JPH0214793B2 - - Google Patents

Info

Publication number
JPH0214793B2
JPH0214793B2 JP54030247A JP3024779A JPH0214793B2 JP H0214793 B2 JPH0214793 B2 JP H0214793B2 JP 54030247 A JP54030247 A JP 54030247A JP 3024779 A JP3024779 A JP 3024779A JP H0214793 B2 JPH0214793 B2 JP H0214793B2
Authority
JP
Japan
Prior art keywords
film
detector
magnetic
conductive film
active part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54030247A
Other languages
Japanese (ja)
Other versions
JPS55123183A (en
Inventor
Sotaro Edokoro
Michio Murahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3024779A priority Critical patent/JPS55123183A/en
Publication of JPS55123183A publication Critical patent/JPS55123183A/en
Publication of JPH0214793B2 publication Critical patent/JPH0214793B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 本発明は、磁気検出器に関するものである。[Detailed description of the invention] The present invention relates to a magnetic detector.

強磁性体の磁気抵抗効果を利用する磁気検出器
は、薄膜集積化が可能であり、コンピユータメモ
リ、センサー等に広く利用されている。一般に強
磁性体としてはパーマロイ(Fe−Ni合金)が使
用され、検出効率を高めるためにその膜厚は500
Å前後のものが用いられる。このため外部に接続
するための端子部は、抵抗が小さく接続特性を良
好にするために導体材料が使用される。したがつ
て、検出用強磁性体膜と導体膜の接続が必要とな
る。
Magnetic detectors that utilize the magnetoresistive effect of ferromagnetic materials can be integrated into thin films and are widely used in computer memories, sensors, and the like. Permalloy (Fe-Ni alloy) is generally used as the ferromagnetic material, and its film thickness is 500 mm to increase detection efficiency.
Those around Å are used. For this reason, a conductive material is used for the terminal portion for external connection in order to have low resistance and good connection characteristics. Therefore, it is necessary to connect the detection ferromagnetic film and the conductive film.

このような磁気検出器の製造方法は種々考案さ
れている。検出器活性部と端子部を独立に形成す
る方法は、その順序に関係なく、両パターンの目
合せ不良及び検出器活性部と端子部の電気的接触
不良が問題となる。これを改善するために、検出
器活性部と端子部を一括して形成する方法が考案
された(特願昭46−76880号参照)。この方法は、
検出器用磁性体薄膜と導体薄膜をこの順序で連続
して蒸着等で作成し、一括露光により検出器活性
部及びその他の端子部のパターンのレジストマス
クを形成後、イオンミリングにより加工する。最
終的に、検出器活性部上の導体膜を化学エツチン
グにより除去して検出器を形成する。この場合、
磁性体膜はすべての導体パターン下に残る。この
構成のため、その後の熱処理で、磁性体膜と導体
膜が相互拡散し、導体膜の抵抗値が変化する。実
用的にはこの抵抗値変化を除去しなければならな
い。
Various methods for manufacturing such magnetic detectors have been devised. Regardless of the order in which the detector active part and the terminal part are formed independently, problems arise such as poor alignment between the two patterns and poor electrical contact between the detector active part and the terminal part. In order to improve this problem, a method has been devised in which the active part of the detector and the terminal part are formed all at once (see Japanese Patent Application No. 76880/1983). This method is
A magnetic thin film for a detector and a thin conductive film are successively created in this order by vapor deposition or the like, and after a resist mask with a pattern for the active part of the detector and other terminal parts is formed by batch exposure, it is processed by ion milling. Finally, the conductive film on the detector active portion is removed by chemical etching to form the detector. in this case,
The magnetic film remains under all conductor patterns. Due to this configuration, the magnetic film and the conductor film interdiffuse during subsequent heat treatment, and the resistance value of the conductor film changes. Practically speaking, this resistance value change must be eliminated.

本発明の目的は、磁気検出器の上記の要請を満
たす新規な構造を提供することである。
It is an object of the present invention to provide a new structure for a magnetic detector that meets the above requirements.

すなわち本発明は、基体上に検出器活性部およ
びその端子部が検出器用磁性体薄膜により形成さ
れており、その端子部上には中間金属膜を介して
導体膜が形成されている磁気検出器である。中間
金属膜としてはモリブデン(Mo)、タングステ
ン(W)、もしくはタンタル(Ta)の単独膜また
はそれらの複合膜が適している。
That is, the present invention provides a magnetic detector in which a detector active part and its terminal part are formed of a magnetic thin film for a detector on a base body, and a conductive film is formed on the terminal part with an intermediate metal film interposed therebetween. It is. As the intermediate metal film, a single film of molybdenum (Mo), tungsten (W), or tantalum (Ta) or a composite film thereof is suitable.

本発明の磁気検出器を製造するには、一例とし
て基体上に磁気検出用軟磁性体薄膜、中間金属膜
及び導体膜をこの順序で被着し、検出器形状に上
記三層膜を加工し、次に検出器の活性部分の上記
中間金属膜及び導体膜を除去すればよい。
To manufacture the magnetic detector of the present invention, for example, a soft magnetic thin film for magnetic detection, an intermediate metal film, and a conductive film are deposited on a base in this order, and the three-layer film is processed into the shape of a detector. Then, the intermediate metal film and conductor film of the active portion of the detector may be removed.

通常、薄膜をレジストパターンをマスクとして
加工する方法として、化学エツチングとドライエ
ツチングがある。ドライエツチングの内でイオン
ミリングは精度良い加工に適していることが知ら
れている。これは、イオン化室で発生したイオン
を加速し運動方向のそろつた平行ビーム束として
ターゲツト(試料)に衝突させることができるた
めである。しかしイオンミリングでは、被エツチ
ング材料によりエツチング速度が異なるが、化学
エツチングのような完全な選択性は無い、したが
つて多層膜をイオンミリングで加工し、一部の層
の膜のみを残すことは困難である。一方、ドライ
エツチングの他の方法であるプラズマエツチング
では、イオン種の化学反応を利用するので、イオ
ンミリングより選択性に優れている。このこと
は、反面プラズマエツチングではエツチングでき
ない材料が存在することを意味する。W、Mo、
チタン(Ti)及びTaはフレオンと酸素の混合ガ
スのプラズマによりエツチングできるが、パーマ
ロイ(NiFe)はほとんどエツチングされない。
金(Au)の化学エツチヤントとしてヨード・ヨ
ードカリ溶液(I2+KI+H2O)が知られている。
このエツチヤントに対してパーマロイは耐性があ
りエツチングされないし、又磁気特性の変化も示
さない。
Generally, there are chemical etching and dry etching methods for processing thin films using a resist pattern as a mask. Among dry etching methods, ion milling is known to be suitable for high-precision processing. This is because the ions generated in the ionization chamber can be accelerated and collided with the target (sample) as a parallel beam bundle with a uniform direction of motion. However, with ion milling, the etching speed varies depending on the material to be etched, but it is not completely selective like chemical etching.Therefore, it is not possible to process a multilayer film by ion milling and leave only some layers of the film. Have difficulty. On the other hand, plasma etching, which is another method of dry etching, utilizes chemical reactions of ion species, and therefore has superior selectivity than ion milling. On the other hand, this means that there are materials that cannot be etched by plasma etching. W.Mo.
Titanium (Ti) and Ta can be etched by a plasma of a mixture of freon and oxygen, but permalloy (NiFe) is hardly etched.
Iodine-iodopotassium solution (I 2 + KI + H 2 O) is known as a chemical etchant for gold (Au).
Permalloy is resistant to this etchant and does not etch or exhibit any change in magnetic properties.

このエツチヤントに対して、Mo、Wの薄膜は
比較的容易にエツチングされる。したがつて、パ
ーマロイ/Mo(又はW)/Auの複合膜をヨード
ヨードカリ溶液でエツチングすると上部のMo
(又はW)/Auのみを除去することができる。
With this etchant, thin films of Mo and W can be etched relatively easily. Therefore, when a permalloy/Mo (or W)/Au composite film is etched with iodo-iodopotassium solution, the upper Mo
Only (or W)/Au can be removed.

Au膜を導体として使用する場合、基板に対す
る付着力を向上するためにクロム(Cr)、Ti等の
中間膜を使用するのが一般的である。
When using an Au film as a conductor, it is common to use an intermediate film of chromium (Cr), Ti, etc. to improve adhesion to the substrate.

中間膜として、これらCr、Tiを用いると、膜
形成後の焼鈍によりAu膜の実効抵抗値は増加す
る。例えば、3000ÅのAu膜と400ÅのCr膜又は
Ti膜の複合膜では、300℃、2時間の焼鈍で抵抗
値はそれぞれ初期値に対して7倍と3倍になる。
一方中間膜として、Mo、W、Taを用いると同様
の複合膜での同様の焼鈍では抵抗値に有意な変化
は認められなかつた。
When these Cr and Ti are used as the intermediate film, the effective resistance value of the Au film increases due to annealing after film formation. For example, 3000Å Au film and 400Å Cr film or
In the Ti film composite film, annealing at 300°C for 2 hours increases the resistance value by 7 times and 3 times the initial value, respectively.
On the other hand, when Mo, W, and Ta were used as the intermediate film, no significant change in resistance was observed in the same annealing of a similar composite film.

本発明を図面を用いて説明する。第1図は、本
発明の磁気検出器の形成過程の一例を示してい
る。各工程を具体的に説明するために、以下に一
つの実施例で示す。なお本発明は、この実施例で
制約を受けるものではない。
The present invention will be explained using the drawings. FIG. 1 shows an example of the process of forming the magnetic detector of the present invention. In order to specifically explain each step, one example will be shown below. Note that the present invention is not limited to this embodiment.

第2図を参照して、aのようにシリコンウエハ
ー基板1上に5000Åの二酸化ケイ素(SiO2)2
をスパツタリングで付着して基体とし、その上に
500Åのパーマロイ(約81%Ni−Fe)3、400Å
のMo4及び4000ÅのAu5をこの順序で連続して
電子ビーム蒸着法で付着する。この時、基板温度
は、パーマロイの場合300℃に、MoとAuの場合
は150℃に保たれる。この上にポジテイブホトレ
ジストAZ−1350Jを0.8μmの厚さにスピン塗布
し、検出器活性部と端子部が組込まれたマスクを
用いて一括露光して、bに示すようなレジストパ
ターン6を形成する。このレジストパターン6を
マスクとしてcのようにイオンミリングで
NiFe/Mo/Au膜を加工する。レジストを剥離
後、dに示すように検出器活性部7を含む領域以
外を被覆するレジストパターン8を形成する。こ
の領域は検出器活性部を充分含むが端子部を含ま
ない。なお、レジスト厚さは0.5μm以上が望まし
い。このレジストパターンをマスクとして化学エ
ツチング(ヨード・ヨードカリ溶液)で検出器活
性部のAu及びMoを除去する。最後にレジストを
剥離するとeに示すように検出器の形成が完了す
る。
Referring to FIG. 2, silicon dioxide (SiO 2 ) 2 with a thickness of 5000 Å is placed on a silicon wafer substrate 1 as shown in a.
is sputtered to form a base, and then
500Å permalloy (approximately 81% Ni-Fe) 3, 400Å
of Mo4 and 4000 Å of Au5 are sequentially deposited in this order by electron beam evaporation. At this time, the substrate temperature is maintained at 300°C for permalloy and 150°C for Mo and Au. On top of this, positive photoresist AZ-1350J is spin-coated to a thickness of 0.8 μm, and a resist pattern 6 as shown in b is formed by exposing it all at once using a mask that incorporates the active part of the detector and the terminal part. . Using this resist pattern 6 as a mask, perform ion milling as shown in c.
Process NiFe/Mo/Au film. After peeling off the resist, a resist pattern 8 is formed covering the area other than the area including the detector active area 7, as shown in d. This region contains enough of the detector active area but does not include the terminal area. Note that the resist thickness is preferably 0.5 μm or more. Using this resist pattern as a mask, the Au and Mo in the active area of the detector are removed by chemical etching (iodine/iodopotassium solution). Finally, when the resist is peeled off, the formation of the detector is completed as shown in e.

この検出器を300℃で24時間焼鈍しても導体部
(端子部)の抵抗変化は認められなかつた。
Even when this detector was annealed at 300°C for 24 hours, no change in resistance of the conductor (terminal) was observed.

以上、一つの実施例で説明したように、本発明
により、後処理により抵抗値変化が少ない磁気検
出器が得られる。またその製造工程も少なくてす
む。なお、上記の例では第2の加工工程に化学エ
ツチングを使用したが、フレオンと酸素の混合ガ
スを用いるプラズマエツチングを用いても同様な
効果が得られる。この場合、中間膜としてMo、
W以外にTaも使用することができる。この他、
本発明の基本思想内での細部の変更は本発明に含
まれるものである。
As described above in one embodiment, according to the present invention, a magnetic detector whose resistance value changes little by post-processing can be obtained. Moreover, the number of manufacturing steps can be reduced. Although chemical etching was used in the second processing step in the above example, a similar effect can be obtained by using plasma etching using a mixed gas of freon and oxygen. In this case, Mo as the interlayer film,
In addition to W, Ta can also be used. In addition,
Changes in details within the basic idea of the invention are included within the scope of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気検出器を製造する一例の
工程図、第2図は本発明の一実施例を製造工程に
従つて示した断面形状図で、aは基体上に検出器
用磁性体薄膜、中間金属膜および導体膜の三層膜
を形成したところ、bはその上にレジストパター
ンを形成したところ、cは三層膜を加工したとこ
ろ、dは検出器活性部を含む領域以外をレジスト
で被覆したところ、eは完成した磁気検出器をそ
れぞれ示している。 1……基板、2……絶縁膜、3……検出器用磁
性体薄膜、4……中間金属膜、5……導体膜、6
……検出器レジストパターン、7……検出器活性
部、8……検出器活性部加工用レジストパター
ン。
Fig. 1 is a process diagram of an example of manufacturing a magnetic detector of the present invention, Fig. 2 is a cross-sectional diagram showing an embodiment of the present invention according to the manufacturing process, and a shows a magnetic material for a detector on a substrate. A three-layer film consisting of a thin film, an intermediate metal film, and a conductor film was formed. b shows a resist pattern formed on it, c shows a processed three-layer film, and d shows the area other than the area containing the active part of the detector. After coating with resist, e shows the completed magnetic detector, respectively. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Insulating film, 3...Magnetic thin film for detector, 4...Intermediate metal film, 5...Conductor film, 6
...Detector resist pattern, 7...Detector active part, 8...Resist pattern for processing detector active part.

Claims (1)

【特許請求の範囲】 1 基体上に検出器活性部およびその端子部が検
出器用金属磁性体薄膜により形成されており、そ
の端子部上には導体膜がモリブデン、タングステ
ンもしくはタンタルからなる単独膜またはそれら
の複合膜を介して形成されていることを特徴とす
る磁気検出器。 2 導体膜は金である特許請求の範囲第1項に記
載の磁気検出器。
[Scope of Claims] 1. A detector active part and its terminal part are formed of a metal magnetic thin film for the detector on a substrate, and a conductive film is formed on the terminal part by a single film made of molybdenum, tungsten or tantalum, or a conductive film made of molybdenum, tungsten or tantalum. A magnetic detector characterized by being formed through a composite film thereof. 2. The magnetic detector according to claim 1, wherein the conductive film is made of gold.
JP3024779A 1979-03-15 1979-03-15 Magnetic detector Granted JPS55123183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3024779A JPS55123183A (en) 1979-03-15 1979-03-15 Magnetic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024779A JPS55123183A (en) 1979-03-15 1979-03-15 Magnetic detector

Publications (2)

Publication Number Publication Date
JPS55123183A JPS55123183A (en) 1980-09-22
JPH0214793B2 true JPH0214793B2 (en) 1990-04-10

Family

ID=12298372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024779A Granted JPS55123183A (en) 1979-03-15 1979-03-15 Magnetic detector

Country Status (1)

Country Link
JP (1) JPS55123183A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764913A (en) * 1980-10-08 1982-04-20 Hitachi Ltd Manufacture of magnetic bubble memory elemebt
JPS57126187A (en) * 1981-01-28 1982-08-05 Hitachi Ltd Reluctance element
JPS57197885A (en) * 1981-05-29 1982-12-04 Hitachi Ltd Magnetoresistive element
JPS57204186A (en) * 1981-06-10 1982-12-14 Hitachi Ltd Electrode processing method for magnetic reluctance element
JPS58178576A (en) * 1982-04-14 1983-10-19 Nec Corp Manufacture of ferromagnetic magneto-resistance effect element
JPS5999370A (en) * 1982-11-30 1984-06-08 Copal Co Ltd Production of magnetic detector with magneto-resistance element
JPS59114413A (en) * 1982-12-21 1984-07-02 Copal Co Ltd Magnetic detector with magneto-resistance element
JPS62102574A (en) * 1985-10-29 1987-05-13 Victor Co Of Japan Ltd Magnetoresistance effect element
JPS62115790A (en) * 1986-09-29 1987-05-27 Hitachi Ltd Magnetoresistance effect element
JPS62115789A (en) * 1986-09-29 1987-05-27 Hitachi Ltd Magnetoresistance effect element
JPH0445263Y2 (en) * 1986-11-07 1992-10-23
US4857418A (en) * 1986-12-08 1989-08-15 Honeywell Inc. Resistive overlayer for magnetic films
US4754431A (en) * 1987-01-28 1988-06-28 Honeywell Inc. Vialess shorting bars for magnetoresistive devices
JP2720442B2 (en) * 1988-02-04 1998-03-04 ソニー株式会社 Method of manufacturing magnetoresistive element
US4918655A (en) * 1988-02-29 1990-04-17 Honeywell Inc. Magnetic device integrated circuit interconnection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580366A (en) * 1978-12-13 1980-06-17 Toshiba Corp Production of compound semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580366A (en) * 1978-12-13 1980-06-17 Toshiba Corp Production of compound semiconductor element

Also Published As

Publication number Publication date
JPS55123183A (en) 1980-09-22

Similar Documents

Publication Publication Date Title
JPH0214793B2 (en)
US3442701A (en) Method of fabricating semiconductor contacts
US6764960B2 (en) Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film
IL30464A (en) Method of fabricating semiconductor contact and device made by said method
US4495026A (en) Method for manufacturing metallized semiconductor components
US4462881A (en) Method of forming a multilayer thin film
JPS6317348B2 (en)
JP4083900B2 (en) Thin film resistor and manufacturing method thereof
JPS60103668A (en) Semiconductor device
JPH05291256A (en) Manufacture of thin-film conductor pattern
JPS605230B2 (en) Manufacturing method of Josephson device
JP2691175B2 (en) Patterned oxide superconducting film formation method
JP2890771B2 (en) Manufacturing method of superconducting thin film element
JPS59100537A (en) Formation of electrode wiring
JPS59178681A (en) Pattern forming method
JPS61210508A (en) Manufacture of thin-film magnetic head
JPH06109411A (en) Strain element
JPH01303773A (en) Laminated element
JPS6221283A (en) Superconductive integrated circuit
JPS60120526A (en) Formation of minute pattern
JPS60210887A (en) Manufacture of josephson junction element
JPH0410676A (en) Formation of superconducting film of patterned oxide
JPS58209182A (en) Manufacture of josephson junction element
JPS6233425A (en) Formation of electrode
JPS6035730B2 (en) Manufacturing method of magnetoresistive magnetic head