱部材が多孔質Si3 4 部材2で作製されているも
のであり、ヘッド本体13に遮熱部材が接合されてい
る。従って、ピストンヘッド15における遮熱部材を構
成する多孔質Si3 4 部材2がヘッド本体13を構成
する緻密質Si3 4 部材1に強固に接合されることに
なる。
The joining structure of the heat shield member according to the present invention is, for example, as shown in FIG. 1, a piston skirt made of a metal such as Al or cast iron which constitutes a heat shield piston reciprocating in a cylinder (see FIG. This is extremely preferable when applied to a ceramic piston head 15 fixed to (not shown). The piston head 15 has an annular shaft portion 16 that fits in a mounting hole formed in the center of the piston skirt.
It is composed of a head body 13 having The annular shaft portion 16 of the head body 13 is fitted in the mounting hole of the piston skirt, and the coupling ring is plastically deformed by metal flow or the like to fix the piston head 15 to the piston skirt. Further, the head body 13 has a cylindrical portion 17 in the periphery,
A heat shield member made of a material having a low thermal conductivity is arranged in the space 14 formed by the cylindrical portion 17, that is, on the combustion chamber side. Since the heat shield member is located on the side exposed to the combustion gas, a dense Si 3 N 4 thin film is formed on the surface exposed to the combustion gas in order to prevent combustion gas, fuel, etc. from entering the heat shield member. 18 is coated. In such a piston head 15,
The head body 13 is made of the dense Si 3 N 4 member 1,
The heat shield member is made of a porous Si 3 N 4 member 2, and the heat shield member is joined to the head body 13. Therefore, the porous Si 3 N 4 member 2 forming the heat shield member in the piston head 15 is firmly bonded to the dense Si 3 N 4 member 1 forming the head body 13.

【0020】次に、この発明による遮熱部材の接合方法
を説明する。この遮熱部材の接合方法は、気孔率が15
%以上で酸化物が分散された多孔質セラミック部材であ
る多孔質Si3 4 部材2と緻密質Si3 4 から成る
薄板3とをCa−Si−Oを含む酸化物4を介して結合
し、次いで、薄板3と気孔率が1%以下の緻密質Si3
4 部材1とをNiを含む金属5(図2参照)又はC
u,Tiを含む金属10(図3参照)を介して固相拡散
により結合されているものである。
Next, a method of joining the heat shield members according to the present invention will be described. The method of joining the heat shield members has a porosity of 15
%, The porous Si 3 N 4 member 2, which is a porous ceramic member in which oxides are dispersed, and the thin plate 3 made of dense Si 3 N 4 are bonded via the oxide 4 containing Ca-Si-O. Then, the thin plate 3 and the dense Si 3 having a porosity of 1% or less
N 4 member 1 and Ni-containing metal 5 (see FIG. 2) or C
It is bonded by solid phase diffusion through the metal 10 containing u and Ti (see FIG. 3).

【0021】そこで、この遮熱部材の接合構造を作製す
る工程について説明する。この遮熱部材の接合方法で
は、Si;65wt%、Ti;10wt%、Al6 Si
2 13 (ムライト);25wt%から成る混合粉末を
原料とし、φ90×厚さ14の円盤形状の成形体に形成
した。この成形体を1450℃のN2 雰囲気で反応焼結
して反応焼結体を作製した。この反応焼結体を1000
℃で20時間の酸化処理を行って多孔質Si3 4 焼結
体を作製した。この多孔質Si3 4 焼結体を所定寸法
に加工研摩し、φ80×11mmのプレート状の多孔質
Si3 4 部材2を作製した。
Therefore, a process of producing the joint structure of the heat shield member will be described. In this method of joining the heat shield members, Si: 65 wt%, Ti: 10 wt%, Al 6 Si
A mixed powder of 2 O 13 (mullite); 25 wt% was used as a raw material to form a disk-shaped compact of φ90 × thickness 14. This molded body was subjected to reaction sintering in a N 2 atmosphere at 1450 ° C. to produce a reaction sintered body. This reaction sintered body is 1000
Oxidation treatment was performed at 20 ° C. for 20 hours to produce a porous Si 3 N 4 sintered body. This porous Si 3 N 4 sintered body was processed and polished to a predetermined size to prepare a plate-shaped porous Si 3 N 4 member 2 of φ80 × 11 mm.

【0022】次に、CaO−SiO2 −Si3 4 から
成る混合粉末を1600℃に加熱した後、20℃の水中
で急冷し、ガラスを作製した。このガラスを粉砕した
後、粉砕ガラスを分級してガラス粉末を作製した。次い
で、ガラス粉末をポリビニルアルコールPVAで溶いて
ペースト状物にした。そこで、ペースト状物を上記で作
製した多孔質Si3 4 部材2の接合面に塗布した。ペ
ースト状物を塗布した多孔質Si3 4 部材2の接合面
に径がφ82mmで厚さ0.5mmの緻密質Si3 4
から成る薄板3を貼り合わせ、500kgの荷重を付与
して密着させた。次いで、多孔質Si3 4 部材2に薄
板3をペースト状物を介在させて密着させた状態で、脱
脂した後、1550℃でN2 雰囲気中で加熱し、多孔質
Si3 4部材2と薄板3とを接合した。
Next, a mixed powder of CaO--SiO 2 --Si 3 N 4 was heated to 1600 ° C. and then rapidly cooled in water at 20 ° C. to prepare glass. After crushing this glass, the crushed glass was classified to prepare glass powder. Next, the glass powder was melted with polyvinyl alcohol PVA to form a paste. Therefore, the paste-like material was applied to the bonding surface of the porous Si 3 N 4 member 2 produced above. A dense Si 3 N 4 having a diameter of 82 mm and a thickness of 0.5 mm is formed on the joint surface of the porous Si 3 N 4 member 2 coated with the paste material.
The thin plate 3 consisting of was laminated and adhered by applying a load of 500 kg. Next, the thin plate 3 is adhered to the porous Si 3 N 4 member 2 with the paste-like material interposed therebetween, and after degreasing, the porous Si 3 N 4 member 2 is heated at 1550 ° C. in an N 2 atmosphere. And the thin plate 3 were joined.

【0023】一方、緻密質Si3 4 部材1の表面をメ
ッシュ♯1000の砥石で研摩して約100μm除去し
た後、研摩した表面に厚さ0.1mmのNi−Crを介
在させて多孔質Si3 4 部材2に接合した薄板3を重
ね合わせ、1200℃の真空中で接合した。上記のよう
にして、緻密質Si3 4 部材1と多孔質Si3 4
材2とを薄板3を介在させて結合した。
On the other hand, the surface of the dense Si 3 N 4 member 1 was polished by a grindstone of mesh # 1000 to remove about 100 μm, and then the polished surface was porous with Ni-Cr having a thickness of 0.1 mm interposed. The thin plate 3 bonded to the Si 3 N 4 member 2 was superposed and bonded in a vacuum at 1200 ° C. As described above, the dense Si 3 N 4 member 1 and the porous Si 3 N 4 member 2 were bonded with the thin plate 3 interposed.

【0024】次に、緻密質Si3 4 部材1と多孔質S
3 4 部材2との接合部の近傍について、組織分析し
て600℃での接合強度の評価を行ったところ、次のと
おりであった。多孔質Si3 4 部材2と薄板3との接
合界面は、Caが多孔質Si3 4 部材2側に拡散し、
融着相6が形成されて強固に結合されていた。また、緻
密質Si3 4 部材1と薄板3とをNi−Crで結合し
た部分について、同様な分析を行ったところ、緻密質S
3 4 部材1と薄板3とは、同質のSi3 4 である
ので、両方のSi3 4 側にCr成分が凝集し、且つそ
の接合部分にはCrNに変化していた。CrNの熱膨張
係数CTEは約7.0×10- 6 /℃であり、この値
は、Si3 4 とNiとの熱膨張係数のほぼ中間の値で
あり、熱膨張係数が傾斜的に接合されているので、熱応
力の緩和されることが分かる。
Next, the dense Si 3 N 4 member 1 and the porous S
When the structure near the joint with the i 3 N 4 member 2 was analyzed and the joint strength at 600 ° C. was evaluated, it was as follows. At the bonding interface between the porous Si 3 N 4 member 2 and the thin plate 3, Ca diffuses to the porous Si 3 N 4 member 2 side,
The fused phase 6 was formed and firmly bonded. Further, the same analysis was performed on the portion where the dense Si 3 N 4 member 1 and the thin plate 3 were bonded by Ni—Cr, and the dense S
Since the i 3 N 4 member 1 and the thin plate 3 are made of the same quality of Si 3 N 4 , the Cr component was agglomerated on both Si 3 N 4 sides and changed to CrN at the joint portion. Thermal expansion coefficient CTE of CrN about 7.0 × 10 - was 6 / ° C., the value is substantially intermediate value between the thermal expansion coefficient the top of the Si 3 N 4 and Ni, the thermal expansion coefficient of inclined manner It can be seen that the thermal stress is relieved because they are joined.

【0025】また、多孔質Si3 4 部材と緻密質Si
3 4 部材とを被接合体として、2つの方法で接合した
場合、両被接合体の接合部の600℃における接合強度
を測定した。1つの接合法はCaO−SiO2 の酸化物
ソルダー法によるものであり、接合温度は1550℃で
あった。他の接合法はNi−Crによる固相接合法であ
り、接合温度は1200℃であった。また、接合条件と
同一の条件で、多孔質Si3 4 部材と緻密質Si3
4 部材との被接合体自体を1550℃と1200℃の温
度で熱処理した時のそれぞれの被接合体の強度測定を行
った。その結果は、次のとおりであった。
The porous Si 3 N 4 member and the dense Si
When the 3 N 4 member was used as the article to be joined and joined by two methods, the joining strength at 600 ° C. of the joined parts of both the articles was measured. One bonding method was by the CaO—SiO 2 oxide solder method, and the bonding temperature was 1550 ° C. The other joining method was a solid-state joining method using Ni-Cr, and the joining temperature was 1200 ° C. In addition, the porous Si 3 N 4 member and dense Si 3 N
The strength of each of the members to be bonded when the members to be bonded to the four members themselves were heat-treated at temperatures of 1550 ° C. and 1200 ° C. was measured. The results were as follows.

【0026】即ち、CaO−SiO2 の酸化物ソルダー
法による接合では、多孔質Si3 4 と緻密質Si3
4 との平均4点曲げ接合強度(MPa)は、温度600
℃の雰囲気において192MPaであった。また、熱処
理後の多孔質Si3 4 の強度は190MPaであり、
緻密質Si3 4 の強度は720MPaであり、緻密質
Si3 4 の熱処理前(元)の強度より250MPa程
度低下していることが確認された。また、Ni−Crに
よる固相接合法による接合では、多孔質Si34 と緻
密質Si3 4 との平均4点曲げ接合強度(MPa)
は、温度600℃の雰囲気において45MPaであっ
た。熱処理後の多孔質Si3 4 の強度は188MPa
であり、緻密質Si3 4 の強度は978MPaであっ
た。
That is, in the case of CaO-SiO 2 bonding by the oxide solder method, porous Si 3 N 4 and dense Si 3 N are used.
Average 4-point flexural bond strength between 4 (MPa), the temperature 600
It was 192 MPa in the atmosphere of ° C. The strength of the porous Si 3 N 4 after heat treatment is 190 MPa,
The strength of the dense Si 3 N 4 was 720 MPa, which was confirmed to be about 250 MPa lower than the strength of the dense Si 3 N 4 before the heat treatment (original). Further, in the joining by solid phase bonding method by Ni-Cr, an average four point flexural bonding strength between the porous Si 3 N 4 and dense Si 3 N 4 (MPa)
Was 45 MPa in an atmosphere at a temperature of 600 ° C. Strength of porous Si 3 N 4 after heat treatment is 188 MPa
And the strength of the dense Si 3 N 4 was 978 MPa.

【0027】これらの測定結果より、CaO−SiO2
の酸化物ソルダー法による接合では、接合強度は高い
が、熱処理の影響を受けて緻密質Si3 4 の強度劣化
が著しいことが分かった。また、Ni−Crによる固相
接合法による接合では、熱処理温度が酸化物ソルダー法
に比較して低いため、熱の影響を受けないが、多孔質S
3 4 と緻密質Si3 4 との接合強度が著しく低い
ことが分かった。
From these measurement results, CaO-SiO 2
It was found that in the joining by the oxide solder method of 1), the joining strength was high, but the strength of the dense Si 3 N 4 was significantly deteriorated due to the influence of the heat treatment. Moreover, in the joining by the solid-state joining method using Ni-Cr, since the heat treatment temperature is lower than that in the oxide solder method, it is not affected by heat, but the porous S
It was found that the bonding strength between i 3 N 4 and dense Si 3 N 4 was extremely low.

【0028】次に、この発明による遮熱部材の接合方法
による2段接合によって、多孔質Si3 4 部材2と緻
密質Si3 4 部材1との間に緻密質Si3 4 から成
る薄板3を介在させて接合し、10個の接合試料を作っ
た。即ち、多孔質Si3 4部材2と薄板3とを酸化物
ソルダー法で接合し、次いで、緻密質Si3 4 部材1
と薄板3とを固相接合法で接合した。これらの接合試料
の600℃の雰囲気での接合強度を測定し、その結果を
表1に示す。
Next, the 2-stage bonding by the bonding method of the heat shield according to the invention, consisting of dense Si 3 N 4 between the porous Si 3 N 4 member 2 and the dense Si 3 N 4 member 1 Bonding was performed with the thin plate 3 interposed, and ten bonded samples were prepared. That is, the porous Si 3 N 4 member 2 and the thin plate 3 are joined by the oxide solder method, and then the dense Si 3 N 4 member 1 is joined.
The thin plate 3 and the thin plate 3 were joined by a solid-state joining method. The bonding strength of these bonded samples in the atmosphere of 600 ° C. was measured, and the results are shown in Table 1.

【表1】 [Table 1]

【0029】表1から分かるように、多孔質Si3 4
部材2と緻密質Si3 4 部材1との接合強度は、多孔
質Si3 4 の強度とほぼ同等の値、即ち、平均接合強
度は194MPaであり、破断位置は接合部のみでな
く、多孔質Si3 4 の部分で破断するものもあった。
As can be seen from Table 1, porous Si 3 N 4
The bonding strength between the member 2 and the dense Si 3 N 4 member 1 is almost the same as the strength of the porous Si 3 N 4 , that is, the average bonding strength is 194 MPa, and the fracture position is not limited to the bonded portion, Some fractured at the porous Si 3 N 4 part.

【0030】次に、この発明による遮熱部材の接合構造
の別の実施例を図3を参照して説明する。図3はこの発
明による遮熱部材の接合構造の別の実施例を示す図1に
おける符号A部分の拡大断面図である。図3では、図2
に示す部材と同一の部材には同一の符号を付している。
Next, another embodiment of the joining structure of the heat shield member according to the present invention will be described with reference to FIG. FIG. 3 is an enlarged sectional view of a portion A in FIG. 1 showing another embodiment of the heat shield member joining structure according to the present invention. In FIG. 3, FIG.
The same members as the members shown in FIG.

【0031】図3に示すように、この遮熱部材の接合構
造は、気孔率が15%以上の多孔質セラミック部材であ
る多孔質Si3 4 部材2と気孔率が1%以下の緻密質
Si3 4 部材1との間には緻密質Si3 4 から成る
薄板3が介在されている。この実施例では、多孔質セラ
ミック部材は、酸化物が分散されている多孔質Si3
4 部材2で構成されているものである。薄板3は、例え
ば、その厚さが0.5mm程度である。多孔質Si3
4 部材2と薄板3とはCa−Si−Oを含む酸化物4を
介して結合され、薄板3と緻密質Si3 4 部材1とは
Cu,Tiを含む金属10を介して固相拡散により結合
されている。多孔質Si3 4 部材2とCa−Si−O
を含む酸化物4との間には融着相6が形成され、Ca−
Si−Oを含む酸化物4と薄板3との間には反応層7が
形成されている。また、薄板3とCu,Tiを含む金属
10との間にはTiN層11が形成され、Cu,Tiを
含む金属10と緻密質Si3 4 部材1との間にはTi
N層12が形成されている。
As shown in FIG. 3, the joint structure of the heat shield member has a porous Si 3 N 4 member 2 which is a porous ceramic member having a porosity of 15% or more and a dense material having a porosity of 1% or less. A thin plate 3 made of dense Si 3 N 4 is interposed between the thin plate 3 and the Si 3 N 4 member 1. In this example, the porous ceramic member is a porous Si 3 N having oxide dispersed therein.
It is composed of four members 2. The thin plate 3 has a thickness of, for example, about 0.5 mm. Porous Si 3 N
4 Member 2 and thin plate 3 are bonded via oxide 4 containing Ca-Si-O, and thin plate 3 and dense Si 3 N 4 member 1 are solid-phase diffused via metal 10 containing Cu and Ti. Are combined by. Porous Si 3 N 4 member 2 and Ca-Si-O
The fusion phase 6 is formed between the oxide 4 and the
A reaction layer 7 is formed between the oxide 4 containing Si—O and the thin plate 3. Further, a TiN layer 11 is formed between the thin plate 3 and the metal 10 containing Cu and Ti, and Ti is formed between the metal 10 containing Cu and Ti and the dense Si 3 N 4 member 1.
The N layer 12 is formed.

【0032】即ち、この実施例は、上記実施例と比較し
て、Niを含む金属5に代えてCu,Tiを含む金属1
0を用いて薄板3と緻密質Si3 4 部材1とを接合し
た以外は全く同様の接合方法である。この実施例による
接合のメカニズムは、上記実施例のものと同様であり、
緻密質Si3 4 の薄板3と緻密質Si3 4 部材1と
の被接合体を同種の緻密質Si3 4 で構成することに
よって、活性成分であるTiが両被接合体に均一に拡散
する結果、接合強度として高強度を確保できることが確
認できた。
That is, this embodiment is different from the above embodiment in that the metal 1 containing Cu and Ti instead of the metal 5 containing Ni is used.
The bonding method is exactly the same except that the thin plate 3 and the dense Si 3 N 4 member 1 are bonded using 0. The bonding mechanism according to this embodiment is similar to that of the above embodiment,
By configuring the object to be bonded with the sheet 3 dense Si 3 N 4 and dense Si 3 N 4 member 1 in dense Si 3 N 4 of the same type, homogeneous, the active ingredient Ti is both object to be bonded It was confirmed that as a result of diffusing into, it is possible to secure high bonding strength.

【0033】[0033]

【発明の効果】この発明による遮熱部材の接合構造及び
その接合方法は、以上のように構成したので、次のよう
な効果を有する。この遮熱部材の接合構造は、多孔質セ
ラミック部材と緻密質Si3 4 部材との間には緻密質
Si3 4 から成る薄板が介在しており、前記多孔質セ
ラミック部材と前記薄板とはCa−Si−Oを含む酸化
物を介して結合され、前記薄板と前記緻密質Si3 4
部材とはNiを含む金属又はCu,Tiを含む金属を介
して固相拡散により結合されているので、前記緻密質S
3 4 部材の本来の強度を劣化させることなく、少な
くとも前記多孔質セラミック部材と同等の安定した接合
強度を確保することができる。
Since the heat shield member joining structure and the joining method according to the present invention are configured as described above, they have the following effects. In the joint structure of the heat shield member, a thin plate made of dense Si 3 N 4 is interposed between the porous ceramic member and the dense Si 3 N 4 member, and the porous ceramic member and the thin plate are joined together. is bonded via an oxide containing Ca-Si-O, the said thin dense Si 3 N 4
Since the member is bonded by solid phase diffusion through a metal containing Ni or a metal containing Cu or Ti, the dense S
It is possible to secure stable bonding strength at least equivalent to that of the porous ceramic member without deteriorating the original strength of the i 3 N 4 member.

【0034】従って、この遮熱部材の接合構造は、エン
ジン部品、特に、ピストンヘッドを低熱伝導の多孔質セ
ラミック部材と高強度の緻密質Si3 4 部材で作製す
る場合に、多孔質セラミック部材と緻密質Si3 4
材との接合で安定した接合強度を確保でき、極めて好ま
しいものである。
Therefore, this structure for joining the heat shield members has a porous ceramic member when the engine component, particularly the piston head, is made of a low heat conductive porous ceramic member and a high-strength dense Si 3 N 4 member. This is an extremely preferable one because it is possible to secure a stable bonding strength by bonding with the dense Si 3 N 4 member.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による遮熱部材の接合構造を遮熱ピス
トンのピストンヘッドに適用した一実施例を示す断面図
である。
FIG. 1 is a cross-sectional view showing an embodiment in which a heat shield member joining structure according to the present invention is applied to a piston head of a heat shield piston.

【図2】この発明による遮熱部材の接合構造の一実施例
を示す図1における符号A部分の拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of a portion A in FIG. 1 showing an embodiment of a heat shield member joining structure according to the present invention.

【図3】この発明による遮熱部材の接合構造の別の実施
例を示す図1における符号A部分の拡大断面図である。
FIG. 3 is an enlarged cross-sectional view of a portion A in FIG. 1 showing another embodiment of the heat shield member joining structure according to the present invention.

【符号の説明】 1 緻密質Si3 4 部材 2 多孔質Si3 4 部材 3 緻密質Si3 4 の薄板 4 Ca−Si−Oを含む酸化物 5 Niを含む金属 6 融着相 7 反応層 8,9 CrN層 10 Cu,Tiを含む金属 11,12 TiN層 13 ヘッド本体 14 空所 15 ピストンヘッド[Explanation of Codes] 1 dense Si 3 N 4 member 2 porous Si 3 N 4 member 3 dense Si 3 N 4 thin plate 4 oxide containing Ca—Si—O 5 metal containing Ni 6 fusion phase 7 Reaction layer 8,9 CrN layer 10 Metal containing Cu and Ti 11,12 TiN layer 13 Head body 14 Vacancy 15 Piston head

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 気孔率が15%以上の多孔質セラミック
部材と気孔率が1%以下の緻密質Si3 4 部材との間
には緻密質Si3 4 から成る薄板が介在されており、
前記多孔質セラミック部材と前記薄板とはCa−Si−
Oを含む酸化物を介して結合され、また前記薄板と前記
緻密質Si3 4 部材とはNiを含む金属を介して固相
拡散により結合されていることを特徴とする遮熱部材の
接合構造。
1. A thin plate made of dense Si 3 N 4 is interposed between a porous ceramic member having a porosity of 15% or more and a dense Si 3 N 4 member having a porosity of 1% or less. ,
The porous ceramic member and the thin plate are made of Ca-Si-
Bonding of a heat shield member, characterized in that the thin plate and the dense Si 3 N 4 member are bonded to each other via an oxide containing O, and are bonded by a solid phase diffusion via a metal containing Ni. Construction.
【請求項2】 前記多孔質Si3 4 部材と前記Ca−
Si−Oを含む酸化物との間には融着相が形成され、前
記Ca−Si−Oを含む酸化物と前記薄板との間には反
応層が形成され、また、前記薄板と前記Niを含む金属
との間にはCrN層が形成され、前記Niを含む金属と
前記緻密質Si3 4 部材との間にはCrN層が形成さ
れていることを特徴とする請求項1に記載の遮熱部材の
接合構造。
2. The porous Si 3 N 4 member and the Ca-
A fusion phase is formed between the oxide containing Si-O, a reaction layer is formed between the oxide containing Ca-Si-O and the thin plate, and the thin plate and the Ni are formed. The CrN layer is formed between the metal containing Ni and the CrN layer is formed between the metal containing Ni and the dense Si 3 N 4 member. Bonding structure of heat shield members.
【請求項3】 気孔率が15%以上の多孔質セラミック
部材と気孔率が1%以下の緻密質Si3 4 部材との間
には緻密質Si3 4 から成る薄板が介在されており、
前記多孔質セラミック部材と前記薄板とはCa−Si−
Oを含む酸化物を介して結合され、前記薄板と前記緻密
質Si3 4 部材とはCu,Tiを含む金属を介して固
相拡散により結合されていることを特徴とする遮熱部材
の接合構造。
3. A thin plate made of dense Si 3 N 4 is interposed between a porous ceramic member having a porosity of 15% or more and a dense Si 3 N 4 member having a porosity of 1% or less. ,
The porous ceramic member and the thin plate are made of Ca-Si-
A heat shield member, characterized in that the thin plate and the dense Si 3 N 4 member are bonded by an oxide containing O, and are bonded by solid phase diffusion through a metal containing Cu and Ti. Junction structure.
【請求項4】 前記多孔質セラミック部材と前記Ca−
Si−Oを含む酸化物との間には融着相が形成され、前
記Ca−Si−Oを含む酸化物と前記薄板との間には反
応層が形成され、また、前記薄板と前記Cu,Tiを含
む金属との間にはTiN層が形成され、前記Cu,Ti
を含む金属と前記緻密質Si3 4 部材との間にはTi
N層が形成されていることを特徴とする請求項3に記載
の遮熱部材の接合構造。
4. The porous ceramic member and the Ca-
A fusion phase is formed between the oxide containing Si-O, a reaction layer is formed between the oxide containing Ca-Si-O and the thin plate, and the thin plate and the Cu are formed. , A TiN layer is formed between the metal containing Ti and Cu, Ti
Ti between the metal containing Ti and the dense Si 3 N 4 member.
The heat shield member joining structure according to claim 3, wherein an N layer is formed.
【請求項5】 前記多孔質セラミック部材で構成された
燃焼室側に配置される面を形成するヘッド部と前記緻密
質Si3 4 部材で構成されたピストンスカートに取り
付けられるヘッド本体とから成るピストンヘッドに適用
されていることを特徴とする請求項1〜4のいずれかに
記載の遮熱部材の接合構造。
5. A head portion formed of the porous ceramic member and forming a surface arranged on the combustion chamber side, and a head main body attached to a piston skirt formed of the dense Si 3 N 4 member. It is applied to a piston head, The joining structure of the heat-shielding member in any one of Claims 1-4 characterized by the above-mentioned.
【請求項6】 前記多孔質セラミック部材は酸化物が分
散されている多孔質窒化ケイ素であることを特徴とする
請求項1〜5のいずれかに記載の遮熱部材の接合構造。
6. The joint structure for a heat shield member according to claim 1, wherein the porous ceramic member is a porous silicon nitride in which an oxide is dispersed.
【請求項7】 気孔率が15%以上で酸化物が分散され
た多孔質セラミック部材と緻密質Si3 4 から成る薄
板とをCa−Si−Oを含む酸化物を介して結合し、次
いで前記薄板と気孔率が1%以下の緻密質Si3 4
材とをNiを含む金属又はCu,Tiを含む金属を介し
て固相拡散により結合したことを特徴とする遮熱部材の
接合方法。
7. A porous ceramic member having a porosity of 15% or more and in which an oxide is dispersed, and a thin plate made of dense Si 3 N 4 are bonded via an oxide containing Ca—Si—O, and then, A method for joining a heat shield member, characterized in that the thin plate and a dense Si 3 N 4 member having a porosity of 1% or less are joined by solid phase diffusion through a metal containing Ni or a metal containing Cu or Ti. .
JP11176394A 1994-04-28 1994-04-28 Joined structure of heat-shielding member and method for joining the same Pending JPH07300374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11176394A JPH07300374A (en) 1994-04-28 1994-04-28 Joined structure of heat-shielding member and method for joining the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11176394A JPH07300374A (en) 1994-04-28 1994-04-28 Joined structure of heat-shielding member and method for joining the same

Publications (1)

Publication Number Publication Date
JPH07300374A true JPH07300374A (en) 1995-11-14

Family

ID=14569572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11176394A Pending JPH07300374A (en) 1994-04-28 1994-04-28 Joined structure of heat-shielding member and method for joining the same

Country Status (1)

Country Link
JP (1) JPH07300374A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129430A1 (en) * 2012-02-27 2013-09-06 日本碍子株式会社 Heat-insulating member and engine combustion chamber structure
US20150040879A1 (en) * 2012-02-22 2015-02-12 Ngk Insulators, Ltd. Structure of combustion chamber for engine and inner wall structure of flow path
JP2015169192A (en) * 2014-03-11 2015-09-28 日産自動車株式会社 Piston for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150040879A1 (en) * 2012-02-22 2015-02-12 Ngk Insulators, Ltd. Structure of combustion chamber for engine and inner wall structure of flow path
JPWO2013125704A1 (en) * 2012-02-22 2015-07-30 日本碍子株式会社 Engine combustion chamber structure and flow path inner wall structure
WO2013129430A1 (en) * 2012-02-27 2013-09-06 日本碍子株式会社 Heat-insulating member and engine combustion chamber structure
JP2015169192A (en) * 2014-03-11 2015-09-28 日産自動車株式会社 Piston for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4467453B2 (en) Ceramic member and manufacturing method thereof
KR100709544B1 (en) Joined body and manufacturing method for the same
JPH06115009A (en) Joining method for sintered ceramics body
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPH09249462A (en) Bonded material, its production and brazing material for ceramic member
JPH07300374A (en) Joined structure of heat-shielding member and method for joining the same
JPH07272832A (en) Ceramic heater of silicon nitride
TW574175B (en) Material compound, and the manufacture thereof
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JP3512575B2 (en) Contact heating heater
JP3501834B2 (en) Manufacturing method of joined body of ceramic material and metal material
JPH07167435A (en) Ceramic heat-generating member
JP3119906B2 (en) Joint of carbon material and metal
JPH05319946A (en) Ceramic substrate joined to metallic plate
JPH1171186A (en) Bound structure of ceramic to metal and its binding
JPH05163078A (en) Joint form made up of ceramic and metal
JP2003335585A (en) Process for joining ceramics through active metal soldering
JP2001048670A (en) Ceramics-metal joined body
JP4088515B2 (en) Electrostatic chuck
JPH04259781A (en) Ceramic heater
JPH11329676A (en) Joined ceramics and metal body, ceramic heater using same, and its manufacture
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH1012397A (en) Tile bonding body for accelerator
JP2771810B2 (en) Method of joining ceramic and metal body and joined body
JPH01224279A (en) Bonding of ceramic to metal