JPS5892202A - Method of forming gold indium thin film resistance element - Google Patents

Method of forming gold indium thin film resistance element

Info

Publication number
JPS5892202A
JPS5892202A JP56191430A JP19143081A JPS5892202A JP S5892202 A JPS5892202 A JP S5892202A JP 56191430 A JP56191430 A JP 56191430A JP 19143081 A JP19143081 A JP 19143081A JP S5892202 A JPS5892202 A JP S5892202A
Authority
JP
Japan
Prior art keywords
thin film
forming
indium
heat treatment
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56191430A
Other languages
Japanese (ja)
Inventor
黒沢 賢
蓮見 裕二
邦博 荒井
研一 黒田
柳川 文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56191430A priority Critical patent/JPS5892202A/en
Publication of JPS5892202A publication Critical patent/JPS5892202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、鉛合金超伝導集積回路に用いて好適な金イン
ジウム薄膜抵抗集子を形成する方法に関する4のである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a gold-indium thin film resistor collector suitable for use in a lead alloy superconducting integrated circuit.

従来この種の抵抗素子を構成する全インジウム2金属間
化合物薄膜は、一般Kl1着法によって形成するが、形
成された薄膜の抵抗率は、薄膜の厚さおよび薄膜を構成
する全インジウム2金属間化合物の粒径に依存する3、
この様子を、館1図および!2図に示す、。
Conventionally, the all-indium intermetallic compound thin film constituting this type of resistance element is formed by the general Kl1 deposition method, but the resistivity of the formed thin film depends on the thickness of the thin film and the all-indium intermetallic compound forming the thin film. 3, depending on the particle size of the compound;
This situation is shown in Figure 1 of the building! As shown in Figure 2.

即ち、第1図は全インジウム2金属間化合物薄膜のシー
ト抵抗値の膜厚依存性を示すグラフである。同図におい
て、(1)は基板温度を75℃に保持して蒸着した場合
、(2)は同じく室温に保持した場合の結果を示し、い
ずれの場合も、シート抵抗値が膜厚に強く依存している
ことが分る。なお%(11)。
That is, FIG. 1 is a graph showing the film thickness dependence of the sheet resistance value of an all-indium dimetallic compound thin film. In the figure, (1) shows the results when the substrate temperature was kept at 75°C for deposition, and (2) shows the results when the substrate temperature was also kept at room temperature. In both cases, the sheet resistance value strongly depends on the film thickness. I know what you're doing. Note that % (11).

α2) 、 (13)および(21) 、 (22) 
、 (23)は各一定点を示す。
α2) , (13) and (21) , (22)
, (23) indicate each fixed point.

他方、1s1図において、(1)と(至)とのwf来の
差は、蒸1時の基板温度の相異に基く薄膜0I12径の
差を反映している。即ち、菖2図は抵抗率の粒径依存性
を示すグラフである。同図において%  (11)、(
ロ)。
On the other hand, in the 1s1 diagram, the difference in wf between (1) and (to) reflects the difference in the diameter of the thin film 0I12 based on the difference in substrate temperature during vaporization. That is, Diagram 2 is a graph showing the dependence of resistivity on grain size. In the same figure, % (11), (
B).

(13)は共に基板温[75℃の場合、(21) 、 
(22) 、 (23)は同じく室温の場合の結果を示
し、各点は、それぞれ第1図の同一番号を付した点と同
一の場合に対応している。同図から明らかなように、粒
径と抵抗率とは一定の関係にあり、精度O良い抵抗素子
の実現には粒径をそろえた薄IIO形成が不可欠である
。しか−1粒径が小さい領域ではわずかな粒径の便化に
よって抵抗率は大きくばらつくと共に、不安定てあり、
再結晶により粒径が便化する可能性がある。
(13) are both when the substrate temperature is [75°C, (21),
(22) and (23) also show the results at room temperature, and each point corresponds to the same case as the point with the same number in FIG. 1, respectively. As is clear from the figure, there is a certain relationship between grain size and resistivity, and in order to realize a resistive element with good precision, it is essential to form thin IIO with uniform grain sizes. However, in the region where the -1 grain size is small, the resistivity varies greatly and is unstable due to a slight reduction in grain size.
There is a possibility that the grain size will decrease due to recrystallization.

従って、微細な粒径をもり室8M着薄膜よりも、粒径が
大きい基板加熱蒸着薄胎の方が、特性の良好な抵抗素子
を得る上では望ましい。
Therefore, in order to obtain a resistive element with good characteristics, a thin film deposited by heating the substrate and having a large particle size is preferable to a thin film deposited in a chamber 8M having a fine particle size.

しかしながら、このように粒径は基板温fK極めて敏感
に影餐され易いものであるところ、基板加熱蒸着におい
ては、精度良く温度を測定して基板温度を制御すること
が困難である仁と、また、基板温度を一定に保り會でに
9する時間が長く、1回の蒸着に相肖に長い時間を必要
とすること等の欠点があった。
However, the particle size is extremely sensitive to the substrate temperature fK, and in substrate heating evaporation, it is difficult to accurately measure the temperature and control the substrate temperature. However, the disadvantages include that it takes a long time to hold the substrate temperature constant and perform the in-person process, and a correspondingly long time is required for one evaporation process.

本発明は、以上のような状況に鑑みてなされた亀のであ
シ、その目的は、化学的に安定でがり精度の*い金イン
ジウム薄膜抵抗素子を再現性良く効率的KHj1作する
ことが可能な形成方法を提供するととにある。
The present invention was developed in view of the above circumstances, and its purpose is to make it possible to efficiently produce a chemically stable gold-indium thin-film resistive element with high accuracy and high reproducibility. The purpose is to provide a method for forming the material.

このような目的を達成するために、本発明は、室温で全
インジウム2金属間化合物薄膜抵抗体を蒸着形成した後
、少なくとも100℃以上の熱処理を行なって薄膜抵抗
体の結晶粒を十分に成長させかつその粒径をそろえるも
のである。以下、実糺例を用いて本発明を詐mK説明す
る。
In order to achieve such an object, the present invention forms an all-indium intermetallic compound thin film resistor by vapor deposition at room temperature, and then performs heat treatment at at least 100°C or higher to sufficiently grow the crystal grains of the thin film resistor. This is to make the particle sizes uniform. The present invention will be explained below using actual examples.

第3図は、本発明の一実施例を用いて形成した起伝導集
禎回路の抵抗素子部を示す断面図であゐ。
FIG. 3 is a cross-sectional view showing a resistance element portion of a conductive integrated circuit formed using an embodiment of the present invention.

即ち、基板としてシリコンウェハ31を熱酸化して表面
に二酸化けい素膜32を形成しえものを用い、以下に示
すような手順によって回路を形成した。
That is, using a silicon wafer 31 as a substrate which was thermally oxidized to form a silicon dioxide film 32 on its surface, a circuit was formed according to the procedure shown below.

先ず、基板の二酸化けい素!a320上にニオブ膜33
を蒸着し、その接地面となる部分を陽極化成してニオブ
酸化膜34を形成する。次いで、これをエツチングによ
シ接地面部分33mおよびパッド部分33bに分割する
。その後、層間絶縁膜として一酸化けい素j135をリ
フトオフ法によって形成する。
First of all, silicon dioxide on the board! Niobium film 33 on a320
A niobium oxide film 34 is formed by vapor-depositing and anodizing the portion that will become the ground plane. Next, this is divided into a ground plane portion 33m and a pad portion 33b by etching. Thereafter, silicon monoxide J135 is formed as an interlayer insulating film by a lift-off method.

次に、抵抗体36を形成する。これKは、先ず、上記−
酸化けい@、、J[M2Sの上にレジスト(ムZ14’
Jt)商品名)を塗布後、雑光およびブロモベンゼン処
環現像してレジストステンシルバタンを形成する。
Next, the resistor 36 is formed. This K is, first of all, the above −
Silicon oxide@,,J[Resist (MuZ14' on M2S)
After coating Jt) (trade name), a resist stencil pattern is formed by subjecting it to miscellaneous light and bromobenzene ring development.

次に、その上に金およびインジウムをそれぞれ1〜2ム
/me OH着速度で順次室温蒸着して金インジウム2
合金薄膜を形成した後、す7)オフによシ所望OAタン
を有する抵抗体36を形成する。
Next, gold and indium are sequentially deposited thereon at room temperature at an OH deposition rate of 1 to 2 μm/me, respectively.
After forming the alloy thin film, step 7) form a resistor 36 having a desired OA tan.

次いで、これを流量5”m i nの窒素で満たされた
恒温槽中で温[100℃、4時間の熱処理を行なった。
Next, this was heat-treated at 100° C. for 4 hours in a constant temperature bath filled with nitrogen at a flow rate of 5”min.

この場合の熱処理と形成された抵抗素子のシート抵抗値
との関係を第4図に示す。即ち、同図は熱処理温度をパ
ラメータとしてシート抵抗値の熱処理時間依存性を示し
たものであシ、同図中、(1)。
FIG. 4 shows the relationship between the heat treatment and the sheet resistance value of the formed resistance element in this case. That is, the figure shows the dependence of the sheet resistance value on the heat treatment time using the heat treatment temperature as a parameter, (1) in the figure.

(匂、(3)はそれぞれ熱処jliIl&、が100℃
、140℃。
(Odor, (3) are each heat treated at 100°C.
, 140℃.

180℃の場合の結果を示す。同図から明らかなように
、飽和した一定の抵抗値を得るのに必要な時間は、熱処
理温度が高いほど短い。従って、短時間に所望の抵抗値
を得るためには、即ち、工程に必要な時間を短縮するた
めには、熱処理温度は高いほど有効である。しかしなが
ら、熱処理温度が  □高過ぎると、ニオブ[133の
超伝導性を劣化させるのみならず、抵抗体36それ自体
をも損傷し、第4図中の(3)にその幼向が見られるよ
うに抵抗値のばらつきが大きくなる。逆に1熱処理11
&が低過ぎると、飽和した一定の抵抗値を得るまでの時
間が長くなり過ぎる。例えば100℃の場合には、同図
中(1)K示すようK、飽和し九一定の抵抗値を得るま
でに20時間以上の熱処理が必要である。
The results for the case of 180°C are shown. As is clear from the figure, the higher the heat treatment temperature, the shorter the time required to obtain a constant saturated resistance value. Therefore, in order to obtain a desired resistance value in a short time, that is, to shorten the time required for the process, the higher the heat treatment temperature, the more effective it is. However, if the heat treatment temperature is too high, it not only deteriorates the superconductivity of niobium [133 but also damages the resistor 36 itself, as shown in (3) in Figure 4. The variation in resistance value increases. Conversely, 1 heat treatment 11
If & is too low, it will take too long to reach a constant saturated resistance value. For example, in the case of 100° C., heat treatment for 20 hours or more is required until K is saturated and a constant resistance value is obtained, as shown in (1) K in the figure.

従って、実用的KFi、この熱処理I!度tf120℃
以上であることが望オしい。例えば140℃の熱処理温
度では、同図中(2)K示すように4時間o+ea処理
で抵抗値は飽和する。また、仁の場合8時間和度の熱処
理を加えても抵抗体内体の損傷もなく、抵抗値のばらつ
きが小さいことが分った。
Therefore, practical KFi, this heat treatment I! degree tf120℃
It is desirable that it is above. For example, at a heat treatment temperature of 140° C., the resistance value is saturated after 4 hours of O+EA treatment, as shown in (2) K in the figure. In addition, it was found that even when heat treatment was applied at a moderate temperature for 8 hours, there was no damage to the resistor body, and the variation in resistance value was small.

本実施例では、上述したように140℃4時間O熱処理
を行なった結果、3回の製作ロフト間の抵抗値のばらつ
きを±10s%i九、ロット内の同ばらつきを±7チ以
内に抑えることができ、室温蒸着によった場合にはロフ
ト間±5o−、ロフト内±15−であったばらつきを大
@に改善することができた。また、熱処理によって薄膜
の化学的安定化が図られ、抵抗値の経時変化を抑えるこ
とが可能であ石ことも明らかとなった。
In this example, as a result of O heat treatment at 140°C for 4 hours as described above, the variation in resistance value between the three production lofts was suppressed to ±10s% i9, and the variation within a lot was suppressed to within ±7cm. It was possible to greatly improve the variation between lofts of ±5° and within a loft of ±15° when room temperature deposition was performed. It was also revealed that heat treatment can chemically stabilize the thin film and suppress changes in resistance over time.

このようKして抵抗体36を熱処理した稜、鉛84重量
%、インジウム121ijlチ、金4重量−からなるフ
ンタクト層37を、上記抵抗体36と同様なリフトオフ
法を用いて形成する。次いで、釦84重量%、インジウ
ム12重量%、金4重量−からなる鉛電極38を配線す
るととによって、館3図に示すような回路を構成する仁
とができた。
After the resistor 36 has been heat-treated in this way, a dry layer 37 is formed using the same lift-off method as the resistor 36 described above, which is made of 84% by weight of lead, 121% by weight of indium, and 4% by weight of gold. Next, a lead electrode 38 made of 84% by weight of button, 12% by weight of indium, and 4% by weight of gold was wired, thereby creating a wire that constitutes a circuit as shown in Figure 3.

この場合、コンタクト層3Tおよび鉛電極38に用いる
鉛合金は、低融点金属であるため100℃以上の熱処理
は不可能であゐが、これらを形成する以前に抵抗体36
を形成する仁とくより、前述したように栖#折抗体36
を100℃以上で熱処理することが可能となる。
In this case, since the lead alloy used for the contact layer 3T and the lead electrode 38 is a low melting point metal, heat treatment of 100°C or higher is impossible, but the resistor 36 is
As mentioned above, the antibody 36 that forms the
can be heat-treated at 100°C or higher.

以上説明したように1本発明によれば、全インジウム2
合金間化合物からなる薄膜を室温蒸着によ勤形成し、そ
の後100℃以上の熱処理によって結晶粒を十分に大き
く成長させて化学的安定化をはかることにより、精度の
良い薄膜抵抗素子を再埃性良くかつ簡便に製作すること
が可能になるという優れた効果を有する。
As explained above, according to the present invention, all indium 2
A thin film made of an interalloy compound is formed by vapor deposition at room temperature, and then heat treated at 100°C or higher to grow sufficiently large crystal grains and chemically stabilized, making it possible to create highly precise thin film resistive elements that are dust-resistant. It has the excellent effect of being able to be manufactured easily and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は全インジウム2合金間化合物薄膜のシート抵抗
値の膜厚依存性を示すグラフ、第2図は同じく抵抗率の
粒径依存性を示すグラフ、第3図は本発明の一実施例を
適用した超伝導集積回路の抵抗素子部を示す断面図、j
Id図は本発明により形成した金インジウム薄膜抵抗素
子のシート抵抗値の熱処理時間依存性を示すグラフであ
る。 31・・・・シリコンウェハ、32・・・・−酸化けい
紫膜、33・・・・ニオブ膜、34・・・・ニオブ酸化
膜、35・・・・−酸化けい素膜、36・・・・抵抗体
、37・・・・コンタクト層、38・・・・鉛電極。 特許出願人 日本電信電話公社 代理人山 川 政樹 第1図 ハ%  4  (nm) 第2図 第3図
Figure 1 is a graph showing the film thickness dependence of the sheet resistance value of an all-indium diinteralloy compound thin film, Figure 2 is a graph showing the grain size dependence of the resistivity, and Figure 3 is an example of the present invention. Cross-sectional view showing the resistance element part of a superconducting integrated circuit to which J
The Id diagram is a graph showing the heat treatment time dependence of the sheet resistance value of the gold-indium thin film resistance element formed according to the present invention. 31... silicon wafer, 32...- silicon oxide purple film, 33... niobium film, 34... niobium oxide film, 35...- silicon oxide film, 36... ...Resistor, 37...Contact layer, 38...Lead electrode. Patent applicant: Masaki Yamakawa, agent of Nippon Telegraph and Telephone Public Corporation Figure 1: % 4 (nm) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 鉛合金超伝導集積回路の製造工1!において、基板上に
り7トオ7期のバタンを形成する工程と、ヒのバタン上
に金インジウム合金を’11f!!!で所望の厚さに堆
積した後り7トオ7によって所望のパタンを有する薄膜
抵抗体を形成する工程と、この薄jl!抵抗体を不活性
ガス雰囲気中において少なくと4100℃以上で熱処理
する工程とを含むことを特徴とする金インジウム薄膜抵
抗素子の形成方法。
Lead alloy superconducting integrated circuit manufacturing engineer 1! In this step, there is a step of forming a 7th to 7th period of baton on the substrate, and a process of forming a gold-indium alloy on the second baton. ! ! A process of forming a thin film resistor having a desired pattern by depositing it to a desired thickness with 7 to 7; 1. A method for forming a gold-indium thin film resistive element, comprising the step of heat-treating a resistor at at least 4100° C. or higher in an inert gas atmosphere.
JP56191430A 1981-11-28 1981-11-28 Method of forming gold indium thin film resistance element Pending JPS5892202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191430A JPS5892202A (en) 1981-11-28 1981-11-28 Method of forming gold indium thin film resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191430A JPS5892202A (en) 1981-11-28 1981-11-28 Method of forming gold indium thin film resistance element

Publications (1)

Publication Number Publication Date
JPS5892202A true JPS5892202A (en) 1983-06-01

Family

ID=16274476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191430A Pending JPS5892202A (en) 1981-11-28 1981-11-28 Method of forming gold indium thin film resistance element

Country Status (1)

Country Link
JP (1) JPS5892202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229802A (en) * 1987-03-19 1988-09-26 釜屋電機株式会社 Manufacture of amorphous two-component alloy thin film resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229802A (en) * 1987-03-19 1988-09-26 釜屋電機株式会社 Manufacture of amorphous two-component alloy thin film resistor

Similar Documents

Publication Publication Date Title
US4129848A (en) Platinum film resistor device
JPH0218561B2 (en)
JPH09502055A (en) SiCr thin film resistors with improved temperature coefficient of resistance and sheet resistance
US5494845A (en) Method of fabrication of bilayer thin film resistor
JPS5892202A (en) Method of forming gold indium thin film resistance element
JPS61181104A (en) Platinum temperature measuring resistor
JPS61181103A (en) Platinum temperature measuring resistor
JP3047137B2 (en) Manufacturing method of humidity sensor
US3519891A (en) Thin film resistor and method for making same
JPH0342683B2 (en)
JP4111567B2 (en) Resistance element manufacturing method
JPH06302600A (en) Semiconductor device
JP2679811B2 (en) Gas detector
JPS62224002A (en) Manufacture of thin film chip resistor
JPH0964291A (en) Ferroelectric memory and manufacture thereof
JP2709387B2 (en) Method for manufacturing thin-film magnetic head
JP2001303257A (en) Method for manufacturing thin film and method for manufacturing thin-film platinum temperature sensor
JP2890771B2 (en) Manufacturing method of superconducting thin film element
JPH0555469A (en) Manufacture of semiconductor device
JPS5919393A (en) Method of producing thin film circuit
JPS63263702A (en) Manufacture of platinum thin film temperature sensor
JPH03165515A (en) Contact forming method
JPH05136137A (en) Manufacture of semiconductor device
JPH03194901A (en) Resistor and its manufacture
JPH0616441B2 (en) Metal film resistor and manufacturing method thereof