JP2003048785A - Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member - Google Patents

Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member

Info

Publication number
JP2003048785A
JP2003048785A JP2001237561A JP2001237561A JP2003048785A JP 2003048785 A JP2003048785 A JP 2003048785A JP 2001237561 A JP2001237561 A JP 2001237561A JP 2001237561 A JP2001237561 A JP 2001237561A JP 2003048785 A JP2003048785 A JP 2003048785A
Authority
JP
Japan
Prior art keywords
metal
layer
glass
ceramic member
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001237561A
Other languages
Japanese (ja)
Inventor
Junko Yoshihara
純子 吉原
Toshihiro Hashimoto
利弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001237561A priority Critical patent/JP2003048785A/en
Publication of JP2003048785A publication Critical patent/JP2003048785A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problems with components of electronic parts and structural parts that the joining areas of metallic members and ceramic members using glass joining materials are made smaller from the downsizing and thickness reduction of these components, the joining strength of joint parts is made insufficient, cracking and peeling are brought about in manufactured steps by the thermal stress in the manufacturing stages and the externals tress during use and the breaking of the hermeticity in the joint parts is resulted. SOLUTION: The ceramic member 2 and the metallic member 3 are joined across a joining layer formed with a metallic layer 6 which consists essentially of a metallic component of <=1,100 deg.C in liquids line temperature and contains at least one kind among titanium, zirconium and hafnium as active metals, an oxidation layer 5 of an active metal and a glass layer 4, successively from the metallic member 3 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属部材とセラミ
ック部材との接合構造に関し、特に電子部品や構造部品
等における金属部材とセラミック部材との接合に好適な
接合構造および金属部材とセラミック部材との接合方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining structure between a metal member and a ceramic member, and particularly to a joining structure suitable for joining the metal member and the ceramic member in electronic parts, structural parts, etc. Regarding the joining method.

【0002】[0002]

【従来の技術】従来、セラミックスは、電気絶縁性や高
温での強度、耐摩耗性等に優れた特性を有することか
ら、その特性を利用した電子部品や構造部品の構成部材
として各種産業分野で多用されてきた。
2. Description of the Related Art Conventionally, ceramics have been excellent in properties such as electric insulation, strength at high temperature, and wear resistance. Therefore, ceramics have been used in various industrial fields as constituent members of electronic parts and structural parts by utilizing such characteristics. It has been used a lot.

【0003】しかしながら、電子部品や構造部品の構成
部材としてのセラミック部材は上述のような優れた特性
を有するものの、セラミックス自体が脆性材料であり、
高硬度であることから、セラミック部材として各種複雑
形状への加工が難しく、製造コストが高くなるという欠
点があった。そこで、このようなセラミック部材に加工
性に優れた金属部材を組合せて複合化することにより、
セラミックスの優れた特性を活かした各種用途に適用す
ることが種々行なわれてきた。
However, although ceramic members as constituent members of electronic parts and structural parts have excellent characteristics as described above, ceramics themselves are brittle materials,
Due to the high hardness, it is difficult to process the ceramic member into various complicated shapes, and the manufacturing cost becomes high. Therefore, by combining such a ceramic member with a metal member having excellent workability to form a composite,
It has been variously applied to various applications utilizing the excellent characteristics of ceramics.

【0004】一般に、セラミック部材と金属部材を組合
せて複合化するには、例えば、焼き嵌め法、圧入法、ろ
う接法、固相拡散接合法、ガラス接合法等の各種方法が
用いられていた。これらの接合方法のうち、とりわけろ
う接法は、接合部の高精度な加工処理が不要であり比較
的高い接合強度が得られることから、広く採用されてい
た。
In general, various methods such as a shrink fitting method, a press fitting method, a brazing method, a solid phase diffusion bonding method, a glass bonding method and the like have been used to combine a ceramic member and a metal member into a composite. . Among these joining methods, the brazing method, in particular, has been widely adopted because it does not require highly precise processing of the joined portion and a relatively high joining strength can be obtained.

【0005】このようなろう接法を金属部材とセラミッ
ク部材との接合に適用すると、比較的容易に所望の接合
強度が得られる。しかし、例えば、接合材として高い接
合強度が得られる銀(Ag)を主体とするろう材を用い
た場合、接合温度が約800℃と高く、気泡を除去して
接合部を緻密に保ち、高い接合強度を維持するとともに
接合部での金属部材の酸化を防止するためには、真空炉
を用いて雰囲気を制御しなければならない。しかも、そ
のような条件下、800℃以上の高温に加熱してろう材
を溶融させて接合しなければならない。その結果、金属
部材とセラミック部材との接合界面には残留応力が発生
し易く、セラミック部材と金属部材との間の熱膨張差に
よる反りや接合部のクラックや剥離により、使用中に接
合強度の低下を招き、金属部材とセラミック部材との接
合部が破壊する恐れがあった。従って、用途が制限され
るとともに製造コストが高くなるという欠点があった。
When such a brazing method is applied to the joining of the metal member and the ceramic member, the desired joining strength can be obtained relatively easily. However, for example, when a brazing material mainly composed of silver (Ag) that can obtain high bonding strength is used as the bonding material, the bonding temperature is as high as about 800 ° C., and bubbles are removed to keep the bonding portion dense, which is high. In order to maintain the bonding strength and prevent the metal member from being oxidized at the bonding portion, a vacuum furnace must be used to control the atmosphere. Moreover, under such conditions, it is necessary to heat the brazing filler metal to a high temperature of 800 ° C. or higher to melt and join the brazing filler metal. As a result, residual stress is likely to occur at the joint interface between the metal member and the ceramic member, and warpage due to the difference in thermal expansion between the ceramic member and the metal member or cracks or peeling of the joint portion may cause a decrease in the joint strength during use. There is a risk that the joint portion between the metal member and the ceramic member may be broken. Therefore, there are drawbacks that the use is limited and the manufacturing cost is high.

【0006】一方、500℃以下の温度条件下で使用さ
れ、特に気密性を必要とする金属部材とセラミック部材
との接合構造の場合、低い接合温度で溶融するガラスを
用いたガラス接合法により比較的容易にセラミック部材
と金属部材とが接合でき、接合部の高い気密性を確保し
た複合部材を得ることができる。
On the other hand, in the case of a joining structure of a metal member and a ceramic member which is used under a temperature condition of 500 ° C. or less and which requires airtightness, a glass joining method using glass which melts at a low joining temperature is used for comparison. It is possible to easily join the ceramic member and the metal member, and to obtain a composite member that secures high airtightness at the joint.

【0007】このガラス接合法は、一般的に以下のよう
にして行なわれていた。まず、例えばアルミナ(Al2
3),ムライト(3Al23・2SiO2),硼珪酸系
ガラス等の酸化物系セラミックス、窒化アルミニウム
(AlN),窒化珪素(Si34)等の非酸化物系セラ
ミックスをセラミック部材とし、鉄−ニッケル−コバル
ト(Fe−Ni−Co)合金,鉄−ニッケル(Fe−N
i)合金を金属部材とする。
This glass bonding method is generally performed as follows. First, for example, alumina (Al 2
O 3), mullite (3Al 2 O 3 · 2SiO 2 ), oxide ceramics such as borosilicate glass, aluminum nitride (AlN), a ceramic member non-oxide ceramics such as silicon nitride (Si 3 N 4) , Iron-nickel-cobalt (Fe-Ni-Co) alloy, iron-nickel (Fe-N)
i) An alloy is used as the metal member.

【0008】また、酸化鉛(PbO)を56〜66重量
%、酸化硼素(B23)を4〜14重量%、酸化珪素
(SiO2)を1〜6重量%、酸化亜鉛(ZnO)を
0.5〜3重量%、酸化ビスマス(Bi23)を0.5
〜5重量%含有するガラス成分に、コージェライト系化
合物を10〜20重量%添加した酸化鉛系のガラスを接
合材とする。
Further, lead oxide (PbO) is 56 to 66% by weight, boron oxide (B 2 O 3 ) is 4 to 14% by weight, silicon oxide (SiO 2 ) is 1 to 6% by weight, zinc oxide (ZnO). 0.5 to 3 wt% and bismuth oxide (Bi 2 O 3 ) 0.5.
A lead oxide glass obtained by adding 10 to 20 wt% of a cordierite compound to a glass component containing 5 wt% is used as a bonding material.

【0009】そして、金属部材をバッチ炉やマッフル炉
にて酸化雰囲気中、500〜600℃の温度で5〜15
分間酸化処理し、金属部材表面に鉄−ニッケル−コバル
ト系酸化物(FeO−NiO−CoO)又は鉄−ニッケ
ル系酸化物(FeO−NiO)の酸化層を最大5μm程
度の厚さまで形成する。この酸化層は接合材への拡散に
より金属部材と接合材のガラスとの接合性を高めるよう
に作用する。
Then, the metal member is heated in a batch furnace or a muffle furnace in an oxidizing atmosphere at a temperature of 500 to 600 ° C. for 5 to 15
Then, an oxidation treatment is performed for a minute to form an iron-nickel-cobalt-based oxide (FeO-NiO-CoO) or iron-nickel-based oxide (FeO-NiO) oxide layer on the surface of the metal member to a maximum thickness of about 5 μm. This oxide layer acts to enhance the bondability between the metal member and the glass of the bonding material by diffusing into the bonding material.

【0010】その後、金属部材表面の酸化層上に接合材
を塗布して加熱溶融し、接合材を介してセラミック部材
と直接接合する。または、熱的特性の相違を緩和するた
めに、金属部材表面の酸化層と酸化鉛系ガラスの接合材
との間に、例えば、SiO2,B23,酸化ナトリウム
(Na2O),Al23,酸化カリウム(K2O),酸化
リチウム(Li2O),酸化バリウム(BaO)等を含
有する硼珪酸系ガラスを介して、加熱溶融して金属部材
とセラミック部材との接合を行なっていた。
After that, a bonding material is applied onto the oxide layer on the surface of the metal member, heated and melted, and directly bonded to the ceramic member through the bonding material. Alternatively, in order to alleviate the difference in thermal characteristics, for example, SiO 2 , B 2 O 3 , sodium oxide (Na 2 O), or the like is formed between the oxide layer on the surface of the metal member and the bonding material of the lead oxide glass. Bonding of a metal member and a ceramic member by heating and melting through a borosilicate glass containing Al 2 O 3 , potassium oxide (K 2 O), lithium oxide (Li 2 O), barium oxide (BaO), etc. Was being done.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、昨今、
各種産業分野で用いられる電子部品や構造部品は、より
一層の小型軽量化が要求されている。それに伴って電子
部品や構造部品の構成部材も小型化、薄型化が一段と進
み、そのため金属部材とセラミック部材との接合部にお
ける接合面積を十分に確保することが困難となってきて
いる。
[Problems to be Solved by the Invention] However, recently,
Electronic parts and structural parts used in various industrial fields are required to be further reduced in size and weight. Along with this, the constituent members of electronic parts and structural parts are further miniaturized and made thinner, which makes it difficult to secure a sufficient bonding area at the bonding portion between the metal member and the ceramic member.

【0012】その結果、図3に示すように、セラミック
部材12と金属部材13の酸化層14との間に酸化鉛系
のガラス接合材15を介したり、図4に示すように、金
属部材13の酸化層14と酸化鉛系のガラス接合材15
との間に硼珪酸系ガラス16を介してセラミック部材1
2と金属部材13とを接合した接合構造11では、構成
部材の小型化、薄型化に伴って接合面積が小さくなるこ
とから、セラミック部材12と金属部材13の接合部に
加わる応力に対して接合部での単位面積当りのせん断強
度が0.2N/mm2程度であるため、破断強度が小さ
くなる。
As a result, as shown in FIG. 3, a lead oxide-based glass bonding material 15 is interposed between the ceramic member 12 and the oxide layer 14 of the metal member 13, or as shown in FIG. Oxide layer 14 and lead oxide-based glass bonding material 15
Ceramic member 1 with borosilicate glass 16 interposed between
In the joining structure 11 in which 2 and the metal member 13 are joined, the joining area becomes smaller as the constituent members are made smaller and thinner, so that joining is performed against the stress applied to the joining portion between the ceramic member 12 and the metal member 13. Since the shear strength per unit area in a part is about 0.2 N / mm 2 , the breaking strength is small.

【0013】そのため、セラミック部材12と金属部材
13の接合の後工程でのシーム溶接等にともなう熱応力
や、使用時に接合部に加わる外部応力等により、接合部
にクラックや剥離を生じて接合部の気密が破れるという
問題点があった。
Therefore, due to thermal stress caused by seam welding or the like in the subsequent step of joining the ceramic member 12 and the metal member 13 or external stress applied to the joint portion during use, cracks or peeling occur at the joint portion, and the joint portion There was a problem of breaking the airtightness of.

【0014】従って、本発明は上記問題点に鑑みて完成
されたもので、その目的は、小型化および薄型化された
セラミック部材と金属部材の接合部に製造工程における
熱応力や使用時に外部応力が加わっても、接合部のクラ
ックや剥離等の発生を防止でき、接合部の気密性を長期
にわたり保持することができる信頼性の高い金属部材と
セラミック部材との接合構造およびその接合方法を提供
することにある。
Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to provide a thermal stress in a manufacturing process and an external stress at the time of use in a joint portion between a ceramic member and a metal member which are miniaturized and thinned. Even if added, a highly reliable joining structure between a metal member and a ceramic member and a joining method capable of preventing the occurrence of cracks or peeling of the joining portion and maintaining the airtightness of the joining portion for a long time are provided. To do.

【0015】[0015]

【課題を解決するための手段】本発明の金属部材とセラ
ミック部材との接合構造は、金属部材とセラミック部材
とが、前記金属部材側から液相線温度が1100℃以下
の金属成分を主成分とし、チタン,ジルコニウムおよび
ハフニウムのうちの少なくとも一種を活性金属として含
有した金属層、前記活性金属の酸化層、ガラス層が形成
されて成る接合層を介して接合されていることを特徴と
する。
In the joining structure of a metal member and a ceramic member according to the present invention, the metal member and the ceramic member are mainly composed of a metal component having a liquidus temperature of 1100 ° C. or less from the metal member side. And is bonded through a bonding layer formed by forming a metal layer containing at least one of titanium, zirconium and hafnium as an active metal, an oxide layer of the active metal, and a glass layer.

【0016】本発明は、上記の構成により、セラミック
部材側にガラス層が被着形成されていることから、セラ
ミック部材に含有されるSiO2やマグネシア(Mg
O)等のガラス成分がガラス層に拡散することにより、
セラミック部材とガラス層とが強固に接合される。一
方、金属部材側にはTi,ZrおよびHfのうちの少な
くとも一種を活性金属として含有する金属層が被着形成
されていることから、活性金属が金属部材の金属粒界に
拡散して金属部材と金属層とは強固に接合される。
According to the present invention, since the glass layer is adhered and formed on the ceramic member side by the above-mentioned constitution, SiO 2 or magnesia (Mg) contained in the ceramic member is included.
O) and other glass components diffuse into the glass layer,
The ceramic member and the glass layer are firmly bonded. On the other hand, since a metal layer containing at least one of Ti, Zr and Hf as an active metal is deposited on the metal member side, the active metal diffuses into the metal grain boundaries of the metal member and And the metal layer are firmly bonded.

【0017】また、金属層の表面には活性金属の酸化層
が形成されていることから、この酸化層がセラミック部
材の接合面に被着されたガラス層の酸化物成分と反応し
て緻密な活性金属の酸化層を生成するため、金属層とガ
ラス層とが強固に接合されることになる。
Further, since the active metal oxide layer is formed on the surface of the metal layer, this oxide layer reacts with the oxide component of the glass layer deposited on the bonding surface of the ceramic member to form a dense layer. Since the oxide layer of the active metal is generated, the metal layer and the glass layer are firmly bonded.

【0018】以上の結果、セラミック部材と金属部材と
は、金属部材側から液相線温度が1100℃以下の金属
成分を主成分とし、活性金属としてチタン,ジルコニウ
ムおよびハフニウムのうちの少なくとも一種を含有した
金属層、活性金属の酸化層、およびガラス層が形成され
て成る接合層を介して接合されていることにより、強固
に接合されることになる。
As a result of the above, the ceramic member and the metal member are mainly composed of a metal component having a liquidus temperature of 1100 ° C. or less from the metal member side, and contain at least one of titanium, zirconium and hafnium as an active metal. The metal layer, the oxide layer of the active metal, and the glass layer are bonded to each other through the bonding layer, so that strong bonding is achieved.

【0019】本発明の金属部材とセラミック部材との接
合方法は、金属部材の接合面に、液相線温度が1100
℃以下の金属成分を主成分とし、チタン,ジルコニウム
およびハフニウムのうちの少なくとも一種を活性金属と
して含有した金属ペーストを塗布し、還元雰囲気中で加
熱して表面に前記活性金属の水素化物層が形成された金
属層を形成する工程と、前記水素化物層の表面にガラス
ペーストを塗布し、酸化雰囲気中で加熱して前記水素化
物層を前記活性金属の酸化層とするとともに該酸化層の
表面にガラス層を形成する工程と、前記ガラス層をセラ
ミック部材の接合面に当接させ、加熱して前記金属部材
と前記セラミック部材とを前記金属層、前記酸化層およ
び前記ガラス層を介して接合する工程とから成ることを
特徴とする。
According to the method for joining a metal member and a ceramic member of the present invention, the liquidus temperature is 1100 at the joining surface of the metal member.
A metal paste containing a metal component below ℃ as a main component and containing at least one of titanium, zirconium and hafnium as an active metal is applied and heated in a reducing atmosphere to form a hydride layer of the active metal on the surface. A step of forming a metal layer formed by applying a glass paste to the surface of the hydride layer and heating the hydride layer in an oxidizing atmosphere to form the hydride layer as an oxide layer of the active metal and on the surface of the oxide layer. A step of forming a glass layer, and bringing the glass layer into contact with a bonding surface of a ceramic member and heating the glass member to bond the metal member and the ceramic member through the metal layer, the oxide layer and the glass layer. And a process.

【0020】本発明は、上記の構成により、緻密な活性
金属の酸化層が金属層とガラス層との界面に形成される
ため、セラミック部材をガラス層と酸化層および金属層
を介して金属部材に強固に接合することができるととも
に、良好な気密性を得ることができる。
According to the present invention, since the dense oxide layer of the active metal is formed at the interface between the metal layer and the glass layer by the above-mentioned structure, the ceramic member is formed through the glass layer, the oxide layer and the metal layer. It is possible to firmly bond to, and good airtightness can be obtained.

【0021】[0021]

【発明の実施の形態】本発明の金属部材とセラミック部
材との接合構造を以下に詳細に説明する。図1は本発明
の接合構造について実施の形態の一例を示す断面図であ
る。同図において、1はセラミック部材2と金属部材3
との接合構造であり、セラミック部材2と金属部材3と
が、金属部材3側から液相線温度が1100℃以下の金
属成分を主成分とし、チタン,ジルコニウムおよびハフ
ニウムのうちの少なくとも一種を活性金属として含有し
た金属層6、活性金属の酸化層5、ガラス層4が形成さ
れて成る接合層を介して接合されている接合構造であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The joining structure of a metal member and a ceramic member of the present invention will be described in detail below. FIG. 1 is a sectional view showing an example of an embodiment of a joint structure of the present invention. In the figure, 1 is a ceramic member 2 and a metal member 3.
And the ceramic member 2 and the metal member 3 are mainly composed of a metal component having a liquidus temperature of 1100 ° C. or less from the metal member 3 side and activate at least one of titanium, zirconium and hafnium. This is a bonding structure in which a metal layer 6 contained as a metal, an active metal oxide layer 5, and a glass layer 4 are bonded together via a bonding layer.

【0022】本発明における活性金属の酸化層5は、活
性金属を含有する金属層6を還元雰囲気の熱処理炉で加
熱することにより生成した活性金属の水素化物層を、酸
化雰囲気中で加熱して酸化することで形成され、またそ
の表面にガラス材料を焼き付けてガラス層4を被着する
ことにより緻密に形成される。
The active metal oxide layer 5 in the present invention is obtained by heating an active metal hydride layer produced by heating the active metal-containing metal layer 6 in a heat treatment furnace in a reducing atmosphere in an oxidizing atmosphere. It is formed by oxidation, and is densely formed by baking a glass material on the surface and depositing the glass layer 4.

【0023】即ち、活性金属を含有するろう材を真空中
で熱処理した場合、活性金属の水素化物層が形成されな
いことから、ガラス材料を焼き付けても緻密な活性金属
の酸化層5は得られない。また、酸化雰囲気中で直接熱
処理して活性金属の酸化層5を形成しても厚く脆い酸化
物層が金属層6の表面に形成されてしまい、気密性が保
たれず、接合強度も低いものとなり実用的でない。
That is, when a brazing material containing an active metal is heat-treated in a vacuum, a hydride layer of the active metal is not formed. Therefore, even if a glass material is baked, a dense oxide layer 5 of the active metal cannot be obtained. . In addition, even if the active metal oxide layer 5 is formed by directly performing heat treatment in an oxidizing atmosphere, a thick and brittle oxide layer is formed on the surface of the metal layer 6, airtightness is not maintained, and bonding strength is low. Is not practical.

【0024】この活性金属の酸化層5は、先ず、還元雰
囲気中で活性金属を含有する金属層6を熱処理する際、
雰囲気中の水素と活性金属が金属層6の表面で優先的に
反応して活性金属の水素化物層が生成される。次に、こ
の水素化物層が、ガラス層4の焼き付けの際の酸化雰囲
気中での熱処理により、酸素と反応して活性金属の酸化
層5となる。
This active metal oxide layer 5 is formed by first heat treating the metal layer 6 containing the active metal in a reducing atmosphere.
Hydrogen in the atmosphere and the active metal preferentially react on the surface of the metal layer 6 to form a hydride layer of the active metal. Next, this hydride layer reacts with oxygen to become the oxide layer 5 of the active metal by heat treatment in an oxidizing atmosphere when the glass layer 4 is baked.

【0025】従って、この酸化層5は、例えば波長分散
型X線分析法(EPMA:ElectronProbe Microanalysi
s)により断面分析を行ない、活性金属と酸素のみが検
出される層を活性金属の酸化層5と特定することができ
る。
Therefore, the oxide layer 5 is formed, for example, by a wavelength dispersive X-ray analysis method (EPMA: ElectronProbe Microanalysi).
A cross-sectional analysis is performed by s), and the layer in which only the active metal and oxygen are detected can be specified as the active metal oxide layer 5.

【0026】この酸化層5の膜厚は、酸化層5とガラス
層4との界面における活性金属の酸化物とガラス層4中
の酸化物との反応を十分なものとし、その接合強度を安
定し得るという点から、1μm以上が良い。また、酸化
層5を緻密で強固なものとし、接合強度の低下を防止す
るという点から3μm以下が良い。従って、特にガラス
層4との接合を強固なものとし、緻密な活性金属の酸化
層5を得るという点から、活性金属を含有する金属層6
の表面に形成される活性金属の酸化層5の膜厚は1〜3
μmが好ましい。
The thickness of the oxide layer 5 is such that the reaction between the oxide of the active metal and the oxide in the glass layer 4 at the interface between the oxide layer 5 and the glass layer 4 is sufficient to stabilize the bonding strength. From the standpoint that it is possible, 1 μm or more is preferable. Further, the thickness of 3 μm or less is preferable from the viewpoint of making the oxide layer 5 dense and strong and preventing a decrease in bonding strength. Therefore, in particular, the metal layer 6 containing the active metal is strengthened from the viewpoint of strengthening the bonding with the glass layer 4 and obtaining the dense oxide layer 5 of the active metal.
The thickness of the active metal oxide layer 5 formed on the surface of the
μm is preferred.

【0027】なお、酸化層5の膜厚は、金属層6の厚
さ、還元雰囲気下での熱処理温度と保持時間、ガラス層
4の焼き付け温度条件により、制御可能である。
The thickness of the oxide layer 5 can be controlled by the thickness of the metal layer 6, the heat treatment temperature and holding time in a reducing atmosphere, and the baking temperature condition of the glass layer 4.

【0028】本発明では、酸化層5は、セラミック部材
2表面に被着されたガラス層4の酸化物成分と反応して
TiO2,ZrO2,HfO2等の各種活性金属の緻密な
酸化物を生成することにより、金属層6とガラス層4が
強固に接合するように機能する。従って、酸化層5中の
活性金属は、そのほとんどすべてがTiO2,ZrO2
HfO2等の酸化物となる。そして、酸化層5中の活性
金属は、各種熱処理温度が低く熱処理時間も極めて短時
間であることから、活性金属が単独で添加されている場
合にはそれぞれTiO2,ZrO2,HfO2の形態で、
2種以上添加されている場合でも互いに固溶することな
く、酸化物の界面でそれぞれの表層が拡散接合された状
態で存在する。
In the present invention, the oxide layer 5 reacts with the oxide component of the glass layer 4 deposited on the surface of the ceramic member 2 to form a dense oxide of various active metals such as TiO 2 , ZrO 2 and HfO 2 . By generating, the metal layer 6 and the glass layer 4 function so as to be firmly bonded to each other. Therefore, almost all the active metals in the oxide layer 5 are TiO 2 , ZrO 2 ,
It becomes an oxide such as HfO 2 . The active metal in the oxide layer 5 has various heat treatment temperatures and extremely short heat treatment time. Therefore, when the active metal is added alone, the form of TiO 2 , ZrO 2 , and HfO 2 is changed. so,
Even when two or more kinds are added, they do not form a solid solution with each other, and each surface layer exists in a state of being diffusion-bonded at the interface of oxides.

【0029】また、表面に酸化層5を有する金属層6に
は、活性金属はその濃度が低くなった金属状態で分散し
て存在する。
Further, in the metal layer 6 having the oxide layer 5 on the surface, the active metal is dispersed and present in a metal state in which the concentration thereof is low.

【0030】しかしながら、活性金属の拡散または偏析
は、金属層6を還元雰囲気中で熱処理した際、金属層6
の表面で還元雰囲気中の水素と活性金属が優先的に反応
して活性金属の水素化物層が生成される。そのため、表
面直下に金属層6の内部から活性金属の拡散が起こるこ
とから、活性金属の濃度は表面側が高く、金属部材側に
向かって低くなる傾向を示す。しかも、活性金属は局所
的な偏析により金属層6内で不均一な部分を生じる場合
がある。従って、本発明において、酸化層5および金属
層6に含まれる活性金属の含有量は、酸化層5と金属層
6の全体にわたる活性金属成分の平均濃度とするもので
ある。
However, the diffusion or segregation of the active metal is caused when the metal layer 6 is heat-treated in a reducing atmosphere.
Hydrogen in the reducing atmosphere and the active metal preferentially react with each other on the surface of to form a hydride layer of the active metal. Therefore, since the active metal diffuses from the inside of the metal layer 6 just below the surface, the concentration of the active metal tends to be high on the surface side and decrease toward the metal member side. Moreover, the active metal may cause a non-uniform portion in the metal layer 6 due to local segregation. Therefore, in the present invention, the content of the active metal contained in the oxide layer 5 and the metal layer 6 is the average concentration of the active metal component throughout the oxide layer 5 and the metal layer 6.

【0031】そこで、このような活性金属の酸化層5と
活性金属を含有した金属層6での活性金属の平均濃度が
2重量%以上であれば、活性金属の酸化層5が十分な厚
さで容易に形成され、ガラス層4との接合強度が安定す
ることから好ましい。また、その平均濃度が4重量%以
下であると、緻密で強固な活性金属の酸化層5を得易
く、接合部の接合強度の低下が効果的に防止できる点で
好ましい。
Therefore, when the average concentration of the active metal in the active metal oxide layer 5 and the active metal-containing metal layer 6 is 2% by weight or more, the active metal oxide layer 5 has a sufficient thickness. It is preferable because it can be easily formed and the bonding strength with the glass layer 4 is stable. Further, if the average concentration is 4% by weight or less, it is easy to obtain a dense and strong oxide layer 5 of the active metal, and it is possible to effectively prevent a decrease in the bonding strength of the bonded portion.

【0032】従って、本発明における酸化層5と金属層
6における活性金属の含有量は、特にガラス層4と強固
に密着した緻密な酸化層を形成する点で、平均濃度とし
て2〜4重量%であることが好ましい。
Therefore, the content of the active metal in the oxide layer 5 and the metal layer 6 in the present invention is 2 to 4% by weight as an average concentration, particularly in the point of forming a dense oxide layer firmly adhered to the glass layer 4. Is preferred.

【0033】なお、酸化層5および金属層6の組成は、
例えば、波長分散型X線分析法(EPMA)、X線分析
法(XMA:X-ray Microanalysis)、エネルギー分散
型X線分析法(EDX:Energy Dispersive X-ray Micro
analysis)、波長分散型分光分析法(WDS:Wave Leng
th Dispersive Spectroscopy)、オージェ電子分光法
(AES:Auger Electron Spectroscopy)等の公知の
各種分析方法で分析可能である。
The composition of the oxide layer 5 and the metal layer 6 is
For example, a wavelength dispersive X-ray analysis method (EPMA), an X-ray analysis method (XMA: X-ray Microanalysis), an energy dispersive X-ray analysis method (EDX: Energy Dispersive X-ray Micro).
analysis), wavelength dispersive spectroscopy (WDS: Wave Leng)
th Dispersive Spectroscopy) and Auger Electron Spectroscopy (AES).

【0034】また、金属層6には、例えば金属部材3の
Ni,Fe成分が拡散して金属部材3と金属層6とが強
固に接合されるようになる。
Further, for example, Ni and Fe components of the metal member 3 are diffused into the metal layer 6 so that the metal member 3 and the metal layer 6 are firmly bonded.

【0035】本発明の金属層6は、その主成分としての
液相線温度が1100℃以下の金属成分は、一般にろう
材として使用される、銀(Ag)−銅(Cu)を主成分
とするAg−Cu合金ろう材、リン(P)−Cu合金ろ
う材、金(Au)−Cu合金ろう材、パラジウム(P
d)ろう材等であり、それにガラス層4の成分と反応活
性を示す金属、即ちTi,Zr,Hfのうちの少なくと
も一種を活性金属として含有させたものである。また、
金属層6とガラス層4との接合強度および緻密性の点か
らは、金属成分はAg−Cu合金ろう材がより好まし
い。更に、金属成分には、活性金属以外に熱膨張率の調
整および金属ペーストの流れ性の改善の点から、Moを
フィラーとして添加しても良い。
In the metal layer 6 of the present invention, the metal component having a liquidus temperature of 1100 ° C. or less as a main component contains silver (Ag) -copper (Cu), which is generally used as a brazing material, as a main component. Ag-Cu alloy brazing material, phosphorus (P) -Cu alloy brazing material, gold (Au) -Cu alloy brazing material, palladium (P
d) A brazing material or the like, in which a metal having a reaction activity with the components of the glass layer 4, that is, at least one of Ti, Zr, and Hf is contained as an active metal. Also,
From the viewpoint of the bonding strength between the metal layer 6 and the glass layer 4 and the denseness, the metal component is more preferably an Ag—Cu alloy brazing material. Further, in addition to the active metal, Mo may be added to the metal component as a filler from the viewpoint of adjusting the coefficient of thermal expansion and improving the flowability of the metal paste.

【0036】また、金属層6を形成するための金属ペー
ストは、Ag−Cu合金ろう材等の金属粉末、活性金属
の粉末、アクリル樹脂等の有機バインダー、可塑材、ト
ルエン,アセトン等の溶剤等を含有して成るものであ
る。
The metal paste for forming the metal layer 6 is a metal powder such as an Ag—Cu alloy brazing material, an active metal powder, an organic binder such as an acrylic resin, a plastic material, a solvent such as toluene or acetone, and the like. It contains.

【0037】このような金属層6が適用できる金属部材
3としては、Fe−Ni−Co系合金、42アロイに代
表されるFe−Ni系合金が、セラミック部材2とガラ
ス層4との熱膨張係数の整合の点から好ましい。
As the metal member 3 to which such a metal layer 6 can be applied, a Fe—Ni—Co alloy or a Fe—Ni alloy typified by 42 alloy is a thermal expansion of the ceramic member 2 and the glass layer 4. It is preferable in terms of matching of coefficients.

【0038】また、本発明のガラス層4を構成するガラ
スとしては、銀−リン酸系、酸化鉛系、スズ−リン酸系
等の軟質ガラスや硼珪酸系の硬質ガラスが挙げられる。
とりわけ、地球環境の保全の観点およびガラスの接合温
度を低くすることができる点から、鉛を含有しないスズ
−リン酸系ガラスがより好ましい。
Examples of the glass constituting the glass layer 4 of the present invention include soft glass such as silver-phosphoric acid type, lead oxide type, tin-phosphoric acid type, and borosilicate type hard glass.
Above all, from the viewpoint of the preservation of the global environment and the fact that the bonding temperature of the glass can be lowered, the tin-phosphate glass not containing lead is more preferable.

【0039】このスズ−リン酸系ガラスとしては、五酸
化リンを35〜55重量%、一酸化スズを20〜40重
量%、酸化亜鉛を10〜20重量%、酸化アルミニウム
を2〜4重量%および酸化珪素を1〜3重量%の範囲で
含有するガラス成分に、フィラーとしてコージェライト
系化合物を、ガラス成分を100重量部としたときに1
6〜45重量部添加したものが好ましい。このコージェ
ライト系化合物は、ガラス層4のガラス材料の熱膨張率
の調整およびガラス自体の強度の向上という効果を奏す
る。コージェライト系化合物の添加量が16重量部未満
であると、ガラス自体の強度が低下し、接合構造1の接
合強度が低下する傾向がある。一方、添加量が45重量
部を超えると、ガラスの流動性が低下するとともに、ガ
ラス材料の熱膨張係数が小さくなり、セラミック部材2
および金属部材3との熱膨張係数が大きく相違して接合
強度が低下する傾向がある。
As the tin-phosphate glass, 35 to 55% by weight of phosphorus pentoxide, 20 to 40% by weight of tin monoxide, 10 to 20% by weight of zinc oxide, and 2 to 4% by weight of aluminum oxide are used. And a glass component containing silicon oxide in a range of 1 to 3% by weight, a cordierite compound as a filler, and 1 when the glass component is 100 parts by weight.
It is preferable to add 6 to 45 parts by weight. This cordierite compound has the effects of adjusting the coefficient of thermal expansion of the glass material of the glass layer 4 and improving the strength of the glass itself. If the addition amount of the cordierite compound is less than 16 parts by weight, the strength of the glass itself tends to decrease, and the bonding strength of the bonded structure 1 tends to decrease. On the other hand, when the addition amount exceeds 45 parts by weight, the fluidity of the glass decreases and the thermal expansion coefficient of the glass material decreases, so that the ceramic member 2
Also, the thermal expansion coefficient of the metal member 3 is greatly different from that of the metal member 3, and the bonding strength tends to be lowered.

【0040】また、ガラス層4は、接合に十分なガラス
量を確保して接合強度のバラツキを少なくする点では5
0μm以上の厚さで形成することが好ましい。他方、接
合時に接合部からのガラスのはみ出しを抑えるように流
れ性を制御する点からは、その厚さは200μmを超え
ないことが好ましい。従って、接合に過不足なくガラス
量を確保して安定した接合強度が得られることと、接合
部からのガラスのはみ出しを抑えるように流れ性を制御
することを考慮して、ガラス層4の厚さは50〜200
μm程度が好ましい。
Further, the glass layer 4 is 5 in terms of ensuring a sufficient glass amount for bonding and reducing variations in bonding strength.
The thickness is preferably 0 μm or more. On the other hand, from the viewpoint of controlling the flowability so as to suppress the protrusion of the glass from the bonded portion at the time of bonding, it is preferable that the thickness thereof does not exceed 200 μm. Therefore, the thickness of the glass layer 4 is taken into consideration in consideration of ensuring that the amount of glass is just enough for bonding and stable bonding strength is obtained, and that the flowability is controlled so as to prevent the glass from protruding from the bonding portion. Saha is 50-200
About μm is preferable.

【0041】また、ガラス層4は、その酸化物成分が金
属層6の表面に形成される活性金属の酸化層5と反応し
て緻密な活性金属の酸化層5を形成する。そのため、セ
ラミック部材2と金属部材3の界面での気密性を確保す
るとともに、活性金属を含有する金属層6との接合を強
固にするよう作用する。
The glass layer 4 reacts with the oxide layer 5 of the active metal formed on the surface of the metal layer 6 to form a dense oxide layer 5 of the active metal. Therefore, the airtightness at the interface between the ceramic member 2 and the metal member 3 is ensured, and the bonding with the metal layer 6 containing the active metal is strengthened.

【0042】このガラス層4は、例えば、ガラス材料粉
末に所定の有機バインダーを加えてペースト状に調製し
たものを、金属部材3に被着した金属層6の活性金属の
水素化物層上に、スクリーン印刷法やカレンダーロール
法等により塗布する。その後、酸化雰囲気下で約500
℃の温度で10分間加熱処理することにより形成され
る。その際、金属層6表面に形成された活性金属の水素
化物層は、酸化されて緻密で強固な活性金属の酸化層5
となる。
The glass layer 4 is prepared, for example, by adding a predetermined organic binder to glass material powder to prepare a paste, and depositing it on the hydride layer of the active metal of the metal layer 6 deposited on the metal member 3. Apply by screen printing or calendar roll method. After that, about 500 in an oxidizing atmosphere
It is formed by heat treatment at a temperature of ° C for 10 minutes. At this time, the active metal hydride layer formed on the surface of the metal layer 6 is oxidized to form a dense and strong active metal oxide layer 5.
Becomes

【0043】本発明のセラミック部材2は、アルミナ,
ムライト,各種ガラス等の酸化物系、あるいは窒化珪素
や窒化アルミニウム等の非酸化物系が挙げられる。なか
でもアルミナセラミックスがよく、各種金属部材3との
接合構造1が気密性と接合強度の信頼性においてより好
ましいものとなる。また、セラミック部材2は、セラミ
ック部材2自体の強度を損なうことなくガラス層4と強
固に接合させるためには、前処理としてその表面粗さを
平均表面粗さRaで0.2〜1μmとすることがより好
ましい。
The ceramic member 2 of the present invention is made of alumina,
Examples include oxides such as mullite and various glasses, and non-oxides such as silicon nitride and aluminum nitride. Of these, alumina ceramics is preferable, and the joint structure 1 with various metal members 3 becomes more preferable in terms of airtightness and joint strength reliability. Further, in order to firmly bond the ceramic member 2 to the glass layer 4 without impairing the strength of the ceramic member 2 itself, the surface roughness thereof is set to 0.2 to 1 μm in terms of average surface roughness Ra as a pretreatment. Is more preferable.

【0044】本発明の金属部材3は、炭素鋼をはじめそ
の合金鋼,ステンレス鋼,Fe−Ni−Co系合金,F
e−Ni系合金等の鉄を主成分とする低熱膨張係数合金
や耐熱合金、Niを主成分とする耐熱合金、W,Moお
よびそれらの合金、超硬合金、サーメット等の各種金属
材料で構成することができる。
The metal member 3 of the present invention includes carbon steel, its alloy steel, stainless steel, Fe-Ni-Co alloy, F alloy.
e-Ni alloys and other low-thermal-expansion-coefficient alloys and heat-resistant alloys containing iron as a main component, heat-resistant alloys containing Ni as a main component, W, Mo and their alloys, cemented carbide, and various metal materials such as cermets. can do.

【0045】更に、金属部材3に熱膨張係数の異なる金
属部材や塑性変形の大きな金属部材を接合して複合化す
ることも可能である。そうすることにより、接合部に加
わる熱応力や塑性変形量を緩和してより強度に優れ、気
密性を保持した信頼性の高いセラミック部材2と金属部
材3との接合構造1が得られる。
Furthermore, it is also possible to join a metal member having a different thermal expansion coefficient or a metal member having a large plastic deformation to the metal member 3 to form a composite. By doing so, the bonded structure 1 of the ceramic member 2 and the metal member 3 which is excellent in strength and relaxes the thermal stress and the plastic deformation amount applied to the bonded portion and maintains the airtightness is obtained.

【0046】本発明の接合構造1における接合面の面積
は、小さい場合であっても十分な接合強度が得られる。
具体的には、接合面の面積は9〜52mm2が好適であ
り、9mm2では、接合部の強度および気密性が低下し
易く、52mm2を超えると、接合部が大きくなり小型
化および薄型化がなされず実用性が低下する。
Even if the bonding surface area of the bonding structure 1 of the present invention is small, sufficient bonding strength can be obtained.
Specifically, the area of the bonding surface is preferably 9~52Mm 2, the 9 mm 2, liable strength and airtightness of the joint portion is lowered, when it exceeds 52 mm 2, smaller and thinner junction increases Is not realized and the practicality is reduced.

【0047】次に、本発明のセラミック部材2と金属部
材3との接合方法について実施の形態の一例を、図2
(a)〜(d)に基き下記工程[1]〜[5]により詳
細に説明する。
Next, an example of an embodiment of a method for joining the ceramic member 2 and the metal member 3 of the present invention will be described with reference to FIG.
It will be described in detail by the following steps [1] to [5] based on (a) to (d).

【0048】[1]先ず、金属部材3のセラミック部材
2との接合面に、Ti,Zr,Hfのうちの少なくとも
一種からなる活性金属および主成分として液相線温度が
1100℃以下の金属成分を含有する金属ペースト7
を、スクリーン印刷法やカレンダーロール法等により約
70μmの厚さに印刷塗布する(a)。
[1] First, on the joint surface of the metal member 3 with the ceramic member 2, an active metal composed of at least one of Ti, Zr and Hf and a metal component having a liquidus temperature of 1100 ° C. or less as a main component. Containing metal paste 7
Is applied by screen printing or calendar roll method to a thickness of about 70 μm (a).

【0049】[2]次いで、印刷塗布した金属ペースト
7を乾燥した後、熱処理炉にて還元雰囲気中で約800
℃の温度で60分間加熱し、厚さが約55μmの金属層
6を被着形成した。それと同時に金属層6の表面に、厚
さが約3μmの活性金属の水素化物層8を形成する
(b)。
[2] Next, after the printed and coated metal paste 7 is dried, it is heated to about 800 in a reducing atmosphere in a heat treatment furnace.
It was heated at a temperature of 60 ° C. for 60 minutes to deposit and form a metal layer 6 having a thickness of about 55 μm. At the same time, an active metal hydride layer 8 having a thickness of about 3 μm is formed on the surface of the metal layer 6 (b).

【0050】この表面層8の厚さは、最初に印刷塗布す
る金属ペースト7の厚さと、熱処理炉での熱処理条件に
より制御可能である。
The thickness of the surface layer 8 can be controlled by the thickness of the metal paste 7 which is first applied by printing and the heat treatment conditions in the heat treatment furnace.

【0051】[3]その後、金属部材3表面に被着した
金属層6の表面層8に、スズ−リン酸系ガラス粉末を有
機樹脂から成るバインダーに混合し調製したガラスペー
ストを、金属ペースト7と同様にスクリーン印刷法やカ
レンダーロール法等により印刷塗布する。
[3] After that, on the surface layer 8 of the metal layer 6 deposited on the surface of the metal member 3, a glass paste prepared by mixing tin-phosphate glass powder with a binder made of an organic resin was used. In the same manner as described above, printing is applied by a screen printing method or a calendar roll method.

【0052】スズ−リン酸系ガラスとしては、例えば、
五酸化リンを35〜55重量%、一酸化スズを20〜4
0重量%、酸化亜鉛を10〜20重量%、酸化アルミニ
ウムを2〜4重量%および酸化珪素を1〜3重量%の範
囲で含有するガラス成分に、フィラーとしてコージェラ
イト系化合物を16〜45重量部添加したものが好適で
ある。
Examples of the tin-phosphate type glass include:
35 to 55% by weight of phosphorus pentoxide and 20 to 4 of tin monoxide
Glass composition containing 0% by weight, 10 to 20% by weight of zinc oxide, 2 to 4% by weight of aluminum oxide and 1 to 3% by weight of silicon oxide, and 16 to 45% by weight of a cordierite compound as a filler. Partly added is preferable.

【0053】[4]次に、印刷塗布したガラス材料を乾
燥した後、酸化雰囲気中、約500℃の温度で10分間
加熱して、ガラスペーストを焼き付けてガラス層4を形
成する。これにより、活性金属の水素化物層8は強固で
緻密な活性金属の酸化層5となる(c)。
[4] Next, the glass material applied by printing is dried and then heated at a temperature of about 500 ° C. for 10 minutes in an oxidizing atmosphere to bake the glass paste to form the glass layer 4. As a result, the active metal hydride layer 8 becomes a strong and dense active metal oxide layer 5 (c).

【0054】[5]その後、金属層6と酸化層5とガラ
ス層4を形成した金属部材3のガラス層4に、セラミッ
ク部材2を当接させ、約500℃の温度で10分間加熱
してセラミック部材2と金属部材3を接合する。これに
より、接合部が緻密で気密性に富んだ接合強度の高い金
属部材3とセラミック部材2との接合構造1を得ること
ができる(d)。
[5] Thereafter, the ceramic member 2 is brought into contact with the glass layer 4 of the metal member 3 on which the metal layer 6, the oxide layer 5 and the glass layer 4 are formed, and heated at a temperature of about 500 ° C. for 10 minutes. The ceramic member 2 and the metal member 3 are joined. As a result, it is possible to obtain the joint structure 1 of the metal member 3 and the ceramic member 2 which have a high joint strength with a dense joint and a high airtightness (d).

【0055】従って、本発明の接合構造1は、セラミッ
ク部材2を接合温度の高い活性金属を含有した金属層6
で金属部材3に直接接合したものではないことから、セ
ラミック部材2と金属部材3との接合界面には残留応力
が発生し難くなる。その結果、セラミック部材2と金属
部材3との間の熱膨張差による反り、接合部のクラック
や剥離が解消されることになる。
Therefore, according to the joining structure 1 of the present invention, the ceramic member 2 is provided with the metal layer 6 containing the active metal having a high joining temperature.
Since it is not directly bonded to the metal member 3, residual stress is less likely to occur at the bonding interface between the ceramic member 2 and the metal member 3. As a result, the warp due to the difference in thermal expansion between the ceramic member 2 and the metal member 3 and the cracks and peeling at the joint are eliminated.

【0056】そして、上記工程[1]〜[5]にしたが
って実際に接合構造1を作製した。このとき、セラミッ
ク部材2として直径12mmのアルミナセラミック円柱
を、金属部材3として直径5mmの42アロイ(42重
量%Ni−58重量%Fe)の円柱を用い、活性金属と
してTiを3重量部(主成分の金属成分を100重量部
とする)含有した、主成分の金属成分がAg72重量%
−Cu28重量%のAg−Cu合金から成る金属層6
と、スズ−リン酸系ガラスから成るガラス層4とを接合
層として、上記工程[1]〜[5]の接合方法と同じ条
件で接合構造1を作製した。
Then, the junction structure 1 was actually produced according to the above steps [1] to [5]. At this time, an alumina ceramic column having a diameter of 12 mm was used as the ceramic member 2, a 42 alloy column (42 wt% Ni-58 wt% Fe) having a diameter of 5 mm was used as the metal member 3, and 3 parts by weight of Ti (mainly as an active metal) was used. The metal component of the main component is 72 wt% Ag.
-Cu 28 wt% Ag-Cu alloy metal layer 6
And the glass layer 4 made of tin-phosphate glass as a joining layer, the joining structure 1 was produced under the same conditions as the joining method in the above steps [1] to [5].

【0057】また、比較例として、上記スズ−リン酸系
ガラスから成るガラス層4だけを接合層とした、上記と
同様のセラミック部材2と金属部材3を用いた接合構造
を別途作製した。
In addition, as a comparative example, a bonding structure using the same ceramic member 2 and metal member 3 as the above, in which only the glass layer 4 made of the tin-phosphate glass was used as a bonding layer, was separately prepared.

【0058】そして、本発明の接合構造1および比較例
の接合構造について、接合部の気密性を評価するために
ヘリウムガスリークテストを実施した。その結果、比較
例品では10個中全数にヘリウムガスのリークが認めら
れた。それに対して、本発明品では全くヘリウムガスの
リークはなかった。
Then, a helium gas leak test was conducted on the joint structure 1 of the present invention and the joint structure of the comparative example in order to evaluate the airtightness of the joint. As a result, a leak of helium gas was found in all 10 of the comparative examples. In contrast, the product of the present invention did not leak helium gas at all.

【0059】次いで、これらの接合構造についてせん断
試験をしたところ、比較例品では破断荷重が平均21.
56N(ニュートン)であるのに対して、本発明品では
破断荷重が平均63.7Nと著しく接合強度が増加して
いた。従って、本発明品では、気密性が確保でき、接合
強度も極めて高いことが確認できた。
Next, when a shear test was performed on these joint structures, the breaking load of the comparative example was 21.
In contrast to 56 N (Newton), the breaking strength of the product of the present invention was 63.7 N on average, significantly increasing the joint strength. Therefore, it was confirmed that the airtightness can be secured and the bonding strength is extremely high in the product of the present invention.

【0060】なお、上記実施の形態では円柱状のセラミ
ック部材2と金属部材3との接合構造1について説明し
たが、本発明はそれに限定されるものではなく、電子部
品や構造部品等に適用されるセラミック部材2と金属部
材3の接合構造1、例えば、セラミック製半導体素子収
納用パッケージと各種金属製気密端子との接合構造、ガ
ラスレンズと金属枠部品(レンズホルダー)との接合構
造、セラミック製半導体素子収納用パッケージと各種金
属製ヒートシンク部品との接合構造等に適用可能であ
る。
In the above embodiment, the joining structure 1 of the cylindrical ceramic member 2 and the metal member 3 has been described, but the present invention is not limited thereto and is applied to electronic parts, structural parts and the like. 1. A joint structure 1 of a ceramic member 2 and a metal member 3, for example, a joint structure of a ceramic semiconductor element housing package and various metal airtight terminals, a joint structure of a glass lens and a metal frame component (lens holder), and a ceramic member. The present invention can be applied to a joint structure between a semiconductor element housing package and various metal heat sink parts.

【0061】[0061]

【発明の効果】本発明のセラミック部材と金属部材の接
合構造は、金属部材とセラミック部材とが、金属部材側
から液相線温度が1100℃以下の金属成分を主成分と
し、チタン,ジルコニウムおよびハフニウムのうちの少
なくとも一種を活性金属として含有した金属層、活性金
属の酸化層、ガラス層が形成されて成る接合層を介して
接合されていることにより、セラミック部材側にガラス
層が被着形成されていることから、セラミック部材に含
有されるSiO2やマグネシア(MgO)等のガラス成
分がガラス層に拡散することにより、セラミック部材と
ガラス層とが強固に接合される。一方、金属部材側には
液相線温度が1100℃以下の金属成分を主成分とし、
Ti,ZrおよびHfのうちの少なくとも一種を活性金
属として含有する金属層が被着形成されていることか
ら、活性金属が金属部材の金属粒界に拡散して金属部材
と金属層とは強固に接合される。
According to the joining structure of the ceramic member and the metal member of the present invention, the metal member and the ceramic member are mainly composed of a metal component having a liquidus temperature of 1100 ° C. or less from the metal member side, titanium, zirconium and The glass layer is adhered to the ceramic member side by being bonded through a bonding layer formed by forming a metal layer containing at least one of hafnium as an active metal, an oxide layer of the active metal, and a glass layer. Therefore, the glass component such as SiO 2 or magnesia (MgO) contained in the ceramic member diffuses into the glass layer, so that the ceramic member and the glass layer are firmly bonded. On the other hand, on the metal member side, a metal component having a liquidus temperature of 1100 ° C. or lower is a main component,
Since the metal layer containing at least one of Ti, Zr, and Hf as the active metal is deposited and formed, the active metal diffuses into the metal grain boundaries of the metal member, and the metal member and the metal layer are solidified. To be joined.

【0062】また、金属層の表面には活性金属の酸化層
が形成されていることから、酸化層がセラミック部材の
接合面に被着されたガラス層の酸化物成分と反応して緻
密な活性金属の酸化層を生成するため、金属層とガラス
層とが強固に接合されることになる。
Further, since the active metal oxide layer is formed on the surface of the metal layer, the oxide layer reacts with the oxide component of the glass layer adhered to the bonding surface of the ceramic member to form a dense active layer. Since the metal oxide layer is generated, the metal layer and the glass layer are strongly bonded.

【0063】従って、金属部材とセラミック部材とは、
金属部材側から液相線温度が1100℃以下の金属成分
を主成分とし、チタン,ジルコニウムおよびハフニウム
のうちの少なくとも一種を活性金属として含有した金属
層、活性金属の酸化層、およびガラス層が形成されて成
る接合層を介して接合されていることにより、強固に接
合されることになる。
Therefore, the metal member and the ceramic member are
A metal layer containing a metal component having a liquidus temperature of 1100 ° C. or less as a main component and containing at least one of titanium, zirconium, and hafnium as an active metal, an active metal oxide layer, and a glass layer are formed from the metal member side. By being joined via the joining layer formed as described above, it is possible to firmly join.

【0064】本発明の金属部材とセラミック部材との接
合方法は、金属部材の接合面に、液相線温度が1100
℃以下の金属成分を主成分とし、チタン,ジルコニウム
およびハフニウムのうちの少なくとも一種を活性金属と
して含有した金属ペーストを塗布し、還元雰囲気中で加
熱して表面に活性金属の水素化物層が形成された金属層
を形成する工程と、水素化物層の表面にガラスペースト
を塗布し、酸化雰囲気中で加熱して水素化物層を活性金
属の酸化層とするとともに酸化層の表面にガラス層を形
成する工程と、ガラス層をセラミック部材の接合面に当
接させ、加熱して金属部材とセラミック部材とを金属
層、酸化層およびガラス層を介して接合する工程とから
成ることにより、緻密な活性金属の酸化層が金属層とガ
ラス層との界面に形成されるため、セラミック部材をガ
ラス層と金属層を介して金属部材を強固に接合すること
ができるとともに、良好な気密性を得ることができる。
According to the method for joining a metal member and a ceramic member of the present invention, the liquidus temperature is 1100 at the joining surface of the metal member.
A metal paste containing a metal component below ℃ as a main component and containing at least one of titanium, zirconium and hafnium as an active metal is applied and heated in a reducing atmosphere to form a hydride layer of the active metal on the surface. Forming a metal layer and applying a glass paste to the surface of the hydride layer and heating it in an oxidizing atmosphere to turn the hydride layer into an active metal oxide layer and form a glass layer on the surface of the oxide layer. The step of contacting the glass layer with the bonding surface of the ceramic member and heating to bond the metal member and the ceramic member through the metal layer, the oxide layer, and the glass layer Since the oxide layer of is formed at the interface between the metal layer and the glass layer, the ceramic member can be firmly bonded to the metal member via the glass layer and the metal layer, It can be obtained a good tightness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金属部材とセラミック部材との接合構
造について実施の形態の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a joint structure between a metal member and a ceramic member of the present invention.

【図2】(a)〜(d)は本発明の金属部材とセラミッ
ク部材との接合方法について実施の形態の例を示し、各
工程における接合部周辺の断面図である。
2 (a) to 2 (d) are cross-sectional views showing the periphery of the joint in each step, showing an example of the embodiment of the method for joining the metal member and the ceramic member of the present invention.

【図3】従来の金属部材とセラミック部材との接合構造
を示す断面図である。
FIG. 3 is a cross-sectional view showing a conventional joining structure of a metal member and a ceramic member.

【図4】従来の金属部材とセラミック部材との接合構造
を示す他の例の断面図である。
FIG. 4 is a cross-sectional view of another example showing a conventional joining structure of a metal member and a ceramic member.

【符号の説明】[Explanation of symbols]

1:金属部材とセラミック部材との接合構造 2:セラミック部材 3:金属部材 4:ガラス層 5:活性金属の酸化層 6:金属層 7:金属ペースト 8:活性金属の水素化物層 1: Joining structure of metal member and ceramic member 2: Ceramic member 3: Metal member 4: Glass layer 5: Active metal oxide layer 6: Metal layer 7: Metal paste 8: hydride layer of active metal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属部材とセラミック部材とが、前記金
属部材側から液相線温度が1100℃以下の金属成分を
主成分とし、チタン,ジルコニウムおよびハフニウムの
うちの少なくとも一種を活性金属として含有した金属
層、前記活性金属の酸化層、およびガラス層が形成され
て成る接合層を介して接合されていることを特徴とする
金属部材とセラミック部材との接合構造。
1. A metal member and a ceramic member mainly contain a metal component having a liquidus temperature of 1100 ° C. or less from the metal member side, and contain at least one of titanium, zirconium and hafnium as an active metal. A joining structure of a metal member and a ceramic member, wherein the metal member and the ceramic member are joined together through a joining layer formed by forming a metal layer, an oxide layer of the active metal, and a glass layer.
【請求項2】 金属部材の接合面に、液相線温度が11
00℃以下の金属成分を主成分とし、チタン,ジルコニ
ウムおよびハフニウムのうちの少なくとも一種を活性金
属として含有した金属ペーストを塗布し、還元雰囲気中
で加熱して表面に前記活性金属の水素化物層が形成され
た金属層を形成する工程と、前記水素化物層の表面にガ
ラスペーストを塗布し、酸化雰囲気中で加熱して前記水
素化物層を前記活性金属の酸化層とするとともに該酸化
層の表面にガラス層を形成する工程と、前記ガラス層を
セラミック部材の接合面に当接させ、加熱して前記金属
部材と前記セラミック部材とを前記金属層、前記酸化層
および前記ガラス層を介して接合する工程とから成るこ
とを特徴とする金属部材とセラミック部材との接合方
法。
2. The liquidus temperature is 11 at the joint surface of the metal member.
A metal paste containing a metal component of 00 ° C. or lower as a main component and containing at least one of titanium, zirconium, and hafnium as an active metal was applied and heated in a reducing atmosphere to form a hydride layer of the active metal on the surface. A step of forming the formed metal layer, applying a glass paste to the surface of the hydride layer, and heating in an oxidizing atmosphere to make the hydride layer an oxide layer of the active metal and the surface of the oxide layer And forming a glass layer on the bonding surface of the ceramic member, and heating the glass member to bond the metal member and the ceramic member through the metal layer, the oxide layer and the glass layer. A method for joining a metal member and a ceramic member, the method comprising:
JP2001237561A 2001-08-06 2001-08-06 Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member Pending JP2003048785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237561A JP2003048785A (en) 2001-08-06 2001-08-06 Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237561A JP2003048785A (en) 2001-08-06 2001-08-06 Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member

Publications (1)

Publication Number Publication Date
JP2003048785A true JP2003048785A (en) 2003-02-21

Family

ID=19068628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237561A Pending JP2003048785A (en) 2001-08-06 2001-08-06 Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member

Country Status (1)

Country Link
JP (1) JP2003048785A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283762B1 (en) 2013-01-31 2013-07-08 김태웅 Method for glass coating and the member thereby, method for bonding two kind of members using the glass coating, and the product thereby
US20130236738A1 (en) * 2010-11-19 2013-09-12 Nhk Spring Co., Ltd. Laminate and method for producing laminate
WO2015115593A1 (en) * 2014-02-03 2015-08-06 トヨタ自動車株式会社 Joining structure of ceramic member and metallic member
JPWO2016111281A1 (en) * 2015-01-07 2017-10-12 株式会社村田製作所 Ceramic substrate, electronic component, and method for manufacturing ceramic substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130236738A1 (en) * 2010-11-19 2013-09-12 Nhk Spring Co., Ltd. Laminate and method for producing laminate
KR101283762B1 (en) 2013-01-31 2013-07-08 김태웅 Method for glass coating and the member thereby, method for bonding two kind of members using the glass coating, and the product thereby
WO2015115593A1 (en) * 2014-02-03 2015-08-06 トヨタ自動車株式会社 Joining structure of ceramic member and metallic member
JP2015145321A (en) * 2014-02-03 2015-08-13 トヨタ自動車株式会社 Joint structure of ceramic member and metal members
JPWO2016111281A1 (en) * 2015-01-07 2017-10-12 株式会社村田製作所 Ceramic substrate, electronic component, and method for manufacturing ceramic substrate

Similar Documents

Publication Publication Date Title
JP6753869B2 (en) How to make composites
JP2003212669A (en) Joined product of different kinds of materials and its manufacturing process
JPS60131875A (en) Method of bonding ceramic and metal
JP2001010874A (en) Production of composite material of inorganic material with metal containing aluminum and product related to the same
JPH0367985B2 (en)
JP3949459B2 (en) Joined body of different materials and manufacturing method thereof
JP2006327888A (en) Brazed structure of ceramic and metal
JP2003048785A (en) Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JP3872379B2 (en) Package for housing semiconductor element and manufacturing method thereof
JP2851881B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
WO2014156093A1 (en) Ceramic-metal bonded object and process for producing same
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
Sandhage et al. Mullite Joining by the Oxidation of Malleable, Alkaline‐Earth‐Metal‐Bearing Bonding Agents
JPH10194860A (en) Brazing filler metal
JP2003335585A (en) Process for joining ceramics through active metal soldering
JP2848867B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JP3004379B2 (en) Joining method of ceramics and metal
JP4441080B2 (en) Manufacturing method of composite member
JP2818210B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JP2623250B2 (en) Joint of alumina ceramic and iron-nickel alloy
US4950503A (en) Process for the coating of a molybdenum base
JP2650460B2 (en) Joining method of alumina ceramic and metal
JP2001048670A (en) Ceramics-metal joined body
JPH11329676A (en) Joined ceramics and metal body, ceramic heater using same, and its manufacture