JP2890771B2 - Manufacturing method of superconducting thin film element - Google Patents

Manufacturing method of superconducting thin film element

Info

Publication number
JP2890771B2
JP2890771B2 JP2253622A JP25362290A JP2890771B2 JP 2890771 B2 JP2890771 B2 JP 2890771B2 JP 2253622 A JP2253622 A JP 2253622A JP 25362290 A JP25362290 A JP 25362290A JP 2890771 B2 JP2890771 B2 JP 2890771B2
Authority
JP
Japan
Prior art keywords
thin film
width
superconducting thin
manufacturing
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2253622A
Other languages
Japanese (ja)
Other versions
JPH04132279A (en
Inventor
啓好 榎並
利之 篠原
伸章 川原
博紀 星崎
実晶 河鰭
徹 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2253622A priority Critical patent/JP2890771B2/en
Publication of JPH04132279A publication Critical patent/JPH04132279A/en
Application granted granted Critical
Publication of JP2890771B2 publication Critical patent/JP2890771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超伝導薄膜素子の製造方法に関し、特に超伝
導転移温度幅が小さい弱結合ジョセフソン接合を有する
超伝導薄膜素子を製造する方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconducting thin film element, and more particularly, to a method for manufacturing a superconducting thin film element having a weakly coupled Josephson junction having a small superconducting transition temperature width. .

[従来の技術] 近年の薄膜形成技術の進展に伴い、超伝導セラミクス
の薄膜を基板上に形成して種々のセンサ類を製作する試
みがなされており、特に高感度の磁気センサを実現する
ためには超伝導薄膜に弱結合ジョセフソン接合を作り込
む必要がある。
[Prior Art] With the progress of thin film forming technology in recent years, attempts have been made to form various types of sensors by forming a thin film of superconducting ceramics on a substrate, and in particular to realize a highly sensitive magnetic sensor. It is necessary to build a weakly coupled Josephson junction in a superconducting thin film.

この弱結合ジョセフソン接合を実現する方法として
は、従来、化学的ないし物理的エッチング、あるいはレ
ーザトリミング等により、超伝導薄膜を所定形状に成形
する等の方法が試みられている。
Conventionally, as a method of realizing the weakly coupled Josephson junction, a method of forming a superconducting thin film into a predetermined shape by chemical or physical etching, laser trimming, or the like has been attempted.

[発明が解決しようとする課題] しかしながら、上記従来の方法では超微細加工が困難
である上に、加工部以外の比較的広い範囲に熱等による
悪影響を及ぼし、特に結晶粒界のない高品質の膜体にお
いては、超伝導転移温度幅を小さく抑えて、臨界電流値
が十分に小さい弱結合ジョセフソン接合を実現すること
が困難であった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional method, it is difficult to perform ultra-fine processing, and it has a bad influence by heat or the like on a relatively wide area other than the processed part, and particularly, high quality without crystal grain boundaries. In the film body, it was difficult to suppress the superconducting transition temperature width and realize a weakly coupled Josephson junction having a sufficiently small critical current value.

本発明はかかる課題を解決するもので、超伝導転移温
度幅が十分に小さい状態で、臨界電流値が小さい弱結合
ジョセフソン接合を実現した超伝導薄膜素子の製造方法
を提供することを目的とする。
An object of the present invention is to provide a method of manufacturing a superconducting thin-film element which realizes a weakly coupled Josephson junction having a small critical current value in a state where the superconducting transition temperature width is sufficiently small, in order to solve such a problem. I do.

[課題を解決するための手段] 本発明の製造方法は、基板1上に500Å〜1000Åの厚
さでセラミクス超伝導薄膜2を形成し、該超伝導薄膜2
の一部を切り込んで幅が10μm〜30μmの狭小なブリッ
ジ部21を形成するとともに、該ブリッジ部21を横切って
その表面に0.1μm〜0.4μmの幅で電子ビームを照射す
ることを特徴とするものである。
[Means for Solving the Problems] According to the manufacturing method of the present invention, a ceramic superconducting thin film 2 is formed on a substrate 1 to a thickness of 500 to 1000 mm,
Is cut to form a narrow bridge portion 21 having a width of 10 μm to 30 μm, and the surface thereof is irradiated with an electron beam at a width of 0.1 μm to 0.4 μm across the bridge portion 21. Things.

[作用] かかる方法により製造された超伝導薄膜素子は、超伝
導転移温度幅が絶対温度10K以下と小さく、また、臨界
電流値も十分小さなものとなる。かかる方法は特に結晶
粒界のない高品質膜体に対して極めて有効である。
[Operation] The superconducting thin film element manufactured by such a method has a small superconducting transition temperature width of 10 K or less in absolute temperature and a sufficiently small critical current value. Such a method is extremely effective especially for a high-quality film having no crystal grain boundaries.

[実施例] 以下、本発明の製造方法の一例を第1図ないし第4図
に従って説明する。
Example An example of the manufacturing method of the present invention will be described below with reference to FIGS. 1 to 4.

最初に第1図に示す如く、単結晶MgO基板1の(001)
面上にセラミクス酸化物Y1Ba2C5Ox(YBCOという)の超
伝導薄膜2を所定厚aで形成する。この薄膜形成はRF−
マグネトロンスパッタ法によりYBCO薄膜2を基板1上に
堆積せしめるもので、その条件を以下に示す。
First, as shown in FIG. 1, (001) of the single crystal MgO substrate 1
On the surface, a superconducting thin film 2 of a ceramic oxide Y1Ba2C5Ox (referred to as YBCO) is formed with a predetermined thickness a. This thin film formation is RF-
The YBCO thin film 2 is deposited on the substrate 1 by a magnetron sputtering method. The conditions are as follows.

ターゲット;Y1Ba2Cu4.5Ox焼結体 基板温度;700℃ Ar流量;30sccm O2流量;10sccm スパッタ圧力;10m Torr スパッタ電力;150W ターゲット基板間距離;40mm 堆積レート;5nm/min 続いて、YBCO薄膜2の一部を第2図に示す如く両側よ
り矩形状に切り込んで所定幅bの挟小なブリッジ部21を
形成する。このブリッジ部21の形成はケミカル・エッチ
ングにより行い、フォトレジストとしてシプレー社製S1
400−25、エッチャントとして塩酸水溶液(0.15vol%)
を使用した。
Target; Y1Ba2Cu4.5Ox sintered body Substrate temperature; 700 ° C Ar flow rate; 30 sccm O2 flow rate; 10 sccm Sputter pressure; 10 mTorr Sputter power; 150 W Distance between target substrates; 40 mm Deposition rate; 5 nm / min The portion is cut into a rectangular shape from both sides as shown in FIG. 2 to form a small bridge portion 21 having a predetermined width b. The formation of the bridge portion 21 is performed by chemical etching.
400-25, hydrochloric acid aqueous solution as etchant (0.15vol%)
It was used.

しかる後、上記ブリッジ部21を横切って電子線を照射
する(第3図矢印)。この電子線照射は、日本電子社製
JEM−4000EX電子顕微鏡内に試料をセットし、加速電圧4
00KV、フィラメント電流132.5μA、電子線スポットサ
イズ約4nmで行った。かくして、ブリッジ部21のYBCO薄
膜には電子線露光により非超伝導体化した所定幅cの帯
状層22が形成される(第4図)。
Thereafter, an electron beam is irradiated across the bridge portion 21 (arrow in FIG. 3). This electron beam irradiation is made by JEOL
Set the sample in the JEM-4000EX electron microscope and set the accelerating voltage to 4
The measurement was performed at 00 KV, a filament current of 132.5 μA, and an electron beam spot size of about 4 nm. Thus, a strip-shaped layer 22 having a predetermined width c, which is made non-superconductor, is formed on the YBCO thin film of the bridge portion 21 by electron beam exposure (FIG. 4).

上記製造方法において、超伝導薄膜の膜厚a、ブリッ
ジ部の幅b、電子ビーム加工層の幅cを変更して得られ
た実験結果を別表に示す。なお、表中、Tc・onは超伝導
開始温度、ΔTは超伝導転移点での抵抗値10〜90%変化
に要する温度幅(超伝導転移温度幅)、Icは絶対温度10
Kにおける臨界電流値である。この臨界電流値Icは、ブ
リッジ部を形成した状態から電子ビーム加工により1/10
以下にすることを目標とした。
In the above manufacturing method, the results of experiments obtained by changing the thickness a of the superconducting thin film, the width b of the bridge portion, and the width c of the electron beam processing layer are shown in a separate table. In the table, Tc · on is the superconducting onset temperature, ΔT is the temperature width required for a change in resistance at the superconducting transition point of 10 to 90% (superconducting transition temperature width), and Ic is the absolute temperature 10
It is the critical current value at K. The critical current value Ic is reduced by 1/10 from the state where the bridge portion is formed by electron beam processing.
The goal was to:

表より知られる如く、実施例1、2、4においては、
温度幅ΔTが大幅に増大することなく絶対温度10K以下
に抑えられており、臨界電流値Icはブリッジ部の加工を
しただけの状態よりいずれも1/10以下に減少して、弱結
合ジョセフソン接合が形成されたことを示している。ま
た、実施例3は残留抵抗が零になっておらず、厳密な意
味で弱結合ジョセフソン接合にはなっていないが、温度
幅ΔTは絶対温度10K以下に抑えられており、各種セン
サの実現には使用し得る。
As can be seen from the table, in Examples 1, 2, and 4,
Absolute temperature is kept at 10K or less without a large increase in temperature width ΔT. Critical current value Ic is reduced to 1/10 or less in any state just after processing the bridge part, and weak coupling Josephson This indicates that a bond has been formed. In the third embodiment, the residual resistance is not zero and is not a strictly weak Josephson junction, but the temperature width ΔT is suppressed to an absolute temperature of 10 K or less, and various sensors are realized. Can be used.

これら実施例1〜4によれば、YBCO薄膜の膜厚a(第
1図)は500Å〜1000Å、ブリッジ部の幅b(第2図)
は10μm〜30μm、電子ビーム加工層の幅c(第4図)
は0.1μm〜0.4μmとするのが良い。
According to these Examples 1 to 4, the thickness a (FIG. 1) of the YBCO thin film is 500 ° to 1000 °, and the width b of the bridge portion (FIG. 2).
Is 10 μm to 30 μm, the width c of the electron beam processing layer (FIG. 4)
Is preferably 0.1 μm to 0.4 μm.

これに対して、膜厚が500Åより薄いと、加工前の温
度幅ΔTが非常に大きいため不適である(参考例1)。
また、膜厚が1000Åを越えると臨界電流値Icの低減が十
分でなく(参考例4)あるいは温度幅ΔTが増大する
(参考例5)。
On the other hand, if the film thickness is smaller than 500 °, the temperature width ΔT before processing is extremely large, which is not suitable (Reference Example 1).
On the other hand, when the film thickness exceeds 1000 °, the critical current value Ic is not sufficiently reduced (Reference Example 4) or the temperature width ΔT increases (Reference Example 5).

ブリッジ部の幅は30μmを越えると温度幅ΔTが増大
する(参考例6)。電子ビーム加工層の幅が0.1μmよ
り小さいと臨界電流値Icが小さくならず(参考例2)、
0.4μmを越えると温度幅ΔTが増大する(参考例
3)。
When the width of the bridge portion exceeds 30 μm, the temperature width ΔT increases (Reference Example 6). When the width of the electron beam processing layer is smaller than 0.1 μm, the critical current value Ic does not decrease (Reference Example 2),
If it exceeds 0.4 μm, the temperature width ΔT increases (Reference Example 3).

[発明の効果] 以上の如く、本発明の製造方法によれば、超伝導転移
温度幅を小さく抑えた状態で、臨界電流値の十分小さい
弱結合ジョセフソン接合を有する超伝導薄膜素子を実現
することができ、高感度磁気センサ等の実現に大きく寄
与するものである。
[Effects of the Invention] As described above, according to the manufacturing method of the present invention, a superconducting thin-film element having a weakly-coupled Josephson junction with a sufficiently small critical current value is realized with the superconducting transition temperature range kept small. This greatly contributes to the realization of a high-sensitivity magnetic sensor and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第4図は超伝導薄膜素子の製造過程を説明
する概念的斜視図である。 1……基板 2……超伝導薄膜 21……ブリッジ部 22……電子ビーム加工層
1 to 4 are conceptual perspective views for explaining a manufacturing process of a superconducting thin film element. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Superconducting thin film 21 ... Bridge part 22 ... Electron beam processing layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星崎 博紀 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (72)発明者 河鰭 実晶 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (72)発明者 井村 徹 愛知県名古屋市千種区東山元町2―58 (56)参考文献 特開 平1−239977(JP,A) 特開 平1−202876(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 39/00 H01L 39/22 H01L 39/24 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroki Hoshizaki 1-1-1, Showa-cho, Kariya-shi, Aichi Japan Inside of Denso Co., Ltd. In-company (72) Inventor Toru Imura 2-58 Higashiyama Motomachi, Chikusa-ku, Nagoya-shi, Aichi (56) References JP-A-1-239977 (JP, A) JP-A-1-202876 (JP, A) (58) Surveyed fields (Int. Cl. 6 , DB name) H01L 39/00 H01L 39/22 H01L 39/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に500Å〜1000Åの厚さでセラミク
ス超伝導薄膜を形成し、該超伝導薄膜の一部を切り込ん
で幅が10μm〜30μmの狭小なブリッジ部を形成すると
ともに、該ブリッジ部を横切ってその表面に0.1μm〜
0.4μmの幅で電子ビームを照射することを特徴とする
超伝導薄膜素子の製造方法。
1. A ceramic superconducting thin film having a thickness of 500 to 1000 mm is formed on a substrate, and a part of the superconducting thin film is cut to form a narrow bridge portion having a width of 10 to 30 μm. 0.1μm ~
A method for manufacturing a superconducting thin film element, comprising irradiating an electron beam with a width of 0.4 μm.
JP2253622A 1990-09-21 1990-09-21 Manufacturing method of superconducting thin film element Expired - Lifetime JP2890771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253622A JP2890771B2 (en) 1990-09-21 1990-09-21 Manufacturing method of superconducting thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253622A JP2890771B2 (en) 1990-09-21 1990-09-21 Manufacturing method of superconducting thin film element

Publications (2)

Publication Number Publication Date
JPH04132279A JPH04132279A (en) 1992-05-06
JP2890771B2 true JP2890771B2 (en) 1999-05-17

Family

ID=17253917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253622A Expired - Lifetime JP2890771B2 (en) 1990-09-21 1990-09-21 Manufacturing method of superconducting thin film element

Country Status (1)

Country Link
JP (1) JP2890771B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134803A (en) * 1997-09-30 2002-05-10 Sentan Kagaku Gijutsu Incubation Center:Kk Manufacturing method of coplanar josephson element

Also Published As

Publication number Publication date
JPH04132279A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
JPH0214793B2 (en)
EP0325765B1 (en) Josephson device having a josephson junction structure suitable for an oxide superconductor
JP2890771B2 (en) Manufacturing method of superconducting thin film element
JPH0340483B2 (en)
JPH0494179A (en) Production of oxide superconducting thin film device
JP3142895B2 (en) Method for manufacturing field emission electrode
JP3288301B2 (en) Thin film resistor, method of manufacturing the same, and wiring board incorporating the thin film resistor
JP3424751B2 (en) Method of forming metal oxide film by sputtering method
JPH05152625A (en) Superconducting josephson junction element
JP3422226B2 (en) Aperture and manufacturing method thereof
JP2000299507A (en) Josephson element and manufacture thereof
JPH04206244A (en) Aperture device and manufacture thereof
JPH08227743A (en) Metal electrode for oxide superconductor
JP2709387B2 (en) Method for manufacturing thin-film magnetic head
JP2966378B2 (en) Method for producing Ba-K-Bi-O-based superconducting thin film
JPH0342683B2 (en)
JPH05152634A (en) Manufacture of superconducting josephson junction element
JPS5829618B2 (en) Electrode formation method for semiconductor devices
JPS61272901A (en) Manufacture of thermal head
Scofield et al. Fabrication of Encapsulated Indium Films for Melting Experiments
JPH03110878A (en) Manufacture of superconducting element
JPH02197179A (en) Josephson junction element and manufacture thereof
JPS60160676A (en) Dry type etching method of magnetoresistance effect element
JPH01205481A (en) Manufacture of dc-squid
JPH07106650A (en) Fabrication of composite josephson junction device