JPS59114413A - Magnetic detector with magneto-resistance element - Google Patents

Magnetic detector with magneto-resistance element

Info

Publication number
JPS59114413A
JPS59114413A JP57224121A JP22412182A JPS59114413A JP S59114413 A JPS59114413 A JP S59114413A JP 57224121 A JP57224121 A JP 57224121A JP 22412182 A JP22412182 A JP 22412182A JP S59114413 A JPS59114413 A JP S59114413A
Authority
JP
Japan
Prior art keywords
magnetoresistive
film
magneto
elements
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57224121A
Other languages
Japanese (ja)
Inventor
Shigekazu Nakamura
中村 繁和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP57224121A priority Critical patent/JPS59114413A/en
Publication of JPS59114413A publication Critical patent/JPS59114413A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Heads (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve the detection accuracy remarkably with an equal magnetic characteristic by coinciding magneto-resistance elements stacked precisely in the dimensions and shape while the magneto-resistance elements arranged side by side are made of the same magneto-resistance film. CONSTITUTION:First and second magneto-resistance elements MR1 and MR2 are formed by patterning a first magneto-resistance film provided on a silicon substrate S and third and fourth magneto-resistance elements MR3 and MR4 are formed so as to align with the magneto-resistance elements MR1 and MR2 by patterning a second magneto-resistance film separated from the first magneto- resistance film through insulation film INS. These first-fourth magneto-resistance elements are connected so that the first and third magnetic resistance elements and the second and fourth magneto-resistance elements constitute bridges to be biased to each other magnetically.

Description

【発明の詳細な説明】 ータ等のエンコーダの磁化パターンノ検出ヤ、磁、気テ
ープ,磁気ディスク等の磁気記録媒体に記録された情報
の読み取りを行うための磁気抵抗素子を具える磁気検出
器に関するものである。
[Detailed Description of the Invention] A magnetic detection device comprising a magnetoresistive element for reading information recorded on a magnetic recording medium such as a magnetic tape or a magnetic disk. It is related to vessels.

このような磁気抵抗素子を具える磁気検出器として、絶
縁膜を挾んで二層の磁気抵抗素子を上下に設け、相互に
磁気的バイアスを与えるようにしたものが特公昭58−
37204号公報および同53−37205号公報など
に記載されており、公知である。例えば特公昭53−3
7204号公報に記載された磁気検出器では磁気抵抗素
子を上下に二N積層し、一方の磁気抵抗素子に流れる駆
動電流により発生する磁界により他方の磁気抵抗子にバ
イアス磁界を印加するものであり、これを以後、一次バ
イアス方式と云う。また、特公昭53−87205号公
報に記載された磁気検出器は、一方の磁気抵抗素子を流
れる駆動電流により発生する磁界が他方の磁気抵抗素子
に加えられ、この他方の磁気抵抗素子における磁化の一
成分が逆磁界を生じ、この逆磁界が一方の磁気抵抗素子
にバイアス磁界として印加されるφ・のであり、こ、れ
を以後二次バイアス方式と云う。
As a magnetic detector equipped with such a magnetoresistive element, a device in which two layers of magnetoresistive elements were placed on top and bottom with an insulating film sandwiched between them, and magnetic bias was applied to each other, was proposed.
It is described in Japanese Patent No. 37204 and Japanese Patent No. 53-37205, and is well known. For example, Tokuko Sho 53-3
In the magnetic detector described in Publication No. 7204, 2N magnetoresistive elements are stacked one above the other, and a bias magnetic field is applied to the other magnetoresistive element by a magnetic field generated by a drive current flowing through one magnetoresistive element. , this is hereinafter referred to as the primary bias method. Furthermore, in the magnetic detector described in Japanese Patent Publication No. 53-87205, a magnetic field generated by a drive current flowing through one magnetoresistive element is applied to the other magnetoresistive element, and the magnetization in the other magnetoresistive element is changed. One component generates a reverse magnetic field, and this reverse magnetic field is applied to one of the magnetoresistive elements as a bias magnetic field.This is hereinafter referred to as a secondary bias method.

$1図は上述した特公昭58−87204号公報に記載
1された磁気検出器の回路図である。絶縁膜を介して上
下に#Ii層された第1および第2の磁気抵抗素子MR
IおよびMB2を定電流源Sと大地電位との間に並列に
接続し、定電流源Sと磁気抵抗素子MRIおよびMB2
との接続点に現われる電圧v0およびv2の差を差動増
幅器DAで求めるようにしたものである。
Figure $1 is a circuit diagram of a magnetic detector described in the above-mentioned Japanese Patent Publication No. 58-87204. First and second magnetoresistive elements MR arranged in #Ii layers above and below with an insulating film interposed therebetween
I and MB2 are connected in parallel between the constant current source S and the ground potential, and the constant current source S and the magnetoresistive elements MRI and MB2 are connected in parallel.
The difference between the voltages v0 and v2 appearing at the connection point between the two is determined by a differential amplifier DA.

このような相互磁気バイアス形の磁気検出器は例えばガ
ラス基板上に第1の磁気抵抗膜、絶縁膜および第2の磁
気抵抗膜を順次に被着して構成されているが、安定した
検出出力を得るためには、第1および第2の磁気抵抗膜
が同一の磁気特性を有することが必要となる。このよう
な磁気検出器を製造する方法としては、基板上に第1磁
気抵抗膜および電極膜を蒸着し、フォトエツチング等に
よりバターニングした後、絶縁膜を蒸着し、さらにその
上に第2磁気抵抗膜および電極膜を蒸着してバターニン
グする方法が一般的に考えられる。
Such a mutual magnetic bias type magnetic detector is constructed by sequentially depositing a first magnetoresistive film, an insulating film, and a second magnetoresistive film on a glass substrate, for example, but it does not provide stable detection output. In order to obtain this, it is necessary that the first and second magnetoresistive films have the same magnetic properties. A method for manufacturing such a magnetic detector is to deposit a first magnetoresistive film and an electrode film on a substrate, pattern it by photo etching, etc., then deposit an insulating film, and then deposit a second magnetoresistive film on the substrate. A commonly considered method is to deposit a resistive film and an electrode film and then pattern them.

、しかしながら、このような製造方法では、第1および
第2の磁気抵抗素子は異なる磁気抵抗膜から形成される
ので、膜厚、比抵抗、抵抗温度係数等が同一となりに<
<、磁気特性が揃わなくなる欠点がある。また第1およ
び第2の、磁気抵抗素子は別々の工程でバターニングし
て形成されるため、寸法精度が悪く、同一の寸法となら
ず、このために磁気特性に差異が現われる欠点もある。
However, in such a manufacturing method, the first and second magnetoresistive elements are formed from different magnetoresistive films, so that the film thickness, specific resistance, temperature coefficient of resistance, etc. are the same.
<, there is a drawback that the magnetic properties are not uniform. Furthermore, since the first and second magnetoresistive elements are formed by patterning in separate steps, they have poor dimensional accuracy and do not have the same dimensions, resulting in a disadvantage that differences appear in their magnetic properties.

したがって、無磁界における出力電圧である不平衡電圧
が発生し、それが温度によってドリフトするため正確な
磁気検出を行なうことができない欠点がある。
Therefore, an unbalanced voltage, which is an output voltage in the absence of a magnetic field, is generated, and this voltage drifts depending on the temperature, so that accurate magnetic detection cannot be performed.

さらに、このような磁気検出器において、利得カ大きく
、S/Nの高い検出出力を得るためには、磁気抵抗素子
に大きな電流を流す必要があるが、磁気抵抗素子の厚さ
を薄くし、寸法を小さくして検出感度や分解能を上げる
と大きな電流を流すことができない。これは大電流を流
すと、それにより発生するジュール熱が磁気抵抗素子に
蓄積されてしまい、特性が劣化してしまうからである。
Furthermore, in such a magnetic detector, in order to obtain a detection output with a large gain and a high S/N ratio, it is necessary to flow a large current through the magnetoresistive element, but it is necessary to reduce the thickness of the magnetoresistive element. If the dimensions are made smaller and the detection sensitivity and resolution are increased, a large current cannot flow. This is because when a large current flows, the Joule heat generated thereby is accumulated in the magnetoresistive element, deteriorating its characteristics.

したがって、従来の磁気検出器では大きな駆動電流を流
すことができず、検出感度が低いと云う欠点もあった。
Therefore, conventional magnetic detectors have the drawback of not being able to pass a large drive current and having low detection sensitivity.

本発明の目的は上述した欠点を除去し、膜厚。The purpose of the present invention is to eliminate the above-mentioned drawbacks and improve the film thickness.

比抵抗、抵抗温度係数等の磁気特性に差異があっても正
確な磁気検出を行うことができると共に大きな駆動電流
を流して高感度の磁気検出を行うことができるように構
成した磁気検出器を提供しようとするものである。
The magnetic detector is configured so that it can perform accurate magnetic detection even if there are differences in magnetic properties such as specific resistance and temperature coefficient of resistance, and can also conduct high-sensitivity magnetic detection by passing a large drive current. This is what we are trying to provide.

本発明の磁気検出器は、シリコン基板上に設けられた第
1の磁気抵抗膜をバターニングして形成した第1および
第2の磁気抵抗素子と、第1の磁気抵抗膜から絶縁膜を
介して分離された第2の磁気抵抗膜をバターニングして
前記第1および第2の磁気抵抗素子と整列するように形
成された第8および第4の磁気抵抗素子とを具え、これ
ら第1〜第4の磁気抵抗素子を、第1と第8の磁気抵抗
素子および第2と第4の磁気抵抗素子が相互に磁気的に
バイアスするとともに、ブリッジ回路を構成するよう接
続したことを特徴とするものである。
The magnetic detector of the present invention includes first and second magnetoresistive elements formed by patterning a first magnetoresistive film provided on a silicon substrate, and a magnetoresistive element formed by patterning a first magnetoresistive film provided on a silicon substrate. eighth and fourth magnetoresistive elements formed by patterning a second magnetoresistive film separated by the above-described method so as to be aligned with the first and second magnetoresistive elements; The fourth magnetoresistive element is connected so that the first and eighth magnetoresistive elements and the second and fourth magnetoresistive elements magnetically bias each other and form a bridge circuit. It is something.

以下、図面を参照して本発明の詳細な説明する。・第2
図Aは本発明の磁気検出器の一例の構成を示す線図的平
面図であり、第2図Bは線図的斜視図である。第2図A
およびBでは図面を明瞭とするために上側の絶縁層は省
いであると共に第2図Aにおいては磁気抵抗膜には斜線
を付けて示した。
Hereinafter, the present invention will be described in detail with reference to the drawings.・Second
Figure A is a diagrammatic plan view showing the configuration of an example of the magnetic detector of the present invention, and Figure 2B is a diagrammatic perspective view. Figure 2A
In FIG. 2 and B, the upper insulating layer is omitted for clarity, and in FIG. 2A, the magnetoresistive film is shown with diagonal lines.

本例では4個の磁気抵抗素子MRI〜MR4を具えるも
のであり、素子MRIとMB2およびMB3とMB2は
それぞれ同じ磁気抵抗膜をバターニングして形成されて
おり、素子MRIとMB3およびMB2とMB2は上下
に積層されている。これらの素子はシリコン基板Sの上
Gこ形成されており、素子MR1,MR1とMB2 、
MB2との間には絶縁膜INSが介挿されている。4つ
の磁気抵抗素子MRI〜MR4は第2図Cに示すように
ブリッジ回路を構成するように接続されている。すなわ
ち、下側の素子MRIとMB2の一端は接点C1および
02で導体L1に接続され、この導体は端子T】に接続
されている。上側の素子MR8とMB2の一端は接点C
3およびC4で導体L2、に接続され、この導体は端子
T2.4こ接続されている。下側の素子MHIの他端は
接点C5および導体L3を経て端子Ta&こ接続され、
上側の素子MR8の他端は接点C6および導体L4を経
て端子T4に接続され、下側の素子MR2の他端は接点
C7および導体L5を経て端子T5に接続され、上側の
素子MR4の他端は接点C8および導体L6を経て端子
T6に接続されている。第2図Aにおいては、下側の素
子MRIおよびMR2に対する接点は2重枠で示しであ
る。9J12図Cに示すように、端子T1およびT2は
ブリッジ回路の出力端子であり、差動増幅器DAの差動
入力端子に接続され、端子T3とT4は電源Eの正端子
に共通に接続され、端子T5とT6は負端子に共通に接
続される。したがって端子T8とT4およびT5とT6
はそれぞれ1個の端子とすることもできるが、製造工程
途中で磁気抵抗素子の短絡試験などを行なうためには、
上述したように別個に端子を設けておくのが好適である
。このような構成においては、二次バイアス効果による
相互バイア、スは第2図Cにおいて素子MHIとMR8
には紙面の下から上に向うバイアス磁界が印加され、素
子MR2とMR4には紙面の上から下へ向うバイアス磁
界が印加されることになり、出力信号が得られる結合と
なる。したがって差動増幅器DAの出力端子からは磁気
検出出力がノイズに影響されずに高感度で得られること
になる。また、基板Sとしてシリコン基板を用いている
が、シリコンはガラスに比べ10倍以上の熱伝導率を有
しているので放熱作用が高く、磁気抵抗素子で発生され
るジュール熱を有効に放散きせることかできる。したが
って大きな駆動電流を流すことができるので、検出感度
が非常に高くなる利点がある。また、シリコン基板は半
導体装置の製造分野で良質のものが容易に得らねると云
う利点もある。
In this example, four magnetoresistive elements MRI to MR4 are provided, and the elements MRI and MB2 and MB3 and MB2 are formed by patterning the same magnetoresistive film, respectively, and the elements MRI and MB3 and MB2 are formed by patterning the same magnetoresistive film. MB2 is stacked one above the other. These elements are formed on a silicon substrate S, and the elements MR1, MR1 and MB2,
An insulating film INS is interposed between it and MB2. The four magnetoresistive elements MRI to MR4 are connected to form a bridge circuit as shown in FIG. 2C. That is, one ends of the lower elements MRI and MB2 are connected to the conductor L1 at contacts C1 and 02, and this conductor is connected to the terminal T]. One end of the upper elements MR8 and MB2 is a contact point C
3 and C4 to conductor L2, which is connected to terminal T2.4. The other end of the lower element MHI is connected to terminals Ta& through contact C5 and conductor L3.
The other end of upper element MR8 is connected to terminal T4 via contact C6 and conductor L4, the other end of lower element MR2 is connected to terminal T5 via contact C7 and conductor L5, and the other end of upper element MR4 is connected to terminal T5 via contact C7 and conductor L5. is connected to terminal T6 via contact C8 and conductor L6. In FIG. 2A, the contacts for the lower elements MRI and MR2 are shown with double frames. 9J12 As shown in Figure C, terminals T1 and T2 are the output terminals of the bridge circuit and are connected to the differential input terminals of the differential amplifier DA, terminals T3 and T4 are commonly connected to the positive terminal of the power supply E, Terminals T5 and T6 are commonly connected to the negative terminal. Therefore terminals T8 and T4 and T5 and T6
can be made into one terminal each, but in order to perform short-circuit tests of magnetoresistive elements during the manufacturing process, etc.
It is preferable to provide separate terminals as described above. In such a configuration, the mutual bias due to the secondary bias effect is generated between elements MHI and MR8 in FIG. 2C.
A bias magnetic field directed upward from the bottom of the page is applied to elements MR2 and MR4, and a bias magnetic field directed downward from the top of the page is applied to elements MR2 and MR4, resulting in a coupling that yields an output signal. Therefore, a magnetic detection output can be obtained with high sensitivity from the output terminal of the differential amplifier DA without being affected by noise. Furthermore, although a silicon substrate is used as the substrate S, silicon has a thermal conductivity 10 times higher than that of glass, so it has a high heat dissipation effect and can effectively dissipate the Joule heat generated by the magnetoresistive element. I can do it. Therefore, since a large drive current can be passed, there is an advantage that detection sensitivity is extremely high. Another advantage of silicon substrates is that they are difficult to obtain of high quality in the field of manufacturing semiconductor devices.

次に本例の磁気検出器における不平衡電圧を考察してみ
る。今、第1および第2の素子MRIおよびMR2を□
構成する第1の磁気抵抗膜の温度係数をもった比抵抗を
ρ、(T)、膜厚をt□とし、第3および第4の素子M
R3およびMR4を構成す、る第2の磁気抵抗膜の比抵
抗をR2(T) 、膜厚をR2とし、第1および第8の
素子MHIおよびMR8のパターン形状係数(すなわち
長ぎ7幅)をに□、第2および第3の素子MR2および
MR4のノぐターン形状係数をに2とすると、第1〜第
4の磁気抵抗素子MRI〜MR4の抵抗値R1〜R−ま
次のようになる。
Next, consider the unbalanced voltage in the magnetic detector of this example. Now, connect the first and second elements MRI and MR2 □
The specific resistance with temperature coefficient of the first magnetoresistive film is ρ, (T), the film thickness is t□, and the third and fourth elements M
The specific resistance of the second magnetoresistive film constituting R3 and MR4 is R2(T), the film thickness is R2, and the pattern shape coefficient (i.e. length 7 width) of the first and eighth elements MHI and MR8 is If □ and the turn shape coefficient of the second and third elements MR2 and MR4 are 2, then the resistance values R1 to R- of the first to fourth magnetoresistive elements MRI to MR4 are as follows. Become.

Ro−ρ□(T)・k、/l工 R2−ρ□(Tl・k 2/l l R8−R2(T)・k1/12 R1−R2(T)・k2/12 したがって被検出磁界がない場合の不平機雷、圧ΔVは
電源Eの電圧をR8とすると、 ΔV−Vニーv2 S ρ、(T)・k、/lt+ρ□fTl・k、/l□
となる。すなわち、R1(T++ρ2(1°)、t1″
+t2あるいはに1″+に2であっても不平機雷、圧Δ
Vは常Gこ零となり、オフセットや温度ドリフトもなく
、正確な磁気検出を行なうことができる。
Ro-ρ□(T)・k,/l R2-ρ□(Tl・k 2/l l R8-R2(T)・k1/12 R1-R2(T)・k2/12 Therefore, the detected magnetic field is If there is no complaining mine, the pressure ΔV is as follows: ΔV−V knee v2 S ρ, (T)・k, /lt+ρ□fTl・k,/l□
becomes. That is, R1(T++ρ2(1°), t1″
Even if +t2 or 1″+2, unbalanced mine, pressure Δ
Since V is always G, it is possible to perform accurate magnetic detection without offset or temperature drift.

次に上述した磁気検出器を製造する方法につし)で説明
する。第3図に示すように、シリコン基板]1の上に厚
さ500AのTa205より成る第1絶縁膜12、厚さ
30〇八(7)81 %Ni−19%Feパーマロイよ
り成る第1磁気抵抗膜18、厚さ]50〇への5in2
より成る第2絶縁膜]4、ルさ500人のTa205よ
り成る第3絶縁膜]5、厚さ30〇へのNiFeパーマ
ロイより成る第2磁気抵抗膜16および厚さ1500人
の5in2より成る第4絶縁膜]7の6層を順次Gこ蒸
着する。この蒸着はシリコン基板]]を300°Cの温
度Gこ加熱、して行なう。次に、ポジタイプのフォトレ
ジスト膜を被着する。この蒸着中、基板1は例えば30
0°Cの温度に加熱しておく。フォトレジスト膜として
は、例えばドライエツチング用のAZ−1850を用い
ることができる。
Next, a method for manufacturing the magnetic detector described above will be explained. As shown in FIG. 3, a first insulating film 12 made of Ta205 with a thickness of 500A is formed on a silicon substrate 1, and a first magnetoresistive film made of permalloy with a thickness of 3008(7)81%Ni-19%Fe. Membrane 18, thickness] 5in2 to 500
4. A third insulating film made of Ta205 with a thickness of 500 mm] 5. A second magnetoresistive film 16 made of NiFe permalloy with a thickness of 300 mm; 4 Insulating film] Six layers of 7 are sequentially deposited using G. This vapor deposition is carried out by heating the silicon substrate to a temperature of 300°C. Next, a positive type photoresist film is deposited. During this vapor deposition, the substrate 1 is, for example,
Heat to a temperature of 0°C. As the photoresist film, for example, AZ-1850 for dry etching can be used.

次に、第4図に示すように、形成すべき磁気抵抗素子の
パターンに対応する所望のパターンを有するフォトマス
ク】を用いて光を選択的に照射し、フォトマスク】の透
明部分1aを透過した光が当ったフォトレジスト膜の非
硬化部分を除去する。
Next, as shown in FIG. 4, light is selectively irradiated using a photomask having a desired pattern corresponding to the pattern of the magnetoresistive element to be formed, and light is transmitted through the transparent portion 1a of the photomask. The uncured portion of the photoresist film that has been exposed to the light is removed.

本例ではフォトマスク1により形成される磁気抵抗素子
の長さLを約1mとし、幅Wを50μとする。このパタ
ーニングはTa2O,および5in2より成る絶縁膜を
除去するOF4ガスと、FeNiより成る磁気抵抗膜を
除去する00’/4ガスと、このaCt。
In this example, the length L of the magnetoresistive element formed by the photomask 1 is approximately 1 m, and the width W is 50 μ. This patterning was performed using OF4 gas to remove the insulating film made of Ta2O and 5in2, 00'/4 gas to remove the magnetoresistive film made of FeNi, and this aCt.

ガスの作用を補助する0□ガスとを含むガスを用いるド
ライエツチングにより行なう。このようにして6層全部
を一回のエツチング処理により除去するので工程が簡単
になると共に上下に積層される磁気抵抗素子の寸法形状
を完全に一致させるこ、とができ、特性の等しいものが
容易に得られる。
This is carried out by dry etching using a gas containing 0□ gas which assists the action of the gas. In this way, all six layers are removed in one etching process, which simplifies the process and allows the dimensions and shapes of the magnetoresistive elements stacked above and below to be completely matched, making it possible to create magnetoresistive elements with the same characteristics. easily obtained.

また、第1および第2の磁気抵抗素子は第1の抵抗膜か
ら形成し第3および第4の磁気抵抗素子は第2の磁気抵
抗膜から形成するのでこれらの膜厚や特性も揃ったもの
となる。
Furthermore, since the first and second magnetoresistive elements are formed from the first resistance film, and the third and fourth magnetoresistive elements are formed from the second magnetoresistive film, their film thicknesses and characteristics are also the same. becomes.

次に第5図に示すように、新たなネガタイプのフォトレ
ジスト膜18を被着した後、第6図に示すように下側の
第1磁気抵抗膜18に対する接点を形成すべき位置に不
透明部2aを形成したフォトマスク2によりフォトレジ
スト膜18の対応する位置に孔18aをあける。
Next, as shown in FIG. 5, after depositing a new negative type photoresist film 18, as shown in FIG. Holes 18a are formed at corresponding positions in the photoresist film 18 using the photomask 2 with holes 2a formed thereon.

次に、第4絶縁膜17、第2磁気抵抗膜16および第3
絶縁膜16に対してエツチング処理を施し、第1図に示
すように第2絶縁膜14まで達するスルーホール20を
形成する。この場合にも、第3図に示した工程で用いた
OF4ガス、CCl4ガス、0.ガスを用いるドライエ
ツチングを採用できる。この工程では第2絶縁膜14の
表面が露出するまで行なえばよく、この第2絶縁膜が多
少エツチングされてもよいので、エツチングの制御を、
それほど厳密に行なう必要はなし)。また、このエツチ
ングはウェットエツチングで行なうこともでき、この場
合にはSiO2に対しては7ツ酸系エツチヤント、Ta
205に対してはアルカリ系エッチャント、磁気抵抗膜
を構成するyeNiに対して&ま強酸混液エッチャント
をそれぞれ用いること力(できる。
Next, the fourth insulating film 17, the second magnetoresistive film 16 and the third
The insulating film 16 is etched to form a through hole 20 that reaches the second insulating film 14 as shown in FIG. In this case as well, the OF4 gas, CCl4 gas used in the process shown in FIG. Dry etching using gas can be used. This step only needs to be carried out until the surface of the second insulating film 14 is exposed, and the second insulating film may be etched to some extent, so the etching can be controlled by
There is no need to be very strict). In addition, this etching can also be performed by wet etching, in which case SiO2 is treated with a hepta-acid etchant, Ta
It is possible to use an alkaline etchant for 205 and a strong acid mixed etchant for yeNi forming the magnetoresistive film.

次に第8図に示すようにネガタイプのボ1ノイミド系の
絶縁性フォトレジスト膜21を被着した後、第9図に示
すようなフォトマスク8を用し)て、フォトレジスト膜
21に孔+111aおよび21bをあける。孔21aは
上述したスルーホール20の底部に形成されるものであ
り、これと対応するフォトマスク8の不透明部を符号8
aで示す。また、他の不透明部8bは上側の磁気抵抗膜
16に対する接点を形成するための孔21bに対応して
し)る。
Next, as shown in FIG. 8, after depositing a negative type boronimide insulating photoresist film 21, holes are formed in the photoresist film 21 using a photomask 8 as shown in FIG. Open +111a and 21b. The hole 21a is formed at the bottom of the through hole 20 described above, and the corresponding opaque part of the photomask 8 is designated by reference numeral 8.
Indicated by a. Further, the other opaque portion 8b corresponds to the hole 21b for forming a contact point to the upper magnetoresistive film 16).

また、フォトマスク8%には不透明部+@3Cを形成す
るが、これは後にボンディングするためにこの部分の絶
縁性フォトレジスト膜21を除去するためのものであり
、この部分に対応するフォトレジスジ膜21の孔は98
図では示してしAなし\。
In addition, an opaque part +@3C is formed in the photomask 8%, but this is to remove the insulating photoresist film 21 in this part for later bonding, and the photoresist corresponding to this part is The number of holes in the streak film 21 is 98.
The figure shows no A.

次に、第10図に示すようにフォトレジスト膜21にあ
けた孔21aおよび21bを経てSingより成る第2
絶縁膜14と同じ< Singより成る第4絶縁膜】7
を、5iC)2を選択的に侵すがTa 205は侵さな
いエッチャント、例夫&ヨフツ酸系工゛ンチャンbであ
るHF + 6NH,Fによりウェットエツチングして
除去し、それぞれ第1および第2磁気抵抗膜18および
16に達する孔14aおよび17aを形成す°る。この
ように、5i02を選択的に腐食除去するエッチャント
を用いて孔を形成するため、第1および第2の磁気抵抗
膜13および16カ(ピンホールを介して短絡するのを
有効に防止することができる。
Next, as shown in FIG.
Same as insulating film 14 < Fourth insulating film made of Sing] 7
was removed by wet etching with HF + 6NH,F, an etchant that selectively attacks 5iC)2 but not Ta 205, and the first and second magnets, respectively. Holes 14a and 17a reaching resistive films 18 and 16 are formed. In this way, since the holes are formed using an etchant that selectively corrodes and removes 5i02, it is possible to effectively prevent short circuits between the first and second magnetoresistive films 13 and 16 (through pinholes). I can do it.

次に、第11図に示すように、フォトレジスト膜21上
に、2000人の厚さのMo[I!および5000人の
Au膜を順次に蒸着して金属膜23を形成する。この間
、基板11(ゴ約250°Cの温度に加熱する。
Next, as shown in FIG. 11, Mo[I! Then, a metal film 23 is formed by sequentially depositing 5,000 Au films. During this time, the substrate 11 is heated to a temperature of about 250°C.

次に、ポジタイプのフォトレジスト膜を被着した後(こ
、第12図に示すフォトマスク4を用し1て、金属膜2
3をバターニングして第13図に示すような導体パター
ンを形成する。
Next, after depositing a positive type photoresist film (this is done using a photomask 4 shown in FIG. 12), the metal film 2 is
3 is patterned to form a conductor pattern as shown in FIG.

次に、第14図に示すように、ガラスエポキシより構成
した絶縁基板上に5μの厚さのNi層の上に1μの厚さ
のAu層を被着した後、所定°−のパターニングを行な
ったボード24の金属部分25a上に、上述したように
して形成した磁気抵抗素子チップ26および27を載せ
、シリコン基板1]を金が部分25aにボンディングす
る。この金属部分25aを大面積とすることにより、こ
れを介しての放熱作用が助長される効果が得られる。上
述したように各チップ26および27はそれぞれ4個の
磁気抵抗素子を有しており、各チップの導体の端子T1
〜T6およびTI’〜T6’はそれぞれ微細なワイヤ2
8を介してボード24の導体部分25aおよび25bに
接続する。このワイヤボンディングを良好に行なうため
に、導体端子T1〜T6、TI’〜T 6’の下側では
、絶縁性フォトレジスト膜21は上述したように除去し
である。
Next, as shown in FIG. 14, a 1μ thick Au layer was deposited on a 5μ thick Ni layer on an insulating substrate made of glass epoxy, and then patterned at a predetermined angle. The magnetoresistive element chips 26 and 27 formed as described above are placed on the metal portion 25a of the board 24, and the silicon substrate 1 is bonded to the gold portion 25a. By making the metal portion 25a large in area, the effect of promoting heat dissipation through the metal portion 25a can be obtained. As mentioned above, each chip 26 and 27 has four magnetoresistive elements, and the terminal T1 of the conductor of each chip
~T6 and TI'~T6' are each fine wire 2
8 to the conductor portions 25a and 25b of the board 24. In order to perform this wire bonding well, the insulating photoresist film 21 is removed below the conductor terminals T1 to T6 and TI' to T6' as described above.

これら2個の磁気抵抗素子チップ26および、27に形
成された8個の磁気抵抗素子MRI〜MR4およびM 
R1’〜M R4’は第15図に示すように接続される
ので、ボード24上の端子29aおよび29fは電源E
の正および負端子にそれぞれ接続され、端子29bおよ
び290は第]差動増幅器DAに接続され、端子29d
および29eは第2差動増幅器D A’にそれぞれ接続
される。
These two magnetoresistive element chips 26 and 8 magnetoresistive elements MRI to MR4 and M formed on 27
Since R1' to M R4' are connected as shown in FIG. 15, terminals 29a and 29f on the board 24 are connected to the power supply E.
The terminals 29b and 290 are connected to the positive and negative terminals of the differential amplifier DA, respectively, the terminals 29b and 290 are connected to the differential amplifier DA, and the terminal 29d
and 29e are respectively connected to the second differential amplifier DA'.

これら差動増幅器DAおよびD A’の出力は信号処理
回路SPOに供給され、ここで信号処理される。
The outputs of these differential amplifiers DA and DA' are supplied to a signal processing circuit SPO, where they are subjected to signal processing.

本例の磁気検出器30は第16図に示すように、エンコ
ーダとして使用され、予しめ所定のパターンにしたがっ
て着磁された一対の磁化パターン31aおよび81bと
磁気抵抗素子チップ26および27が位相がずれた状態
で対向するようも二傾斜して配置される。したがって信
号処理回路SPCからは、変位の方向および変位量を表
わす信号が出力されることになる。
As shown in FIG. 16, the magnetic detector 30 of this example is used as an encoder, and a pair of magnetization patterns 31a and 81b magnetized in advance according to a predetermined pattern and magnetoresistive element chips 26 and 27 are out of phase. They are also arranged at two angles so that they face each other in a shifted state. Therefore, the signal processing circuit SPC outputs a signal representing the direction and amount of displacement.

本発明は上述した実施例に限定されるものではなく、幾
多の変更や変形を加えることができる。
The present invention is not limited to the embodiments described above, but can be modified and modified in many ways.

例えば第1〜第4の磁気抵抗素子MRI〜MR4・の接
続は上述した例に限られるものではなく、第17図に示
すような結線方法も可能である。本例でも二次バイアス
効果によって第1および第2磁気抵抗素子MRIおよび
MB2は紙面の上から下に向うバイアス磁界を受け、第
8および第4磁気抵抗素子MR8およびMB4は紙面の
下から上に向うバイアス磁界を受ける。また、本例の不
平衡電圧ΔVは、 となり、上述した実施例と全く同じ効果が得られる。
For example, the connection of the first to fourth magnetoresistive elements MRI to MR4 is not limited to the example described above, and a connection method as shown in FIG. 17 is also possible. In this example as well, due to the secondary bias effect, the first and second magnetoresistive elements MRI and MB2 receive a bias magnetic field directed downward from the top of the paper, and the eighth and fourth magnetoresistive elements MR8 and MB4 receive a bias magnetic field directed downward from the bottom of the paper. Receives a bias magnetic field towards the opposite direction. Moreover, the unbalanced voltage ΔV of this example is as follows, and exactly the same effect as the above-mentioned example can be obtained.

第18図は本発明磁気検出器のさらに他の例を、示すも
のであり、本例では、第1および第3の磁気抵抗素子に
は紙面の上から下に向かうバイアス磁界が印加され、第
2および第4の磁気抵抗素子には紙面の下から上に向か
うバイアス磁界が印加される。また、本例での不平衡電
圧ΔVは、一般に形状係数によとに2とは等しくないの
でΔVは零とはならないが、湿度による変動分はないの
で温度ドリフトは生じない。また、この不平衡型、圧Δ
Vは一定であるからオフセット電圧として容易に除去す
ることができる。
FIG. 18 shows still another example of the magnetic detector of the present invention. In this example, a bias magnetic field directed from the top to the bottom of the page is applied to the first and third magnetoresistive elements, and A bias magnetic field directed from the bottom to the top of the paper is applied to the second and fourth magnetoresistive elements. Further, the unbalanced voltage ΔV in this example does not become zero since the shape factor is generally not equal to 2, but since there is no variation due to humidity, no temperature drift occurs. In addition, this unbalanced type, pressure Δ
Since V is constant, it can be easily removed as an offset voltage.

さらに上述した実施例では絶縁膜としてSingおよび
Ta205を用いたが、その他の酸化物、ツウ化物、チ
ツ化物を用いることができ、例えばフッ化物としてはM
gF2 sチツ化物としてはSI B N 4を用いる
ことができる。エツチングはドライエツチングやウェッ
トエツチングだけでなく、Arガス中でのスパッタエツ
チングを採用することもできる。さらに、ポリイミド系
の絶縁性フォトレジスト膜をそのまま残して絶縁膜とし
たが、他の絶縁膜を被着してフォトレジスト膜は剥離し
てもよい。
Furthermore, although Sing and Ta205 were used as the insulating film in the above-mentioned embodiments, other oxides, tride, and tide can be used. For example, as the fluoride, M
SIBN4 can be used as the gF2s titanium compound. For etching, not only dry etching or wet etching, but also sputter etching in Ar gas can be used. Further, although the polyimide-based insulating photoresist film is left as is to serve as an insulating film, another insulating film may be applied and the photoresist film may be peeled off.

また、上述した実施例ではシリコン基板をガラスエポキ
シの絶縁ボードにボンディングしたが、電極パターンを
被着したセラミックボード上に設けることもでき、この
場合には熱放散効果はさらに高くなる。上述した実施例
では4伊の磁気抵抗素子を具えるチップを形成したが、
上下方向に2伊以上の一磁気抵抗素子が配列されるよう
なものであればどのようなものでも良い。また、上述し
た例では磁気エンコーダについて説明したが、磁気テ・
−プ、磁気ディスク等の記録媒体に記録された情報の読
取ヘッドとすることもできる。ざらに上述した実施例で
は、フォトレジスト膜にフォトマスクを介して選択的に
光を照射してエツチング用のマスクを形成したが、電子
ビームの照射により選択的に硬化するレジスト膜を用い
ることもでき、このような場合にはフォトマスクは不要
となる〇また、上述した例では相互バイアスを二次バイ
アス方式で行なったが、−次バイアス方式で行なっても
よい。
Further, in the above-described embodiment, the silicon substrate is bonded to a glass epoxy insulating board, but it can also be provided on a ceramic board on which an electrode pattern is adhered, and in this case, the heat dissipation effect will be even higher. In the above embodiment, a chip including four magnetoresistive elements was formed.
Any type of material may be used as long as two or more magnetoresistive elements are arranged in the vertical direction. In addition, although the above example describes a magnetic encoder, the magnetic encoder
- It can also be used as a head for reading information recorded on a recording medium such as a disk or a magnetic disk. In the example briefly described above, the etching mask was formed by selectively irradiating the photoresist film with light through a photomask, but it is also possible to use a resist film that is selectively hardened by electron beam irradiation. In such a case, a photomask is not required.Also, in the above example, the mutual bias was performed using the secondary bias method, but it may be performed using the -order bias method.

上述したように本発明の磁気検出器によれば、上下に積
重ねられた磁気抵抗素子の寸法、形状は精密に一致する
と共に左右に並んだ磁気抵抗素子も同一の磁気抵抗膜か
ら作られているので、磁気特性の等しいものが得られ、
検出精度が著しく向上する利点がある。また、上述した
実施例では金属膜を被着する以前に絶縁膜によってスル
ーホールの側壁を被覆するので短絡を有効に防止するこ
とができる。この場合、絶縁膜として絶縁性のレジスト
膜を用いると工程はさらに少なくなる効果、がある。ま
た、異種の絶縁膜を用し1て選択工゛ンチングを行なう
ことにより、ピンホールを介しての短絡をさらに有効に
防止することができる。さらに、基板として熱伝導率の
高し)シ1Jコンを用し1てI/Xるため、放熱特性が
良好となり、より大きな駆雪+ it流を磁気抵抗素子
に流すこと力5できるので、S/Hの高い高感度の検出
ができる効果もある。こσ)シリコン基板は半導体製造
分野におし1て広く使用すれているので、容易に良質の
ものを入手できる利点もある。さらに各磁気抵抗素子&
ま同じ材質の絶縁膜で挾まれた構造となるので、磁気的
特性力(揃うことになり、一層正確な検出力5可能とな
る利点もある。
As described above, according to the magnetic detector of the present invention, the dimensions and shapes of the magnetoresistive elements stacked up and down are exactly the same, and the magnetoresistive elements arranged on the left and right are also made of the same magnetoresistive film. Therefore, one with equal magnetic properties can be obtained,
This has the advantage of significantly improving detection accuracy. Furthermore, in the embodiments described above, since the side walls of the through holes are covered with an insulating film before the metal film is deposited, short circuits can be effectively prevented. In this case, using an insulating resist film as the insulating film has the effect of further reducing the number of steps. Moreover, by selectively etching different types of insulating films, short circuits through pinholes can be more effectively prevented. Furthermore, since a silicone (with high thermal conductivity) is used as the substrate for I/X, the heat dissipation characteristics are good, and a larger snow removal + IT current can be passed through the magnetoresistive element. It also has the effect of enabling highly sensitive detection with high S/H. σ) Since silicon substrates are widely used in the semiconductor manufacturing field, they also have the advantage of being easily available in good quality. In addition, each magnetoresistive element &
Furthermore, since the structure is sandwiched between insulating films made of the same material, the magnetic characteristics (magnetic characteristics) are uniform, which has the advantage of enabling even more accurate detection power5.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気検出器の−f11の構成、を示す回
路図、 第2図AおよびBは本発明の磁気検出器の一例の構成を
線図的に示す平面図および斜視図、第2図Gは同じくそ
の接続を示す回路図、 I′!3図〜第13図は本発明の磁気検出器を製造、す
る順次の製造工程およびフォトマスクを示す図、第14
図は本発明の磁気検出器により構成したエンコーダを示
す図、 第15図は同じくその回路図、 第16図は同じくその使用態様を示す図、第17図およ
び第18図は本発明の磁気検出器の他の例を示す回路図
である。 S・・・シリコン基板 MRI〜MR4・・・磁気抵抗素子 INS・・・絶縁膜     01〜C8・・・接点L
1〜L6・・・導体    E・・・宵、源DA、 D
A’・・・差動増幅器 11・・・シリコン、基板13
、16・・・磁気抵抗膜 12、14.15.17・・・絶縁膜 18、21・・・フォトレジスト膜 23・・・金属膜      1’、 2.8・・・フ
ォトマスク。 第2図 C 第8図 第5図 第6図 第7図 第8トてI 第9図 第1θ図 第11図 第12図 第18図 第14図 第15図 m 16 r;4 第17図 第18図 手続補正書 昭和58年 6 月 2 1、事件の表示 昭和57年特許 願第224121  号2、発明の名
称 磁気抵抗素子を具える磁気検出器 3、補正をする者 事件との関係 特許出願人 株式会社 コ パ ル 電話(581) 2241番(代表) 5゜ 6、補正の対象 明細書の発明の詳細な説明の欄7、補
正の内容 (別紙の通り) 1、明細書第8頁第1行の「MRIJをf’MR2J8
 に訂正し、 同頁第8行の(−11R2JをrMRIJに訂正する0 2、同第17頁第8〜6行の「第2磁気抵抗素子−m=
紙面の下から」を「第4磁気抵抗素子MHIおよびMn
2は紙面の上から下に向うバイアス磁界を受け、第2お
よび第8磁気抵抗素子MR2およびMn21は紙面の下
から」に訂正する。 弓・
FIG. 1 is a circuit diagram showing the configuration of -f11 of a conventional magnetic detector; FIGS. 2A and B are plan and perspective views diagrammatically showing the configuration of an example of the magnetic detector of the present invention; Figure 2G is a circuit diagram also showing the connection, I'! 3 to 13 are diagrams showing the sequential manufacturing process and photomask for manufacturing the magnetic detector of the present invention, and FIG.
15 is a circuit diagram thereof, FIG. 16 is a diagram illustrating how it is used, and FIGS. 17 and 18 are magnetic detectors according to the present invention. FIG. 7 is a circuit diagram showing another example of the device. S...Silicon substrate MRI~MR4...Magnetoresistive element INS...Insulating film 01~C8...Contact L
1~L6...Conductor E...Yoi, source DA, D
A'...Differential amplifier 11...Silicon, substrate 13
, 16... Magnetoresistive film 12, 14.15.17... Insulating film 18, 21... Photoresist film 23... Metal film 1', 2.8... Photomask. Figure 2 C Figure 8 Figure 5 Figure 6 Figure 7 Figure 8 To I Figure 9 Figure 1θ Figure 11 Figure 12 Figure 18 Figure 14 Figure 15 m 16 r; 4 Figure 17 Figure 18 Procedural amendment document June 2, 1982 1. Indication of the case 1988 Patent Application No. 224121 2. Name of the invention Magnetic detector equipped with a magnetoresistive element 3. Person making the amendment Relationship to the case Patent Applicant Co., Ltd. Copal Telephone number (581) 2241 (representative) 5゜6. Subject of amendment Detailed explanation of the invention in the specification column 7. Contents of amendment (as attached) 1. Page 8 of the specification In the first line, "MRIJ f'MR2J8
0 2 on the 8th line of the same page (-11R2J is corrected to rMRIJ), 0 2 on the 8th line of the same page, ``Second magnetoresistive element -m=
"From the bottom of the page" to "fourth magnetoresistive element MHI and Mn
2 receives a bias magnetic field directed downward from the top of the paper, and the second and eighth magnetoresistive elements MR2 and Mn21 are applied from the bottom of the paper. bow·

Claims (1)

【特許請求の範囲】[Claims] L シリコン基板上に設けられた第1の磁気抵抗膜をパ
ターニングして形成した第1および第2の磁気抵抗素子
と、第1の磁気抵抗膜から絶縁膜を介して分離された第
2の磁気抵抗膜をバターニングして前記第1および第2
の磁気抵抗素子と整列するように形成された第3および
第4の磁気抵抗素子とを具え、これら第1〜第4の磁気
抵抗素子を、第1と第3の磁気抵抗素子および第2と第
4の磁気抵抗素子が相互に磁気的にバイアスすると共に
、ブリッジ回路を構成するように接続したことを特徴と
する磁気抵抗素子を具える磁気検出器。
L First and second magnetoresistive elements formed by patterning a first magnetoresistive film provided on a silicon substrate, and a second magnetoresistive element separated from the first magnetoresistive film via an insulating film. The first and second resistive films are patterned.
and third and fourth magnetoresistive elements formed to be aligned with the magnetoresistive element, and the first to fourth magnetoresistive elements are aligned with the first and third magnetoresistive elements and the second A magnetic detector comprising a magnetoresistive element, wherein the fourth magnetoresistive element magnetically biases each other and is connected to form a bridge circuit.
JP57224121A 1982-12-21 1982-12-21 Magnetic detector with magneto-resistance element Pending JPS59114413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224121A JPS59114413A (en) 1982-12-21 1982-12-21 Magnetic detector with magneto-resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224121A JPS59114413A (en) 1982-12-21 1982-12-21 Magnetic detector with magneto-resistance element

Publications (1)

Publication Number Publication Date
JPS59114413A true JPS59114413A (en) 1984-07-02

Family

ID=16808863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224121A Pending JPS59114413A (en) 1982-12-21 1982-12-21 Magnetic detector with magneto-resistance element

Country Status (1)

Country Link
JP (1) JPS59114413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366417A (en) * 1986-09-09 1988-03-25 Akai Electric Co Ltd Magnetic sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337204A (en) * 1976-06-11 1978-04-06 Babcock & Wilcox Ltd Boiler for use in ship
JPS55123183A (en) * 1979-03-15 1980-09-22 Nec Corp Magnetic detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337204A (en) * 1976-06-11 1978-04-06 Babcock & Wilcox Ltd Boiler for use in ship
JPS55123183A (en) * 1979-03-15 1980-09-22 Nec Corp Magnetic detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366417A (en) * 1986-09-09 1988-03-25 Akai Electric Co Ltd Magnetic sensor

Similar Documents

Publication Publication Date Title
US4470873A (en) Method of manufacturing magnetic sensor comprising at least two magnetoresistive elements
US4616281A (en) Displacement detecting apparatus comprising magnetoresistive elements
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
KR100645291B1 (en) Magnetic sensor and method of producing the same
US7394086B2 (en) Magnetic sensor and manufacturing method therefor
KR20000029928A (en) Magnetic current sensor
JPH08226960A (en) Magnetic field sensor and manufacture thereof
EP0107982B1 (en) Magnetic transducer heads utilising magnetoresistance effect
US20040150397A1 (en) Magnetic sensor and method for manufacturing the same
US5909115A (en) Position detecting apparatus employing magnetoresistance effect elements connected in series
JPH06148301A (en) Magnetic sensor
JP3089828B2 (en) Ferromagnetic magnetoresistive element
JPS59114413A (en) Magnetic detector with magneto-resistance element
JPH0130409B2 (en)
JPH0130410B2 (en)
US6258515B1 (en) Pattern forming method
US5822158A (en) Giant magnetoresistance effect device with magnetically sensitive portion of a size large than playback track width
Bajorek et al. A permalloy current sensor
JPH10160512A (en) Magnetic encoder
JPS6032885B2 (en) thin film magnetic head
JPH0266479A (en) Magnetoresistance effect element
JPH09161230A (en) Magnetoresistance effect heat and its production
JPH07297464A (en) Differential magnetoresistive effect element
JP2003161770A (en) Magnetism detecting element
JPH043484B2 (en)