JPH11329676A - Joined ceramics and metal body, ceramic heater using same, and its manufacture - Google Patents

Joined ceramics and metal body, ceramic heater using same, and its manufacture

Info

Publication number
JPH11329676A
JPH11329676A JP13201098A JP13201098A JPH11329676A JP H11329676 A JPH11329676 A JP H11329676A JP 13201098 A JP13201098 A JP 13201098A JP 13201098 A JP13201098 A JP 13201098A JP H11329676 A JPH11329676 A JP H11329676A
Authority
JP
Japan
Prior art keywords
ceramic
metal
nitride
layer
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13201098A
Other languages
Japanese (ja)
Inventor
Koji Maeda
康治 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13201098A priority Critical patent/JPH11329676A/en
Publication of JPH11329676A publication Critical patent/JPH11329676A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform a stable joint of high strength, by providing, on a surface of nitride ceramics, a metallized layer including a V compound such as vanadium nitride or vanadium carbide and a metallic layer having Ni and/or a Ni compound as main constituent and a specific porosity, and joining a metallic member to the metallic layer. SOLUTION: Porosity of a metallic layer is 5 to 20%. A mixture of V fine powder of 1 to 30 wt.%, preferably 2 to 10 wt.%, Ni fine powder, an organic binder, etc., is prepared and spread on a surface of nitride ceramics 4, and heated to 1000 to 1200 deg.C in a vacuum atmosphere of 1×10<-3> Torr or under for 15 minutes. A lusterless silvery metallic layer 5 and a metallized layer 3 which is a boundary face between the layer 5 and the ceramics 4, are thereby obtained. The metallic layer 5 and a metallic member 1 to be joined are supplied with a brazing filler metal 2 therebetween, and heated/brazed, thus a joined body of a structure including cushioning materials is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセラミックと金属の
接合体及びこれを用いたセラミックヒータに関し、特に
セラミックと金属を接合する際に有用な金属層を、セラ
ミック表面のメタライズと同時に形成する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-metal bonded body and a ceramic heater using the same, and more particularly to a method for forming a metal layer useful for bonding ceramic and metal simultaneously with metallizing the ceramic surface. Things.

【0002】[0002]

【従来の技術】従来、セラミックスと金属を接合するに
は、セラミックス表面をMo−Mn法でメタライズ(金
属化)し、さらにNiメッキを施したのち、銀ロウ材で
金属とロウ接する方法や、活性金属法などが広く一般的
に利用されている。
2. Description of the Related Art Conventionally, ceramics and metals have been joined by metallizing (metallizing) the ceramics surface by the Mo-Mn method and then Ni plating and then brazing to the metal with a silver brazing material. The active metal method and the like are widely and generally used.

【0003】しかし、先のMo−Mn法はアルミナ等の
酸化物系セラミックスには広く採用されているが、窒化
珪素セラミックス等の非酸化物系セラミックスへの適用
は困難である。また、活性金属法はメタライズとロウ接
とを同時に行うために、銀ロウ中に活性金属であるTi
を含有させたAg- Cu- Ti系、Ag−Cu- In-
Ti系などのロウ材を使用してセラミックと直接反応さ
せて接合するなど改善が見られるが、十分な強度を有
し、耐酸化性、耐熱性に優れた接合体は得られていない
のが現状である。
However, the Mo-Mn method is widely used for oxide ceramics such as alumina, but is difficult to apply to non-oxide ceramics such as silicon nitride ceramics. In the active metal method, since the metallization and the brazing are performed simultaneously, the active metal Ti
Ag-Cu-Ti system containing Ag-Cu-In-
Improvements have been seen, such as joining directly by reacting with ceramic using a brazing filler metal such as Ti-based, but a joint having sufficient strength and excellent oxidation resistance and heat resistance has not been obtained. It is the current situation.

【0004】通常セラミックスと金属を加熱接合する場
合、両者の熱膨張差により冷却過程で接合部の付近に残
留応力が働き、接合体の接合強度の低下やセラミックス
に割れ等が発生する。そこで、この残留応力を低減する
ため、両者の間にMo、W、Fe- Ni- Co合金等の
低熱膨張金属を挿入して接合したり、Ni、銅、アルミ
ニウム等の軟質金属板を挟み込んで接合するようにして
いる。
When a ceramic and a metal are joined by heating, residual stress acts near the joint during the cooling process due to a difference in thermal expansion between the ceramic and the metal, so that the joint strength of the joined body is reduced and the ceramic is cracked. Therefore, in order to reduce the residual stress, a low thermal expansion metal such as Mo, W, or Fe-Ni-Co alloy is inserted between the two to join them, or a soft metal plate such as Ni, copper, or aluminum is sandwiched. We are trying to join.

【0005】これらの軟質金属のなかで、銅は耐力が低
いため応力がかかる接合体に使用すると銅の部分が変形
してしまう。アルミニウムも同様であり、さらに融点が
低いために高温で使用する接合体には使用できない。一
方、Niは耐力があり、耐酸化性、耐熱性の面で優れた
特性を持っているので、セラミックスと金属の接合用の
緩衝材として適している。しかし、熱膨張の小さい高純
度な窒化物系セラミックスと接合される金属の間に単純
にNi板を挿入しても、両者(Ni板とセラミックス)
の熱膨張差により冷却過程での残留応力が大きく影響
し、セラミックスに割れが発生してしまうため、高い接
合強度を有する接合体は得られない。
[0005] Among these soft metals, copper has a low proof stress, and therefore, when used for a joint to which stress is applied, the copper portion is deformed. Similarly, aluminum cannot be used for a joined body used at high temperature because of its low melting point. On the other hand, Ni has a proof stress and has excellent characteristics in terms of oxidation resistance and heat resistance, so that it is suitable as a buffer material for joining ceramics and metal. However, even if a Ni plate is simply inserted between a high-purity nitride-based ceramic having low thermal expansion and a metal to be joined, the two (Ni plate and ceramic)
Residual stress during the cooling process greatly affects the thermal expansion difference, and cracks occur in the ceramics, so that a joined body having high joining strength cannot be obtained.

【0006】前述したように活性金属法によるメタライ
ズでは、Ag- Cu系のロウ材中に活性金属としてTi
を使用したものが多い。ここで、このAg- Cu- Ti
系ロウ材と窒化物系セラミックス(ここでは窒化珪素質
セラミックス)と金属板の3種類の物質の接合を例にそ
の接合メカニズムと実際の問題点について考えてみる。
[0006] As described above, in the metallization by the active metal method, in the Ag-Cu-based brazing material, Ti is used as an active metal.
Often used. Here, this Ag-Cu-Ti
The joining mechanism and actual problems will be considered by taking as an example the joining of three kinds of materials, ie, a brazing material, a nitride ceramic (here, silicon nitride ceramics), and a metal plate.

【0007】図3に示すようにAg- Cu- Ti系ロウ
材2と窒化珪素を主成分とするセラミックス4との界面
にはTiN及びTi5 Si3 の反応層によるメタライズ
層3が生成され、この層の形成によりAg- Cu- Ti
系ロウ材と接していた窒化珪素質セラミックスの表面は
メタライズ(金属化)されるものと考えられる。
[0007] As shown in FIG. 3 Ag- Cu- is metallized layer 3 by the reaction layer of TiN and Ti 5 Si 3 is generated a Ti-based brazing material 2 and the silicon nitride at the interface between the ceramics 4 mainly, By forming this layer, Ag-Cu-Ti
It is considered that the surface of the silicon nitride ceramics in contact with the brazing material is metallized (metallized).

【0008】このTiN及びTi5 Si3 のメタライズ
層3の上にAg- Cu合金のロウ材2が流れ、さらにこ
のロウ材2と金属部材1とがロウ付けされることにより
3種類の物質の接合体が得られる。
An Ag—Cu alloy brazing material 2 flows on the metallized layer 3 of TiN and Ti 5 Si 3 , and the brazing material 2 and the metal member 1 are further brazed to form three types of substances. A conjugate is obtained.

【0009】しかし、加熱接合される金属とセラミック
との熱膨張の差が大きいと冷却過程で接合部付近に残留
応力が発生する。この場合に、接合される金属板がNi
板であっても、窒化珪素セラミックとNi板の熱膨張の
差で生じる残留応力がロウ材中あるいはセラミック表面
に働き、接合体の接合強度の低下やセラミックの割れが
問題となる。
However, if the difference in thermal expansion between the metal and ceramic to be heated and joined is large, residual stress is generated near the joint during the cooling process. In this case, the metal plate to be joined is Ni
Even in the case of a plate, the residual stress generated due to the difference in thermal expansion between the silicon nitride ceramic and the Ni plate acts in the brazing material or on the ceramic surface, which causes problems such as a decrease in bonding strength of the joined body and cracking of the ceramic.

【0010】[0010]

【発明が解決しようとする課題】上記のようにNiはセ
ラミックスと金属の接合に使用する緩衝材として優れた
特性を有するが、Ni板そのままでは十分に満足できる
緩衝材とは言えない。それは、先に述べたセラミックス
とNi板との熱膨張の差で生じる残留応力がロウ材中あ
るいはセラミックス表面に働き、接合体の接合強度の低
下やセラミックスの割れにより接合強度がばらつくから
である。
As described above, Ni has excellent properties as a cushioning material used for joining ceramics and metal, but it cannot be said that a Ni plate as such is a sufficiently satisfactory cushioning material. This is because the residual stress generated due to the difference in thermal expansion between the ceramic and the Ni plate described above acts in the brazing material or on the ceramic surface, and the bonding strength of the bonded body is reduced and the bonding strength varies due to cracking of the ceramic.

【0011】また、その他の軟質金属(たとえば銅な
ど)は耐熱性や耐食性に問題があり、十分に満足できる
緩衝材、緩衝層とはならない。
Further, other soft metals (such as copper) have problems in heat resistance and corrosion resistance, and do not provide a sufficiently satisfactory buffer material or buffer layer.

【0012】[0012]

【目的】本発明は、セラミックスと金属とを高強度でか
つ安定した接合を行うために必要な緩衝層の形成方法、
およびその緩衝層を有する金属とセラミックスの接合体
を提供するものである。
An object of the present invention is to provide a method for forming a buffer layer necessary for performing high-strength and stable bonding between ceramics and a metal,
And a joined body of metal and ceramic having the buffer layer.

【0013】[0013]

【課題を解決するための手段】本発明はセラミックスと
金属との接合において、両者の熱膨張差で生じる残留応
力を吸収・緩和するために、窒化物系セラミックスの表
面に、窒化バナジウム、炭化バナジウムなどのVの化合
物を含むメタライズ面と、その上にNi及び/又はNi
の化合物(珪化ニッケルなど)を主成分とした気孔率5
〜20%の金属層を備え、該金属層上に金属部材を接合
してなる金属とセラミックスの接合体を特徴とする。
SUMMARY OF THE INVENTION In the present invention, in joining a ceramic and a metal, vanadium nitride and vanadium carbide are applied to the surface of a nitride ceramic to absorb and relax residual stress caused by a difference in thermal expansion between the two. Metallized surface containing a compound of V and Ni and / or Ni
Porosity of 5 as a main component (such as nickel silicide)
It is characterized by having a metal layer and a ceramic member formed by bonding a metal member on the metal layer.

【0014】[0014]

【発明の実施の形態】本発明の具体的な実施例を図1を
用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the present invention will be described with reference to FIG.

【0015】図1は、窒化珪素(Si3 4 )を主成分
とする円柱状のセラミックス4とNi線やFe-Ni-Co合金
等からなる金具の金属部材1を接合したものである。こ
の接合構造は、セラミックス4の表面にVの化合物を含
むメタライズ層3を備え、その上に気孔を有する金属層
5を形成し、該金属層5上にロウ材2によって金属部材
1を接合したものである。
FIG. 1 shows a cylindrical ceramic 4 mainly composed of silicon nitride (Si 3 N 4 ) joined to a metal member 1 of a metal fitting made of Ni wire, Fe—Ni—Co alloy or the like. In this joint structure, a metallized layer 3 containing a compound of V is provided on the surface of a ceramic 4, a metal layer 5 having pores is formed thereon, and a metal member 1 is joined on the metal layer 5 by a brazing material 2. Things.

【0016】このような接合構造を得るためには、活性
金属としてV(バナジウム)を1〜30重量%、好まし
くは2〜10重量%含み、残部がNi金属微粉からな
り、さらに有機バインダーを含む混合物を用意し、この
混合物をセラミックス4上に塗布し、真空雰囲気中で約
1050℃まで加熱して15分間保持する。なお、この
処理温度は1000〜1200℃が最適であり、これ以
上の温度ではNi微粉末が溶融して有効な気孔を有する
金属層5が得られず、これ以下の低い温度では後で述べ
る反応が十分に起きずにメタライズすら出来ない。
In order to obtain such a joint structure, V (vanadium) is contained as an active metal in an amount of 1 to 30% by weight, preferably 2 to 10% by weight, the balance being Ni metal fine powder, and further containing an organic binder. A mixture is prepared, and the mixture is applied on the ceramics 4 and heated to about 1050 ° C. in a vacuum atmosphere and held for 15 minutes. It is to be noted that the treatment temperature is optimally from 1000 to 1200 ° C. At a temperature higher than this, the Ni fine powder is melted and a metal layer 5 having effective pores cannot be obtained. Is not enough to metallize.

【0017】その結果、セラミックス4の表面に塗布し
た前述の混合物は、光沢のない銀色の金属層5及びセラ
ミックス4との界面のメタライズ層3として得られた。
この金属層5と、接合される金属部材1との間にロウ材
2(例えばAg- Cu系、Au- Cu系など)を添加し
加熱ロウ付けすることにより、緩衝材を間に挟んだ構造
のセラミックスと金属の接合体が得られる。
As a result, the above-mentioned mixture applied to the surface of the ceramics 4 was obtained as a dull silver metal layer 5 and a metallized layer 3 at the interface with the ceramics 4.
A brazing material 2 (for example, Ag-Cu based, Au-Cu based, etc.) is added between the metal layer 5 and the metal member 1 to be joined, and is heated and brazed, so that a buffer material is sandwiched therebetween. Thus, a joined body of ceramic and metal can be obtained.

【0018】この接合体の接合部の破断強度は、4点曲
げ試験強度で380MPaと高い接合強度が得られた。
この時の破断は、セラミックス4との界面のメタライズ
層3を一部含む気孔を有する金属層5の内部で起きた。
比較のため金属層5なしで接合を行った場合は、一部接
合界面を含むセラミックス4の内部で破断し、その強度
は210MPaと低いものであった。
As for the breaking strength of the joined portion of the joined body, a high joining strength of 380 MPa was obtained in a four-point bending test.
The fracture at this time occurred inside the metal layer 5 having pores partially including the metallized layer 3 at the interface with the ceramics 4.
When the bonding was performed without the metal layer 5 for comparison, the fracture occurred inside the ceramics 4 including a part of the bonding interface, and the strength was as low as 210 MPa.

【0019】前記のセラミックス4の表面に得られた光
沢のない銀色の金属層5の断面をSEM(走査電子顕微
鏡)で観察し、断面及び表面をXRD(X線回折)で結
晶構造分析を行ったところ、セラミックス4の表面に窒
化バナジウム(VN)等のV化合物や珪化ニッケル(N
iSiなど)等を含むメタライズ層3が形成され、さら
にそのメタライズ層3上に気孔を有する金属層5が形成
されている事が確認できた。
The cross section of the dull silver metal layer 5 obtained on the surface of the ceramics 4 is observed with a scanning electron microscope (SEM), and the cross section and the surface are analyzed for crystal structure by XRD (X-ray diffraction). As a result, a V compound such as vanadium nitride (VN) or nickel silicide (N
It was confirmed that the metallized layer 3 including iSi or the like was formed, and the metal layer 5 having pores was formed on the metallized layer 3.

【0020】この結果から、セラミックス4の表面に塗
布した活性金属V粉末とNi粉末からなる混合物が真空
雰囲気中で加熱されることにより、最初セラミックス4
の表面と接していた反応性の強い活性金属Vが窒化珪素
(Si3 4 )と反応して珪化バナジウム(V3
5 、VSi3 )および窒化バナジウム(VN)とな
り、その反応の際に発生したフリーなSiとNi粉末と
が反応して低融点の珪化ニッケル(NiSiなど)が生
成され、この低融点の珪化ニッケルを液相として上記の
反応がさらに進み、結果として活性金属Vはセラミック
ス4表面に集まり、珪化バナジウムおよび窒化バナジウ
ムから成る緻密なメタライズ層3と、そのメタライズ層
3面上には珪化ニッケルに包まれたNi粒子による金属
層5が形成されると考えられる。
From these results, it is found that the mixture of the active metal V powder and the Ni powder applied to the surface of the ceramics 4 is heated in a vacuum atmosphere, so that the ceramics 4
The highly reactive active metal V in contact with the surface of the silicon nitride reacts with silicon nitride (Si 3 N 4 ) to form vanadium silicide (V 3 S).
i 5 , VSi 3 ) and vanadium nitride (VN), and free Si generated during the reaction reacts with the Ni powder to produce low-melting nickel silicide (NiSi or the like). The above reaction proceeds further using nickel as a liquid phase, and as a result, the active metal V collects on the surface of the ceramics 4, and a dense metallized layer 3 made of vanadium silicide and vanadium nitride is coated on the surface of the metallized layer 3 with nickel silicide. It is considered that the metal layer 5 is formed by the mixed Ni particles.

【0021】またこの珪化ニッケルとNiを主成分にし
た金属層5は緻密ではなく気孔が含まれていることが分
かった。この気孔について先のSEM写真を画像解析し
たところ気孔の平均径はおよそ10μmで、気孔率5〜
20%であり、特に8〜16%の領域で4点曲げ強度が
高強度で安定することが分かった。
It was also found that the metal layer 5 containing nickel silicide and Ni as main components was not dense but had pores. Image analysis of the previous SEM photograph of the pores revealed that the pores had an average diameter of about 10 μm and had a porosity of 5 to 5.
It was 20%, and it was found that the four-point bending strength was high and stable particularly in the range of 8 to 16%.

【0022】この反応は、最初に反応性の強い活性金属
Vが窒化珪素(Si3 4 )と反応して珪化バナジウム
および窒化バナジウムとなることが必要であり、この反
応を十分に促進させるためには真空中での熱処理が有効
であることが分かった。これは反応性の強い活性金属V
が雰囲気中の物質(たとえば酸素、水素等)と先に反応
する事によってVの持つ反応性が弱まり、窒化珪素セラ
ミックスとの反応力が不足するためと考えられる。さら
に気孔率5〜20%を有するようにするためにも真空中
での熱処理温度が重要であり、前述したように処理温度
はNiの融点より低い1000〜1200℃が最適であ
り、これ以上の温度では珪化ニッケルを液層としてNi
微粉末が溶融して気孔率の低い金属層しか得られず、低
い温度では活性金属Vと珪化物セラミックとの反応が不
十分で満足にメタライズすら出来ない。
This reaction requires that the active metal V having a high reactivity first reacts with silicon nitride (Si 3 N 4 ) to form vanadium silicide and vanadium nitride, and this reaction is sufficiently promoted. It was found that heat treatment in a vacuum was effective. This is a highly reactive active metal V
Is presumed to react with a substance in the atmosphere (for example, oxygen, hydrogen, or the like) first, so that the reactivity of V is weakened and the reaction force with silicon nitride ceramics is insufficient. Further, a heat treatment temperature in a vacuum is important in order to have a porosity of 5 to 20%. As described above, the treatment temperature is optimally 1000 to 1200 ° C. lower than the melting point of Ni. At temperature, nickel silicide is used
The fine powder is melted and only a metal layer having a low porosity is obtained. At a low temperature, the reaction between the active metal V and the silicide ceramic is insufficient, so that the metallization cannot be performed satisfactorily.

【0023】そして、この気孔を有する金属層5がセラ
ミックス4と接合される金属部材1との間に存在するこ
とで、加熱接合時の熱膨張差による残留応力が吸収され
接合強度の高い安定した接合体を得ることができる。ま
たこの金属層5はNiおよび珪化ニッケルから成る反応
層であるため、耐熱性、耐酸化性ともに優れており高温
での使用も十分可能である。
Since the metal layer 5 having the pores is present between the ceramics 4 and the metal member 1 to be bonded, residual stress due to a difference in thermal expansion at the time of heat bonding is absorbed, and the bonding strength is high and stable. A conjugate can be obtained. Further, since the metal layer 5 is a reaction layer made of Ni and nickel silicide, it has excellent heat resistance and oxidation resistance, and can be used at high temperatures.

【0024】実際に、本発明の接合体を600℃酸化雰
囲気中に約200時間放置後、4点曲げ強度を測定して
も、接合直後の初期状態のものと大差ない高い値が得ら
れた。
Actually, after the bonded body of the present invention was left in an oxidizing atmosphere at 600 ° C. for about 200 hours, a high value which was not much different from that in the initial state immediately after bonding was obtained even when the four-point bending strength was measured. .

【0025】なお、Niと珪化ニッケルを主成分とした
気孔率5〜20%の金属層5の気孔率は、以下のように
して測定する。
The porosity of the metal layer 5 having a porosity of 5 to 20% containing Ni and nickel silicide as main components is measured as follows.

【0026】1.接合部を、ダイヤモンドカッターで切
断し、多孔質の金属層5が見えるようにする。
1. The joint is cut with a diamond cutter so that the porous metal layer 5 can be seen.

【0027】2.切断面を、5%濃度の希硝酸溶液に3
0秒間浸漬して、研磨ダレを除去する。
2. Cut the cut surface with 5% dilute nitric acid solution
Immerse for 0 second to remove polishing sagging.

【0028】3.上記処理済みの切断面について500
倍でSEM写真を撮影する。
3. 500 for the processed cut surface
Take a SEM photograph at 2x.

【0029】4.上記SEM写真をベースに、金属層5
の画像解析により、気孔率を測定する。
4. Based on the SEM photograph, the metal layer 5
The porosity is measured by image analysis.

【0030】気孔を有する金属層5の気孔率が5〜20
%が好ましい理由は、気孔率が5%未満だと、金属層5
の剛性が高く、応力緩和効果が期待できないからであ
る。また、気孔率を20%より大きくすると、気孔を有
する金属層5自体の強度が弱くなり、金属層5部分から
破壊してしまうからである。
The porosity of the metal layer 5 having pores is 5 to 20.
% Is preferable because if the porosity is less than 5%, the metal layer 5
This is because the stiffness is high and a stress relaxation effect cannot be expected. On the other hand, if the porosity is larger than 20%, the strength of the metal layer 5 having pores becomes weak, and the metal layer 5 is broken from the metal layer 5 portion.

【0031】金属層5の厚みは、0.05〜0.50m
mであることが好ましい。厚みが0.05mm未満では
十分な応力緩和が期待できないからである。応力緩和層
としての金属層5の厚みの上限はないが、上限を0.5
0mmとするのは、ペーストを肉盛りする加工上の制約
を考慮したものである。
The thickness of the metal layer 5 is 0.05 to 0.50 m
m is preferable. If the thickness is less than 0.05 mm, sufficient stress relaxation cannot be expected. Although there is no upper limit of the thickness of the metal layer 5 as the stress relaxation layer, the upper limit is 0.5
The reason why the thickness is set to 0 mm is to take into consideration processing restrictions for overlaying the paste.

【0032】また、セラミックス4を窒化物系セラミッ
クスとしたのは、窒化珪素、窒化アルミニウム、および
窒化アルミニウムと窒化珪素の混合系もその範疇に含む
ことを意味する。好ましくは、高強度が期待できる窒化
珪素質セラミックとすることが望ましい。
The fact that the ceramics 4 is a nitride ceramic means that silicon nitride, aluminum nitride, and a mixed system of aluminum nitride and silicon nitride are also included in the category. Preferably, it is desirable to use a silicon nitride ceramic which can be expected to have high strength.

【0033】本発明のセラミックスと金属の接合体は、
セラミックヒータの電極取り出し部や、セラミックタペ
ットの金属とセラミックの接合部、セラミック製の半導
体パッケージの端子の接合部等に利用できる。
The joined body of ceramics and metal of the present invention is
It can be used as an electrode take-out part of a ceramic heater, a joint part of a metal and a ceramic of a ceramic tappet, a joint part of a terminal of a ceramic semiconductor package, and the like.

【0034】例えば、セラミックヒータに適用した例を
図2に示す。
FIG. 2 shows an example in which the present invention is applied to a ceramic heater.

【0035】図2に示すように、発熱抵抗体を埋設した
窒素化物系のセラミックス4の一部に、上記発熱抵抗体
の電極取り出し部を形成し、この部分において、上述し
たようなメタライズ層3と金属層5を形成して、ロウ材
2を用いて金属部材1としてリード線を接合することが
できる。
As shown in FIG. 2, an electrode extraction portion of the heating resistor is formed in a part of the nitride-based ceramics 4 in which the heating resistor is buried. Then, a lead wire can be joined as the metal member 1 using the brazing material 2.

【0036】[0036]

【実施例】本発明のセラミックスと金属の接合体につい
て接合強度を評価する試験を行った。
EXAMPLE A test was conducted to evaluate the joint strength of the ceramic-metal joint of the present invention.

【0037】まず、図4に示したようなテストサンプル
を作成した。同一形状の窒化珪素を主成分とする円柱状
のセラミックス4と、Niからなる円柱状の金属部材1
を準備し、それぞれの接合する端面を#600番の砥石
で研削仕上げする。その後、セラミックス4の接合面
に、微粉Ni96重量%と微粉V4重量%と若干の有機
系バインダー等を混合したペーストを0.20mm塗布
する。乾燥後、真空炉中1000〜1200℃で焼き付
ける。その後、得られた金属層5上にロウ材2を塗布
し、金属部材1を重ねて固定し、十分乾燥した後、真空
炉中でロウ付けしてテストサンプルを作成した。
First, a test sample as shown in FIG. 4 was prepared. A columnar ceramic member 4 composed mainly of silicon nitride having the same shape and a columnar metal member 1 made of Ni
Is prepared, and the end faces to be joined are ground and finished with a # 600 grindstone. Thereafter, a paste obtained by mixing 96% by weight of fine powder Ni, 4% by weight of fine powder V, and a small amount of an organic binder or the like is applied to the bonding surface of the ceramics 4 by 0.20 mm. After drying, bake at 1000-1200 ° C. in a vacuum furnace. Thereafter, the brazing material 2 was applied on the obtained metal layer 5, the metal member 1 was overlapped and fixed, dried sufficiently, and then brazed in a vacuum furnace to prepare a test sample.

【0038】一方、比較例として、円柱状の窒化珪素を
主成分とするセラミックス4の接合面に直接Au−Ni
ロウを塗布した後、円柱状のNiからなる金属部材1を
重ねて固定し、充分乾燥した後真空炉でロウ付けしたも
のを用いた。
On the other hand, as a comparative example, Au—Ni was directly applied to the joint surface of the ceramics 4 having a columnar silicon nitride as a main component.
After applying the brazing, a columnar Ni-made metal member 1 was overlaid and fixed, dried sufficiently, and then brazed in a vacuum furnace.

【0039】各サンプルの金属層5の焼き付け温度と、
金属部材1のロウ付け温度は、表1中に表記した。ま
た、接合部のメタライズ強度は、4点曲げ強度で評価し
た。
The baking temperature of the metal layer 5 of each sample;
The brazing temperature of the metal member 1 is shown in Table 1. The metallized strength of the joint was evaluated by a four-point bending strength.

【0040】結果を表1、2に示すように、本発明の範
囲内で多孔質の金属層5を備えたものは曲げ強度が高く
接合強度が高いことがわかる。
As shown in Tables 1 and 2, it can be seen that those having the porous metal layer 5 within the scope of the present invention have high bending strength and high bonding strength.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】以上のように本発明によれば、熱膨張の
差で生じる残留応力による接合強度の低下を防止し、耐
久性に優れたセラミックスと金属の接合体を提供でき
る。
As described above, according to the present invention, it is possible to prevent a decrease in bonding strength due to residual stress caused by a difference in thermal expansion and to provide a bonded body of ceramics and metal having excellent durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックスと金属の接合体の断面構
造を示した図である。
FIG. 1 is a diagram showing a cross-sectional structure of a joined body of a ceramic and a metal of the present invention.

【図2】本発明のセラミックヒータを示す斜視図であ
る。
FIG. 2 is a perspective view showing a ceramic heater of the present invention.

【図3】従来のセラミックスと金属の接合体の断面構造
を示した図である。
FIG. 3 is a diagram showing a cross-sectional structure of a conventional joined body of ceramic and metal.

【図4】本発明のテストサンプルを示した図である。FIG. 4 is a diagram showing a test sample of the present invention.

【符号の説明】[Explanation of symbols]

1:金属部材 2:ロウ材 3:メタライズ層 4:セラミックス 5:金属層 1: Metal member 2: Brazing material 3: Metallized layer 4: Ceramics 5: Metal layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】窒化物系セラミックスの表面に、窒化バナ
ジウム、炭化バナジウムなどのVの化合物を含むメタラ
イズ層と、その上にNi及び/又はNiの化合物を主成
分とした気孔率5〜20%の金属層を備え、該金属層に
金属部材を接合してなる金属とセラミックスの接合体。
1. A metallized layer containing a compound of V such as vanadium nitride or vanadium carbide on a surface of a nitride-based ceramic, and a porosity of 5 to 20% containing Ni and / or a compound of Ni as a main component thereon. A joined body of a metal and a ceramic, comprising a metal layer of (1) and a metal member joined to the metal layer.
【請求項2】窒化物系セラミックスの表面に、1〜30
重量%のVの微粉末とNiの微粉末と有機系バインダー
等を加えた混合物を塗布し、1×10-3torr以下の
真空雰囲気中で1000〜1200℃に加熱することに
よって、セラミックス表面に、窒化バナジウム、炭化バ
ナジウムなどのVの化合物を含むメタライズ層と、その
上に接するように、Ni及び/又はNiの化合物を主成
分とした気孔率5〜20%の金属層を同時に形成した
後、この金属層に金属部材を接合する工程からなる金属
とセラミックの接合体の製造方法。
2. The method according to claim 1, wherein the surface of the nitride-based ceramic is
A mixture of a fine powder of V, a fine powder of Ni, an organic binder and the like in a weight percentage is applied, and heated to 1000 to 1200 ° C. in a vacuum atmosphere of 1 × 10 −3 torr or less, so that the ceramic surface is coated. After simultaneously forming a metallized layer containing a compound of V such as vanadium nitride and vanadium carbide, and a metal layer having a porosity of 5 to 20% mainly containing Ni and / or a compound of Ni so as to be in contact therewith And a method for manufacturing a bonded body of metal and ceramic, comprising a step of bonding a metal member to the metal layer.
【請求項3】窒化物系セラミックスの内部に発熱抵抗体
を埋設し、上記セラミックスの表面に、窒化バナジウ
ム、炭化バナジウムなどのVの化合物を含むメタライズ
層と、その上にNi及び/又はNiの化合物を主成分と
した気孔率5〜20%の金属層を備え、該金属層に金属
端子部を接合したことを特徴とするセラミックヒータ。
3. A heating resistor is buried inside a nitride ceramic, a metallized layer containing a compound of V such as vanadium nitride or vanadium carbide is formed on the surface of the ceramic, and Ni and / or Ni is formed thereon. A ceramic heater comprising a metal layer mainly composed of a compound and having a porosity of 5 to 20%, and a metal terminal portion joined to the metal layer.
【請求項4】窒化物系セラミックスの表面に、1〜30
重量%のVの微粉末とNiの微粉末と有機系バインダー
等を加えた混合物を塗布し、1×10-3torr以下の
真空雰囲気中で1000〜1200℃に加熱することに
よって、セラミックス表面に窒化バナジウム、炭化バナ
ジウムなどのVの化合物を含むメタライズ層と、その上
に接するように、Ni及び/又はNiの化合物を主成分
とした気孔率5〜20%の金属層を同時に形成し、この
金属層に金属端子部を接合する工程からなるセラミック
ヒータの製造方法。
4. The method according to claim 1, wherein the surface of the nitride-based ceramic is
A mixture of a fine powder of V, a fine powder of Ni, an organic binder and the like in a weight percentage is applied, and heated to 1000 to 1200 ° C. in a vacuum atmosphere of 1 × 10 −3 torr or less, so that the ceramic surface is coated. A metallized layer containing a compound of V, such as vanadium nitride or vanadium carbide, and a metal layer having a porosity of 5 to 20% containing Ni and / or a compound of Ni as a main component are formed at the same time so as to be in contact therewith. A method for manufacturing a ceramic heater, comprising a step of joining a metal terminal portion to a metal layer.
JP13201098A 1998-05-14 1998-05-14 Joined ceramics and metal body, ceramic heater using same, and its manufacture Pending JPH11329676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13201098A JPH11329676A (en) 1998-05-14 1998-05-14 Joined ceramics and metal body, ceramic heater using same, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13201098A JPH11329676A (en) 1998-05-14 1998-05-14 Joined ceramics and metal body, ceramic heater using same, and its manufacture

Publications (1)

Publication Number Publication Date
JPH11329676A true JPH11329676A (en) 1999-11-30

Family

ID=15071437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13201098A Pending JPH11329676A (en) 1998-05-14 1998-05-14 Joined ceramics and metal body, ceramic heater using same, and its manufacture

Country Status (1)

Country Link
JP (1) JPH11329676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223970A (en) * 2002-01-29 2003-08-08 Kyocera Corp Wafer heating device
US7947933B2 (en) 2003-11-25 2011-05-24 Kyocera Corporation Ceramic heater and method for manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223970A (en) * 2002-01-29 2003-08-08 Kyocera Corp Wafer heating device
US7947933B2 (en) 2003-11-25 2011-05-24 Kyocera Corporation Ceramic heater and method for manufacture thereof

Similar Documents

Publication Publication Date Title
JPH0674190B2 (en) Aluminum nitride sintered body having metallized surface
JPH0829990B2 (en) Bonded body of ceramics and metal
JP3834351B2 (en) Ceramic circuit board
JP3095490B2 (en) Ceramic-metal joint
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JP3495051B2 (en) Ceramic-metal joint
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JPH11329676A (en) Joined ceramics and metal body, ceramic heater using same, and its manufacture
JP2000128655A (en) Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same
JPH05319946A (en) Ceramic substrate joined to metallic plate
WO2014156093A1 (en) Ceramic-metal bonded object and process for producing same
JP3302714B2 (en) Ceramic-metal joint
JP3370060B2 (en) Ceramic-metal joint
JP4131809B2 (en) Metal-ceramic composite material joined body and method for producing the same
JPH0460946B2 (en)
JP2003048785A (en) Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member
JP2003335585A (en) Process for joining ceramics through active metal soldering
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPH08169778A (en) Brazing filler alloy for joining alumina ceramics to aluminum alloy and joined body
JP2000178081A (en) Metal-ceramic jointed substrate
JPH01224279A (en) Bonding of ceramic to metal
JP2616951B2 (en) Aluminum nitride sintered body having metallized surface and method for producing the same
JPH07172944A (en) Adhesive composition, bonded product, and bonding process
JPH044268B2 (en)
KR0180485B1 (en) Method of manufacturing si3n4 sintered body and metal conjugate