JPH07120573B2 - Method for manufacturing amorphous binary alloy thin film resistor - Google Patents

Method for manufacturing amorphous binary alloy thin film resistor

Info

Publication number
JPH07120573B2
JPH07120573B2 JP62065320A JP6532087A JPH07120573B2 JP H07120573 B2 JPH07120573 B2 JP H07120573B2 JP 62065320 A JP62065320 A JP 62065320A JP 6532087 A JP6532087 A JP 6532087A JP H07120573 B2 JPH07120573 B2 JP H07120573B2
Authority
JP
Japan
Prior art keywords
resistance
thin film
temperature coefficient
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62065320A
Other languages
Japanese (ja)
Other versions
JPS63229802A (en
Inventor
平八郎 平井
淳一 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kamaya Electric Co Ltd
Original Assignee
Kamaya Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamaya Electric Co Ltd filed Critical Kamaya Electric Co Ltd
Priority to JP62065320A priority Critical patent/JPH07120573B2/en
Publication of JPS63229802A publication Critical patent/JPS63229802A/en
Publication of JPH07120573B2 publication Critical patent/JPH07120573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、薄膜抵抗体、特に広い温度範囲に亘って抵
抗温度係数の極めて小さい薄膜抵抗体の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for manufacturing a thin film resistor, particularly a thin film resistor having an extremely small resistance temperature coefficient over a wide temperature range.

(ロ)従来の技術 従来、抵抗温度係数の小さい薄膜抵抗体として、例えば
Ni、Si、Bからなる母合金を用い、絶縁基板上にスパッ
タリング法等によりアモルファス金属を付着させる、い
わゆる3元合金を用いたものが提案されている。
(B) Conventional Technology Conventionally, as a thin film resistor having a small temperature coefficient of resistance, for example,
It has been proposed to use a so-called ternary alloy in which a mother alloy of Ni, Si, and B is used and an amorphous metal is deposited on an insulating substrate by a sputtering method or the like.

(ハ)発明が解決しようとする問題点 3元合金を用いる方法では、抵抗温度係数の小さなもの
が得られるにしても、三種の金属を適正な比率で一様に
混合するのが大変であり、かつ広い温度範囲に亘り、所
定値以下の小さな抵抗温度係数の薄膜抵抗体が得られる
かどうか、またそれの長期安定性が確保されるか否かと
いうことは不明である。
(C) Problems to be solved by the invention In the method using a ternary alloy, it is difficult to uniformly mix the three kinds of metals in proper proportions, even if a material having a small temperature coefficient of resistance is obtained. It is unclear whether a thin film resistor having a small temperature coefficient of resistance equal to or less than a predetermined value can be obtained over a wide temperature range and whether long-term stability thereof can be secured.

この発明は、上記に鑑み、2元合金により広い温度範囲
に亘り小さな抵抗温度係数のものが得られ、かつ長期安
定性に優れた薄膜抵抗体の製造方法を提供することを目
的としている。
In view of the above, it is an object of the present invention to provide a method for manufacturing a thin film resistor that can obtain a binary alloy having a small temperature coefficient of resistance over a wide temperature range and is excellent in long-term stability.

(ニ)問題点を解決するための手段及び作用 この発明は、発明者等による研究の成果として、抵抗温
度係数が正のメタルと負のメタロイドが適当な割合で混
ざり合った非晶質の薄膜の抵抗温度係数が極めて小さく
なることに着目して創出されたものである。
(D) Means and Actions for Solving Problems As a result of research by the inventors, the present invention is an amorphous thin film in which a metal having a positive temperature coefficient of resistance and a negative metalloid are mixed at an appropriate ratio. It was created by paying attention to the extremely small temperature coefficient of resistance.

この発明の薄膜抵抗体の製造方法は、抵抗温度係数が正
のメタル(例えばNi)の粉末と抵抗温度係数が負のメタ
ロイド(例えばSi)の粉末とを所望の抵抗率に応じて適
正な割合(例えばNiとSiでシリコン35%〜70%)で混合
し、この混合物を蒸発源として、低温に保持した絶縁基
板上に真空蒸着して非晶質の抵抗膜を形成し、次に大気
中で適切な構造緩和を起こさせるための熱処理を行うも
のである。
The method of manufacturing a thin film resistor according to the present invention provides a metal (eg, Ni) powder having a positive temperature coefficient of resistance and a metalloid (eg, Si) powder having a negative temperature coefficient of resistance in an appropriate ratio according to a desired resistivity. (For example, Ni and Si are 35% to 70% of silicon), and this mixture is used as an evaporation source to form an amorphous resistance film by vacuum vapor deposition on an insulating substrate kept at a low temperature. Then, heat treatment is performed to cause appropriate structural relaxation.

ここで使用されるメタルとして、Ni(ニッケル)、Cr
(クローム)、Cu(銅)等が、メタロイドとしてはSi
(シリコン)、Ge(ゲルマニウム)、等が挙げられる。
As the metal used here, Ni (nickel), Cr
(Chrome), Cu (copper), etc.
(Silicon), Ge (germanium), and the like.

メタロイドの重量比が上記の範囲外で、メタルが多くな
ると正の抵抗温度係数になり、逆にメタロイドが多くな
ると負の抵抗温度係数となる。故に、正と負の抵抗温度
係数を持つメタルとメタロイドが適正に混合され、かつ
非晶質とすることが重要である。
If the weight ratio of the metalloid is out of the above range and the amount of metal increases, the temperature coefficient of resistance becomes positive, and conversely, if the amount of metalloid increases, the temperature coefficient of resistance becomes negative. Therefore, it is important that the metal and the metalloid having the positive and negative temperature coefficients of resistance are properly mixed and are amorphous.

混合粉末の絶縁基板への真空蒸着は、各元素の結晶成長
に抑制するために、低温で可及的迅速に行うことが必要
である。ここでの低温とは、室温程度を含むものであ
り、特に寒剤等で冷却する必要はない。もちろん、冷却
しても差支えない。
The vacuum deposition of the mixed powder on the insulating substrate needs to be performed as quickly as possible at a low temperature in order to suppress the crystal growth of each element. The low temperature here includes about room temperature, and it is not particularly necessary to cool with a cryogen or the like. Of course, it does not matter if it is cooled.

熱処理前の蒸着されたままの薄膜は、X線回折で観察す
ると、非晶質であるが、膜の抵抗値は、温度変化に対し
て負特性で、かつ抵抗温度係数は、数100〜1600ppm程度
のかり大きい値を示す。
The as-deposited thin film before heat treatment is amorphous when observed by X-ray diffraction, but the resistance value of the film is a negative characteristic with respect to temperature changes, and the temperature coefficient of resistance is several hundred to 1,600 ppm. It shows a relatively large value.

このようにして形成された薄膜を、250℃前後に保持し
た炉で1〜2時間熱処理すると、初期の段階で、抵抗値
は大きく変化する。これは、膜の内部組織が急激に変化
したことを示している。しかし、この変化は漸次緩やか
になり、一定値に近づく。この段階では、温度の上昇・
下降に対して抵抗値の変化はヒステリシスを示さず、ま
た抵抗温度係数も広く温度範囲に亘って極めて小さくな
り、かつ抵抗特性が経時的に変化せず、安定なものとな
る。
When the thin film thus formed is heat-treated in a furnace kept at around 250 ° C. for 1 to 2 hours, the resistance value largely changes in the initial stage. This indicates that the internal structure of the membrane changed drastically. However, this change gradually becomes gradual and approaches a constant value. At this stage, the temperature rise
With respect to the decrease, the change of the resistance value does not show hysteresis, the temperature coefficient of resistance becomes wide and becomes extremely small over the temperature range, and the resistance characteristic does not change with time, and becomes stable.

上記熱処理は、抵抗温度係数を小さくする、つまり本発
明にとって不可欠なプロセスである。
The heat treatment reduces the temperature coefficient of resistance, that is, an essential process for the present invention.

次に、最適な熱処理条件の決定方法について説明する。Next, a method for determining the optimum heat treatment condition will be described.

組成が同一の試料を、同一処理温度で時間を変えた場
合、抵抗温度係数(ppm)と抵抗値変化率(%)の関係
は、定性的には、第1図に示すのようになる。従っ
て、熱処理の過程で抵抗値変化率を観測し、特性では
抵抗値変化率がRD1となる点までの熱処理を行えばよ
い。もっとも、実際には、同一条件で成膜しても、試料
の熱処理前の初期抵抗値にバラツキがあるため、抵抗温
度係数−抵抗値変化率特性は、例えば第1図に示す特性
、のように、ロッド毎に相違する。そのため、特性
のロットの場合は抵抗値変化率がRD2、特性のロッ
トの場合は抵抗値変化率がRD3となる時点で熱処理を停
止すればよい。
When samples having the same composition are changed at the same processing temperature for different times, the relationship between the temperature coefficient of resistance (ppm) and the rate of change in resistance value (%) is qualitatively as shown in FIG. Therefore, the resistance change rate may be observed during the heat treatment, and the heat treatment may be performed until the resistance change rate becomes R D1 in the characteristics. However, in reality, even if the film is formed under the same conditions, the initial resistance value of the sample before heat treatment varies, so that the resistance temperature coefficient-resistance value change rate characteristic is, for example, as shown in FIG. Moreover, it differs for each rod. Therefore, the heat treatment may be stopped when the resistance change rate is R D2 for the characteristic lot and the resistance change rate is R D3 for the characteristic lot.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明す
る。
(E) Examples Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例として、2元合金のメタルとしてNiを、メタロイ
ドとしてSiを用いた場合を説明する。なお、これまでは
両者、つまりNiとSiの固溶合金としての抵抗温度特性は
報告されているが、両者の非晶質の抵抗温度特性につい
ての検討報告は見当たらない。
As an example, a case where Ni is used as the metal of the binary alloy and Si is used as the metalloid will be described. Up to now, the resistance temperature characteristics of both, that is, the solid solution alloy of Ni and Si has been reported, but no study report on the amorphous resistance temperature characteristics of both has been found.

先ず、純度99.8%のNi粉末と純度99.9%のSi粉末を用意
し、これらを60:40の重量比で混合し、この混合物を蒸
発源とする。この混合物を常温の高融点ガラス基板に、
例えば第2図に示す如きマスクを載置し、その上から、
マスクのパターン状に真空蒸着する(第2図において、
は電流端子部、は電圧端子部、はX線回折用パタ
ーン部)。膜の厚さは約500Åとする。このようにして
ガラス基板上に形成した合金薄膜を、X線回折で観測す
ると、第3図に示すように、非晶質のものが得られる。
First, a 99.8% pure Ni powder and a 99.9% pure Si powder are prepared, and these are mixed at a weight ratio of 60:40, and this mixture is used as an evaporation source. This mixture on a high melting point glass substrate at room temperature,
For example, a mask as shown in FIG. 2 is placed, and from above,
Vacuum deposition is performed on the mask pattern (in FIG. 2,
Is a current terminal portion, is a voltage terminal portion, is an X-ray diffraction pattern portion). The thickness of the film is about 500Å. When the alloy thin film thus formed on the glass substrate is observed by X-ray diffraction, an amorphous thin film is obtained as shown in FIG.

同一条件で成膜した2個の試料の熱処理前の抵抗温度特
性を、第4図に示す。この段階では、負の温度特性を有
している。
FIG. 4 shows resistance-temperature characteristics of two samples formed under the same conditions before heat treatment. At this stage, it has a negative temperature characteristic.

そこで、具体的なあるロットa、bの抵抗温度係数−抵
抗値変化率特性が、第5図に示すものである場合、熱処
理条件は、温度235℃で、ロットaについては抵抗値変
化率52%、ロットbについては抵抗値変化率59%で熱処
理を停止すると、抵抗温度係数がほぼ0のものが得られ
ることになる。
Therefore, in the case where the specific resistance temperature coefficient-resistance value change rate characteristics of certain lots a and b are as shown in FIG. 5, the heat treatment condition is a temperature of 235 ° C., and lot a has a resistance value change rate of 52%. %, When the heat treatment is stopped at the resistance value change rate of 59% for lot b, the temperature coefficient of resistance is almost zero.

実際に、この条件で熱処理を行った結果は、第6図に示
す通りであり、広い温度範囲に亘り、抵抗温度係数の小
さなものが得られ、初期の目標を達成することが出来
た。なお、熱処理後の薄膜抵抗体についてX線回折によ
る観測が行ったところ、膜は、やはり第7図に示すよう
であり、非晶質であることが確認された。なお、これら
の試料は、大気中に6ヶ月放置しても、その電気的特性
は変化しなかった。
Actually, the result of the heat treatment under this condition is as shown in FIG. 6, and the one having the small temperature coefficient of resistance was obtained over the wide temperature range, and the initial target could be achieved. When the thin film resistor after heat treatment was observed by X-ray diffraction, it was confirmed that the film was amorphous as shown in FIG. The electrical characteristics of these samples did not change even when left in the atmosphere for 6 months.

また、上述した熱処理条件の決定方法の説明では、抵抗
温度係数を最小にする場合について説明したが、抵抗値
変化率を観測することにより、抵抗温度係数をどの程度
のものにするかをロット毎に容易にコントロールするこ
とが出来るので、用途に応じ、所望の抵抗温度係数のも
のを得ることが可能である。
Further, in the above description of the method for determining the heat treatment conditions, the case where the resistance temperature coefficient is minimized has been described, but by observing the resistance value change rate, it is possible to determine how much the resistance temperature coefficient should be set for each lot. Since it can be easily controlled, it is possible to obtain a material having a desired temperature coefficient of resistance depending on the application.

(ヘ)発明の効果 この発明によれば、メタルの粉末にメタロイドの粉末を
35〜70%の割合で混合し、この混合物を蒸発源とし、低
温で絶縁基板上に真空蒸着し、適切な構造緩和を起こさ
せるため、大気中で熱処理することにより、2元合金の
非晶質の薄膜抵抗体を形成するものであるから、広い温
度範囲に亘り、抵抗温度係数の小さいものが得られ、し
かも長期安定性に優れたものが得られる。
(F) Effect of the Invention According to the present invention, metalloid powder is added to metal powder.
The mixture of 35-70% is used as an evaporation source, and the mixture is vacuum-deposited on an insulating substrate at a low temperature and heat-treated in the atmosphere to cause appropriate structural relaxation. Since a high quality thin film resistor is formed, a thin film resistor having a small temperature coefficient of resistance can be obtained over a wide temperature range, and a long-term stability can be obtained.

また、結晶合金薄膜製作法と比べて本発明では、薄膜製
作時に基板温度は低温(室温)でよいので、基板加熱装
置を必要とせず、加熱電力を必要でないので、経済的で
ある。
Further, compared with the crystal alloy thin film manufacturing method, the substrate temperature may be low (room temperature) at the time of manufacturing the thin film, so that a substrate heating device is not required and heating power is not required, which is economical.

その上、熱処理について、結晶合金薄膜の場合は、本発
明では低シリコン含有率の場合は250゜Cの時、1〜2
時間、高シリコン含有率の場合は350゜〜400゜Cの時、
2〜5時間で十分であって、安定化に要するエネルギー
は、他の文献等に記載されている結晶合金薄膜の場合に
比し、遥かに少なくてすむ、という効果がある。
In addition, regarding the heat treatment, in the case of a crystalline alloy thin film, in the present invention, in the case of a low silicon content, it is 1 to 2 at 250 ° C.
Time, in case of high silicon content, at 350 ° -400 ° C,
2 to 5 hours are sufficient, and the energy required for stabilization is much smaller than that of the crystal alloy thin film described in other documents.

【図面の簡単な説明】[Brief description of drawings]

第1図は、熱処理条件の決定方法を説明するための抵抗
値変化率−抵抗温度係数特性を示す図、第2図は、この
発明の一実施例に使用されるマスクを示す図、第3図
は、この発明の実施例における成膜後、熱処理前のX線
回折結果を示す図、第4図は、同成膜後、熱処理前の抵
抗値−周囲温度特性を示す図、第5図は、抵抗値変化率
−抵抗温度係数特性の具体例を示す図、第6図は、実施
例における熱処理後の周囲温度−抵抗値特性を示す図、
第7図は、同熱処理後のX線回折結果を示す図である。
FIG. 1 is a diagram showing a resistance value change rate-resistance temperature coefficient characteristic for explaining a method for determining heat treatment conditions, FIG. 2 is a diagram showing a mask used in an embodiment of the present invention, and FIG. FIG. 4 is a diagram showing an X-ray diffraction result after film formation and before heat treatment in an embodiment of the present invention, FIG. 4 is a diagram showing resistance value-ambient temperature characteristics after the film formation and before heat treatment, and FIG. Is a diagram showing a specific example of a resistance value change rate-resistance temperature coefficient characteristic, and FIG. 6 is a diagram showing an ambient temperature-resistance value characteristic after heat treatment in Examples,
FIG. 7 is a diagram showing an X-ray diffraction result after the heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】抵抗温度係数が正のメタルの粉末と抵抗温
度係数が負のメタロイドの粉末と所望の抵抗率に応じて
適正な割合で混合し、この混合物を蒸発源として、低温
に保持した絶縁基板上に真空蒸着して非晶質の抵抗膜を
形成し、これに適切な構造緩和を起こさせるための大気
中での熱処理を行って、広い温度範囲に亘って抵抗温度
係数が極めて小さく、かつ経時に対して安定な非晶質2
元合金薄膜抵抗を製造する方法。
1. A metal powder having a positive temperature coefficient of resistance and a metalloid powder having a negative temperature coefficient of resistance are mixed at an appropriate ratio according to a desired resistivity, and the mixture is kept at a low temperature as an evaporation source. Amorphous resistance film is formed by vacuum evaporation on an insulating substrate, and heat treatment is performed in the atmosphere to cause appropriate structural relaxation, and the temperature coefficient of resistance is extremely small over a wide temperature range. Amorphous 2 that is stable over time
Method for manufacturing original alloy thin film resistor.
JP62065320A 1987-03-19 1987-03-19 Method for manufacturing amorphous binary alloy thin film resistor Expired - Lifetime JPH07120573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62065320A JPH07120573B2 (en) 1987-03-19 1987-03-19 Method for manufacturing amorphous binary alloy thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065320A JPH07120573B2 (en) 1987-03-19 1987-03-19 Method for manufacturing amorphous binary alloy thin film resistor

Publications (2)

Publication Number Publication Date
JPS63229802A JPS63229802A (en) 1988-09-26
JPH07120573B2 true JPH07120573B2 (en) 1995-12-20

Family

ID=13283500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065320A Expired - Lifetime JPH07120573B2 (en) 1987-03-19 1987-03-19 Method for manufacturing amorphous binary alloy thin film resistor

Country Status (1)

Country Link
JP (1) JPH07120573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623921B2 (en) * 2002-09-13 2011-02-02 コーア株式会社 Resistive composition and resistor
CN106298128A (en) * 2016-08-31 2017-01-04 安徽斯迈尔电子科技有限公司 A kind of Multisource evaporation formula preparation method of metal oxidation resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142747A (en) * 1974-10-11 1976-04-12 Teijin Chemicals Ltd JUSHIFUN MATSUSOSEIBUTSU
JPS51134894A (en) * 1975-05-16 1976-11-22 Taisei Denshi Kk Manufacturing method of metallic film resistor
JPS5892202A (en) * 1981-11-28 1983-06-01 日本電信電話株式会社 Method of forming gold indium thin film resistance element

Also Published As

Publication number Publication date
JPS63229802A (en) 1988-09-26

Similar Documents

Publication Publication Date Title
EP0245900B1 (en) Layered film resistor with high resistance and high stability
JPH06158272A (en) Resistance film and production thereof
US4323875A (en) Method of making temperature sensitive device and device made thereby
JP4380586B2 (en) Thin film resistor and manufacturing method thereof
Lukose et al. Thin film resistive materials: past, present and future
US4043888A (en) Superconductive thin films having transition temperature substantially above the bulk materials
JP4622946B2 (en) Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
JPH07120573B2 (en) Method for manufacturing amorphous binary alloy thin film resistor
Schäfer et al. The structural and electrical properties of Metglas and amorphous metal films
JP2782288B2 (en) Electric resistance material
US3545967A (en) Metal-semiconductor alloys for thin-film resistors
JP4742758B2 (en) Thin film resistor and manufacturing method thereof
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
US3341364A (en) Preparation of thin film indium antimonide from bulk indium antimonide
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
WO2022210428A1 (en) Cr-si film
JPS63147305A (en) Metal thin-film resistor
JP2005294612A5 (en)
JPH0620803A (en) Thin film resistor and manufacture thereof
Isler et al. Influence of deposition and processing parameters on the tcr of ni-cr-cu-al alloy film resistors
JP2659716B2 (en) Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same
Steemers et al. Stable thin film resistors for amorphous silicon integrated circuits
Chang et al. The influence of iron on properties of deposited Ni Cr Si resistors
JPH036974B2 (en)
JPS63169705A (en) Adjustment of resistance characteristics of thin film resistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term