JPH06148301A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH06148301A
JPH06148301A JP4123827A JP12382792A JPH06148301A JP H06148301 A JPH06148301 A JP H06148301A JP 4123827 A JP4123827 A JP 4123827A JP 12382792 A JP12382792 A JP 12382792A JP H06148301 A JPH06148301 A JP H06148301A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetoresistive element
thin film
bias magnetic
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4123827A
Other languages
Japanese (ja)
Inventor
Michiko Endou
みち子 遠藤
Mieko Kawamoto
美詠子 川元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4123827A priority Critical patent/JPH06148301A/en
Publication of JPH06148301A publication Critical patent/JPH06148301A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a magnetic sensor with improved symmetry of output for the positive and negative direction of magnetic field by matching the direction of magnetic field from a magnet for generating bias magnetic field to the direction of bias magnetic field of a magnetic resistance element accurately. CONSTITUTION:In a magnetic sensor where a bias magnetic field generation part consisting of a rigid magnetic film and a thin-film magnetic resistance element are formed on a same chip, the different electrodes of two thin-film magnets 2 and 3 oppose each other at the bias magnetic field generation part and the magnets 2 and 3 are laid out with a spacing. A ferromagnetic thin-film resistance element 1 is laid out near the center of a magnetic field created by two thin-film magnets 2 and 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気センサに関する。詳
しくはより高精度に外部磁界検出を行うために、磁気抵
抗素子、バイアス磁界発生用薄膜磁石を一体化し、さら
に薄膜磁石からのバイアス磁界が磁気抵抗素子に均一に
一定方向に印加されるようにした磁気センサに関する。
FIELD OF THE INVENTION The present invention relates to magnetic sensors. Specifically, in order to detect the external magnetic field with higher accuracy, the magnetoresistive element and the bias magnetic field generating thin-film magnet are integrated so that the bias magnetic field from the thin-film magnet is uniformly applied to the magnetoresistive element in a fixed direction. Magnetic sensor.

【0002】磁気抵抗素子は、ホール素子、半導体型磁
気抵抗素子に比べ、微小磁界に対する感度が高く、分解
能に優れるため、位置センサ、角度センサ、電流セン
サ、ロータリーエンコーダー等に利用されている。また
磁気抵抗素子の出力を図6に示すように外部磁界に対し
てリニアなものにすると、さらに高性能なセンサとして
の用途が期待できる。図6のような出力特性を持つ磁気
抵抗素子で重要なことは、測定磁界範囲における出力特
性の直線性、および正負の磁界に対する出力の対称性で
ある。近年、センサデバイスも小型化、高性能化が望ま
れ、簡易な構成で精度良く安定に動作する磁気センサの
実現が望まれている。
Magnetoresistive elements are used in position sensors, angle sensors, current sensors, rotary encoders, etc. because they have higher sensitivity to minute magnetic fields and superior resolution than Hall elements and semiconductor type magnetoresistive elements. If the output of the magnetoresistive element is made linear with respect to the external magnetic field as shown in FIG. 6, it can be expected to be used as a sensor with higher performance. What is important in the magnetoresistive element having the output characteristic as shown in FIG. 6 is the linearity of the output characteristic in the measurement magnetic field range and the symmetry of the output with respect to the positive and negative magnetic fields. In recent years, sensor devices are also required to be smaller and have higher performance, and it is desired to realize a magnetic sensor that has a simple structure and operates stably with high accuracy.

【0003】[0003]

【従来の技術】磁気抵抗素子の出力を図6のようなリニ
アなものにするには、磁気抵抗素子にバイアス磁界を印
加するのが有効である。従来の磁気抵抗素子にバイアス
磁界を発生させる方法は、バイアス磁界発生用磁石を磁
気抵抗素子形成済のSi基板の裏面に貼りつけたり、磁
気抵抗素子全面の下層部、または上層部に薄膜磁石を形
成する等の方法により行っている。
2. Description of the Related Art In order to make the output of a magnetoresistive element linear as shown in FIG. 6, it is effective to apply a bias magnetic field to the magnetoresistive element. The conventional method of generating a bias magnetic field in a magnetoresistive element is to attach a bias magnetic field generating magnet to the back surface of a Si substrate on which a magnetoresistive element has been formed, or to form a thin film magnet in the lower layer or upper layer of the entire magnetoresistive element. It is done by the method such as doing.

【0004】[0004]

【発明が解決しようとする課題】磁気抵抗素子のバイア
ス磁界方向と磁石の発生磁界とを完全に一致させないと
正負の磁界に対する対称性が悪くなる。たとえば、バイ
アス磁界方向と磁石の発生磁界との角度ずれが1°の場
合、図6における磁界強度Hs /2における対称性は
1.5%と低下する。図7に上記角度ずれと対称性との
関係グラフを示すが、図からもあきらかなように、バイ
アス磁界と磁石の発生磁界とを一致させることが重要で
あることがわかる。
If the direction of the bias magnetic field of the magnetoresistive element and the magnetic field generated by the magnet are not perfectly matched, the symmetry with respect to the positive and negative magnetic fields is deteriorated. For example, when the angular deviation between the bias magnetic field direction and the magnetic field generated by the magnet is 1 °, the symmetry at the magnetic field strength H s / 2 in FIG. 6 is reduced to 1.5%. FIG. 7 shows a relationship graph between the angular deviation and the symmetry. As is clear from the figure, it is important to match the bias magnetic field with the magnetic field generated by the magnet.

【0005】しかしながら、従来の磁気抵抗素子基板の
裏面に磁石を貼りつける方法の場合は、磁石の発生磁界
方向と磁気抵抗素子のバイアス磁界方向を精度良く一致
させるのは難しい。また、磁気抵抗素子と同一基板に形
成した薄膜磁石によるバイアス磁界も薄膜磁石そのもの
に磁化方向の分散があるので、これを精度良く一致させ
るのは困難である。
However, in the case of the conventional method of attaching the magnet to the back surface of the magnetoresistive element substrate, it is difficult to accurately match the direction of the magnetic field generated by the magnet with the direction of the bias magnetic field of the magnetoresistive element. Further, the bias magnetic field generated by the thin-film magnet formed on the same substrate as the magnetoresistive element has a dispersion of the magnetization direction in the thin-film magnet itself, so that it is difficult to accurately match them.

【0006】本発明は、バイアス磁界発生用磁石からの
磁界方向と、磁気抵抗素子のバイアス磁界方向とを精度
良く一致させ、正負の磁界方向に対する出力の対称性が
良好な磁気センサを実現しようとする。
The present invention intends to realize a magnetic sensor in which the magnetic field direction from the bias magnetic field generating magnet and the bias magnetic field direction of the magnetoresistive element are accurately matched, and the output has good symmetry with respect to the positive and negative magnetic field directions. To do.

【0007】[0007]

【課題を解決するための手段】本発明の磁気センサに於
いては、硬質磁性膜よりなるバイアス磁界発生部と強磁
性薄膜磁気抵抗素子とが同一チップ上に形成されて成る
磁気センサにおいて、上記バイアス磁界発生部は、2個
の薄膜磁石2,3を異極を対向させ、且つ間隔をあけて
配置し、強磁性薄膜磁気抵抗素子1は、前記2個の薄膜
磁石2,3の作る磁界の中心付近に配置したことを特徴
とする。
According to the magnetic sensor of the present invention, a bias magnetic field generating portion made of a hard magnetic film and a ferromagnetic thin film magnetoresistive element are formed on the same chip. The bias magnetic field generating unit arranges two thin film magnets 2 and 3 with different poles facing each other and at intervals, and the ferromagnetic thin film magnetoresistive element 1 is a magnetic field generated by the two thin film magnets 2 and 3. It is located near the center of.

【0008】また、それに加えて、上記磁気抵抗素子1
のパターンはバーバーポール型であり、薄膜磁石2,3
によるバイアス磁界は磁気抵抗素子パターン6の長手方
向に印加されており、検出磁界方向をバイアス磁界方向
に対して直角方向にして、外部磁界変化に比例する出力
が得られるようにしたことを特徴とする。
In addition to the above, the magnetoresistive element 1 is also provided.
The pattern is a barber pole type, and thin film magnets 2, 3
Is applied in the longitudinal direction of the magnetoresistive element pattern 6, and the detection magnetic field direction is perpendicular to the bias magnetic field direction so that an output proportional to the external magnetic field change can be obtained. To do.

【0009】また、それに加えて、上記磁気抵抗素子1
のパターンはバイアス磁界方向に対して45°方向のジ
グザグ型磁気抵抗パターンを4個点対称に配置したブリ
ッジ回路であり、検出磁界方向をバイアス磁界方向に対
して直角方向にして、外部磁界変化に比例する出力が得
られるようにしたことを特徴とする。
In addition to the above, the magnetoresistive element 1 is also provided.
Is a bridge circuit in which four zigzag type magnetoresistive patterns in 45 ° direction with respect to the bias magnetic field direction are arranged symmetrically about four points. It is characterized in that a proportional output is obtained.

【0010】また、それに加えて、Si基板5上の一部
に出力処理回路10を形成し、他の部分に薄膜磁石2,
3と磁気抵抗素子1を形成し、外部磁界変化によって磁
気抵抗素子1に発生する出力電圧を上記出力処理回路1
0にて増幅、温度補償等の処理を行ってから出力するこ
とを特徴とする。この構成を採ることにより、バイアス
磁界発生用磁石からの磁界方向と、磁気抵抗素子のバイ
アス磁界方向とを精度良く一致させ、正負の磁界方向に
対する出力の対称性を良好にした磁気センサが得られ
る。
In addition to this, the output processing circuit 10 is formed on a part of the Si substrate 5, and the thin film magnets 2 are formed on the other parts.
3 and the magnetoresistive element 1 are formed, and the output voltage generated in the magnetoresistive element 1 by the change of the external magnetic field is applied to the output processing circuit 1
It is characterized in that the signal is output after being subjected to processing such as amplification and temperature compensation at 0. By adopting this configuration, it is possible to obtain a magnetic sensor in which the direction of the magnetic field from the magnet for generating the bias magnetic field and the direction of the bias magnetic field of the magnetoresistive element are accurately matched, and the output symmetry with respect to the positive and negative magnetic field directions is good. .

【0011】[0011]

【作用】本発明では、図1に示すように強磁性薄膜の磁
気抵抗素子1と2個1組の薄膜磁石2,3を同一基板上
に作成することにより、磁気抵抗素子1と薄膜磁石2,
3との位置合わせ精度は高い。2個の薄膜磁石2,3の
極間に発生した平行磁界をバイアス磁界として利用する
ので、薄膜磁石2,3に多少の磁化分散があっても磁気
抵抗素子1のバイアス磁界方向と薄膜磁石2,3からの
発生磁界を精度良く一致させることができる。そのた
め、正負の磁界検出が対称性良く、高精度でできる。
In the present invention, as shown in FIG. 1, the magnetoresistive element 1 of the ferromagnetic thin film and the set of two thin-film magnets 2 and 3 are formed on the same substrate. ,
The alignment accuracy with 3 is high. Since the parallel magnetic field generated between the poles of the two thin film magnets 2 and 3 is used as the bias magnetic field, even if there is some magnetization dispersion in the thin film magnets 2 and 3, the bias magnetic field direction of the magnetoresistive element 1 and the thin film magnet 2 , 3 can accurately match the generated magnetic fields. Therefore, positive and negative magnetic fields can be detected with high symmetry and with high accuracy.

【0012】[0012]

【実施例】図2は本発明の第1の実施例を示す図であ
り、(a)は平面図、(b)は(a)図のB部拡大図、
(c)は(a)図のc−c線における拡大断面図であ
る。同図において、1は強磁性薄膜磁気抵抗素子2,3
は該磁気抵抗素子にバイアス磁界を印加するための薄膜
磁石である。この薄膜磁石2,3は異極を対向させ、且
つ間隔をあけてSiまたはガラスの基板5上に形成され
ている。
2A and 2B are views showing a first embodiment of the present invention, in which FIG. 2A is a plan view, FIG. 2B is an enlarged view of a portion B in FIG.
(C) is an enlarged sectional view taken along the line cc of (a). In the figure, 1 is a ferromagnetic thin film magnetoresistive element 2, 3
Is a thin film magnet for applying a bias magnetic field to the magnetoresistive element. The thin-film magnets 2 and 3 are formed on a Si or glass substrate 5 with different poles facing each other and with a space therebetween.

【0013】また、磁気抵抗素子1は、前記2個の薄膜
磁石2,3の間で、薄膜磁石2,3の作る磁界の中心付
近に形成配置されている。この磁気抵抗素子1のパター
ンは図2(b)の拡大図に示すように、NiFe等の強
磁性薄膜パターン6に斜め縞状にAuのパターン7が形
成されたバーバーポール型であり、図2(a)の如くブ
リッジ接続され、そのパターンの長手方向を薄膜磁石
2,3が作るバイアス磁界方向と一致させている。さら
にこの磁気抵抗素子のNiFe等の強磁性パターン部分
は図2(c)の断面図に示すように厚み方向も薄膜磁石
2,3の厚さ中間附近に位置し、薄膜磁石2,3からの
均一な磁界が印加されるようになっている。
The magnetoresistive element 1 is formed and arranged between the two thin film magnets 2 and 3 in the vicinity of the center of the magnetic field formed by the thin film magnets 2 and 3. As shown in the enlarged view of FIG. 2B, the pattern of the magnetoresistive element 1 is a barber pole type in which a ferromagnetic thin film pattern 6 of NiFe or the like is formed with Au patterns 7 in a diagonal stripe pattern. It is bridge-connected as shown in (a), and the longitudinal direction of the pattern is aligned with the bias magnetic field direction created by the thin film magnets 2 and 3. Further, the ferromagnetic pattern portion such as NiFe of this magnetoresistive element is located near the middle of the thickness of the thin film magnets 2 and 3 also in the thickness direction as shown in the sectional view of FIG. A uniform magnetic field is applied.

【0014】本実施例を実現するには、図2(c)の如
く、Si又はガラス基板5にPt−Co等の薄膜磁石材
料を蒸着、スパッタ等のプロセスにより成膜したのち、
不要部をエッチング除去して薄膜磁石2,3を作成す
る。次に薄膜磁石の厚みの約1/2の厚さで絶縁皮膜
(SiN,SiO2 等)8を全面に形成した上に、パー
マロイ(NiFe)、Auを蒸着して磁気抵抗素子1を
形成する。その後再度表面に絶縁皮膜8′を成膜し、最
後にパッド部9の上の絶縁膜をエッチング除去して完成
する。
In order to realize this embodiment, as shown in FIG. 2C, a thin film magnet material such as Pt-Co is formed on the Si or glass substrate 5 by a process such as vapor deposition and sputtering,
The unnecessary portions are removed by etching to form thin film magnets 2 and 3. Next, the magnetoresistive element 1 is formed by depositing permalloy (NiFe) and Au on an insulating film (SiN, SiO 2 etc.) 8 having a thickness of about ½ of the thickness of the thin film magnet. . After that, an insulating film 8'is formed again on the surface, and finally the insulating film on the pad portion 9 is removed by etching to complete the process.

【0015】このようにして構成された本実施例は、磁
気抵抗素子1と薄膜磁石2,3を同一基板上に作成する
ため、その位置合わせ精度が高くでき、且つ磁気抵抗素
子1を、間隔をあけて配置された2個の薄膜磁石2,3
が作る平行磁界をバイアス磁界として利用するので、薄
膜磁石層に多少の磁化分散があっても磁気抵抗素子のパ
ターンのバイアス磁界方向と薄膜磁石からの発生磁界を
精度良く一致させることができる。そのため正負の磁界
検出が対称性良く高精度でできる。
In this embodiment thus constructed, since the magnetoresistive element 1 and the thin film magnets 2 and 3 are formed on the same substrate, the alignment accuracy can be improved, and the magnetoresistive element 1 can be spaced apart. Two thin film magnets 2 and 3 arranged with a space between them
Since the parallel magnetic field generated by the magnet is used as the bias magnetic field, the bias magnetic field direction of the pattern of the magnetoresistive element and the magnetic field generated from the thin film magnet can be accurately matched even if there is some magnetization dispersion in the thin film magnet layer. Therefore, positive and negative magnetic fields can be detected with high symmetry and high accuracy.

【0016】図3は本発明の第2の実施例を示す図で、
(a)は平面図、(b)は(a)図のB部拡大図であ
る。本実施例は基本的には前実施例と同様であり、異な
るところは磁気抵抗素子1の構成が異なることである。
即ち、前実施例では磁気抵抗素子1としてバーバーポー
ル型の磁気抵抗パターンをブリッジ接続したものを用い
たが、本実施例では折り返し部分のみAuパターン7で
覆ったパーマロイの折り返しパターン6を45°の方向
に配置し、その4個を点対称に配置してブリッジ接続し
たもので、バイアス磁界方向は磁気抵抗素子のパターン
の長手方向に対して45°傾けた状態で印加するように
なっている。このように構成された本実施例は、前実施
例と全く同様な効果が得られる。
FIG. 3 is a diagram showing a second embodiment of the present invention.
(A) is a top view, (b) is an enlarged view of the B section of (a) figure. This embodiment is basically the same as the previous embodiment, except that the structure of the magnetoresistive element 1 is different.
That is, in the previous embodiment, a barber pole type magnetic resistance pattern was used as a bridge connection as the magnetoresistive element 1, but in the present embodiment, the permalloy folded pattern 6 in which only the folded portion is covered with the Au pattern 7 has a 45 ° angle. Direction, and four of them are arranged in point symmetry and bridge-connected, and the bias magnetic field direction is applied in a state of being inclined by 45 ° with respect to the longitudinal direction of the pattern of the magnetoresistive element. With this embodiment having such a configuration, the same effect as that of the previous embodiment can be obtained.

【0017】図4は本発明の第1又は第2の実施例の応
用例を示す図である。本応用例は、基板5に用いるSi
ウェハ上に予めセンサの出力処理回路10を集積化して
おき、その上に上記のような磁気抵抗素子1及び薄膜磁
石2,3を形成したのち、出力処理回路部10と磁気抵
抗素子出力部とを配線パターンで接続して、増幅、温度
補償等を1チップ内でできるようにしたものである。本
応用例によれば第1、第2の実施例と同様な効果を有す
る上、処理回路も含めて小型化ができる。
FIG. 4 is a diagram showing an application example of the first or second embodiment of the present invention. In this application example, Si used for the substrate 5 is used.
The output processing circuit 10 of the sensor is integrated in advance on the wafer, and the magnetoresistive element 1 and the thin film magnets 2 and 3 are formed on the integrated circuit, and then the output processing circuit section 10 and the magnetoresistive element output section are formed. Are connected by a wiring pattern so that amplification, temperature compensation, etc. can be performed within one chip. According to this application example, the same effects as those of the first and second embodiments are obtained, and the size of the processing circuit can be reduced.

【0018】図5は本発明の第1又は第2の実施例の他
の応用例を示す図である。本応用例は、同一基板5の上
に、複数(図は2個)の磁気抵抗素子1a,1bと、各
磁気抵抗素子の両側に薄膜磁石2,3,4を形成したも
のである。このように構成された本応用例は、例えば一
方の磁気抵抗素子1aで外部磁界の弱い範囲を測定し、
他方の磁気抵抗素子1bで外部磁界の強い範囲を測定す
るようにして、広い範囲の磁界強度を測定できる磁気セ
ンサを構成することができる。なお第1、第2の実施例
と同様な効果を有することは勿論である。
FIG. 5 is a diagram showing another application example of the first or second embodiment of the present invention. In this application example, a plurality (two in the figure) of magnetoresistive elements 1a and 1b and thin film magnets 2, 3 and 4 are formed on both sides of each magnetoresistive element on the same substrate 5. In this application example configured as described above, for example, the weak range of the external magnetic field is measured by one of the magnetoresistive elements 1a,
A magnetic sensor capable of measuring the magnetic field strength in a wide range can be configured by measuring the strong range of the external magnetic field with the other magnetic resistance element 1b. Needless to say, it has the same effects as those of the first and second embodiments.

【0019】[0019]

【発明の効果】本発明に依れば、バイアス発生用磁石か
らの磁界方向と磁気抵抗素子のバイアス磁界方向とを精
度良く一致させることができるので、外部磁界に対する
検出精度、とくに正負の磁界方向に対する出力の対称性
が良好となる。
According to the present invention, since the magnetic field direction from the bias generating magnet and the bias magnetic field direction of the magnetoresistive element can be accurately matched, the detection accuracy with respect to the external magnetic field, particularly the positive and negative magnetic field directions. The symmetry of the output with respect to is good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明の第1の実施例を示す図で、(a)は平
面図、(b)は(a)図のB部拡大図、(c)は(a)
図のc−c線における断面図である。
2A and 2B are views showing a first embodiment of the present invention, in which FIG. 2A is a plan view, FIG. 2B is an enlarged view of a portion B of FIG. 2A, and FIG.
It is sectional drawing in the cc line of a figure.

【図3】本発明の第2の実施例を示す図で、(a)は平
面図、(b)は(a)図のB部拡大図である。
3A and 3B are views showing a second embodiment of the present invention, in which FIG. 3A is a plan view and FIG. 3B is an enlarged view of a portion B in FIG. 3A.

【図4】本発明の第1又は第2の実施例の応用例を示す
図である。
FIG. 4 is a diagram showing an application example of the first or second embodiment of the present invention.

【図5】本発明の第1又は第2の実施例の他の応用例を
示す図である。
FIG. 5 is a diagram showing another application example of the first or second embodiment of the present invention.

【図6】磁気抵抗素子の出力特性を示す図である。FIG. 6 is a diagram showing output characteristics of a magnetoresistive element.

【図7】バイアス磁界方向のずれと対称性の関係を示す
図である。
FIG. 7 is a diagram showing a relationship between a deviation in a bias magnetic field direction and symmetry.

【符号の説明】[Explanation of symbols]

1…磁気抵抗素子 2,3,4…薄膜磁石 5…基板 6…強磁性パターン 7…Auパターン 8,8′…絶縁皮膜 9…パッド部 10…出力処理回路部 DESCRIPTION OF SYMBOLS 1 ... Magnetoresistive element 2, 3, 4 ... Thin film magnet 5 ... Substrate 6 ... Ferromagnetic pattern 7 ... Au pattern 8, 8 '... Insulating film 9 ... Pad part 10 ... Output processing circuit part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硬質磁性膜よりなるバイアス磁界発生部
と強磁性薄膜磁気抵抗素子とが同一チップ上に形成され
て成る磁気センサにおいて、 上記バイアス磁界発生部は、2個の薄膜磁石(2,3)
を異極を対向させ、且つ間隔をあけて配置し、強磁性薄
膜磁気抵抗素子(1)は、前記2個の薄膜磁石(2,
3)の作る磁界の中心付近に配置したことを特徴とする
磁気センサ。
1. A magnetic sensor in which a bias magnetic field generating section made of a hard magnetic film and a ferromagnetic thin film magnetoresistive element are formed on the same chip, wherein the bias magnetic field generating section comprises two thin film magnets (2, 2). 3)
With opposite poles facing each other and spaced apart from each other, and the ferromagnetic thin film magnetoresistive element (1) includes the two thin film magnets (2, 2).
A magnetic sensor characterized by being arranged near the center of the magnetic field created by 3).
【請求項2】 上記磁気抵抗素子(1)のパターンはバ
ーバーポール型であり、薄膜磁石(2,3)によるバイ
アス磁界は磁気抵抗素子パターン(6)の長手方向に印
加されており、検出磁界方向をバイアス磁界方向に対し
て直角方向にして、外部磁界変化に比例する出力が得ら
れるようにしたことを特徴とする請求項1の磁気セン
サ。
2. The pattern of the magnetoresistive element (1) is of a barber pole type, and the bias magnetic field by the thin film magnets (2, 3) is applied in the longitudinal direction of the magnetoresistive element pattern (6) to detect the magnetic field. 2. The magnetic sensor according to claim 1, wherein the direction is perpendicular to the bias magnetic field direction so that an output proportional to a change in the external magnetic field can be obtained.
【請求項3】 上記磁気抵抗素子(1)のパターンは、
バイアス磁界方向に対して45°方向のジグザグ型の磁
気抵抗パターンを4個点対称に配置したブリッジ回路で
あり、検出磁界方向をバイアス磁界方向に対して直角方
向にして、外部磁界変化に比例する出力が得られるよう
にしたことを特徴とする請求項1の磁気センサ。
3. The pattern of the magnetoresistive element (1) comprises:
This is a bridge circuit in which four zigzag-type magnetoresistive patterns in a direction of 45 ° with respect to the bias magnetic field direction are arranged symmetrically with respect to four points, and the detection magnetic field direction is perpendicular to the bias magnetic field direction and is proportional to an external magnetic field change. The magnetic sensor according to claim 1, wherein an output is obtained.
【請求項4】 Si基板(5)上の一部に出力処理回路
(10)を形成し、他の部分に薄膜磁石(2,3)と磁
気抵抗素子(1)を形成し、外部磁界変化によって磁気
抵抗素子(1)に発生する出力電圧を上記出力処理回路
(10)にて増幅、温度補償等の処理を行ってから出力
することを特徴とする請求項1又は2の磁気センサ。
4. An output processing circuit (10) is formed on a part of a Si substrate (5), and a thin film magnet (2, 3) and a magnetoresistive element (1) are formed on the other part to change an external magnetic field. 3. The magnetic sensor according to claim 1, wherein the output voltage generated by the magnetoresistive element (1) is amplified and temperature-compensated by the output processing circuit (10) and then output.
JP4123827A 1992-05-15 1992-05-15 Magnetic sensor Withdrawn JPH06148301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4123827A JPH06148301A (en) 1992-05-15 1992-05-15 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4123827A JPH06148301A (en) 1992-05-15 1992-05-15 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH06148301A true JPH06148301A (en) 1994-05-27

Family

ID=14870352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4123827A Withdrawn JPH06148301A (en) 1992-05-15 1992-05-15 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH06148301A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037131A1 (en) * 2000-10-26 2002-05-10 The Foundation : The Research Institute For Electric And Magnetic Materials Thin-film magnetic field sensor
JP2007064813A (en) * 2005-08-31 2007-03-15 Mitsubishi Electric Corp Magnetic field detector, and regulation method therefor
JP2007093328A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Magnetism detection device
WO2008093672A1 (en) * 2007-02-01 2008-08-07 Alps Electric Co., Ltd. Magnetism detection device
JP2009128301A (en) * 2007-11-27 2009-06-11 Ckd Corp Magnetic linear measuring device
JP2012073034A (en) * 2010-09-27 2012-04-12 Panasonic Electric Works Co Ltd Power measuring device and power measuring method
JP2014512003A (en) * 2011-04-06 2014-05-19 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single-chip push-pull bridge type magnetic field sensor
JP2014517264A (en) * 2011-04-21 2014-07-17 ジャンス マルチディメンション テクノロジー シーオー., エルティーディー Single-chip reference full-bridge magnetic field sensor
WO2014111976A1 (en) * 2013-01-18 2014-07-24 株式会社村田製作所 Magnetic sensor and production method therefor
WO2014181382A1 (en) 2013-05-10 2014-11-13 株式会社村田製作所 Magnetic current sensor and current measurement method
JP2015511705A (en) * 2012-03-14 2015-04-20 江▲蘇▼多▲維▼科技有限公司Jiang Su Multi Dimension Technology Co.,Ltd Magnetoresistance gradient sensor
JP2016105105A (en) * 2011-02-01 2016-06-09 公立大学法人大阪市立大学 Power measuring device and sensor element
WO2019049414A1 (en) * 2017-09-07 2019-03-14 株式会社村田製作所 Magnetic sensor and current sensor provided with same
WO2019069500A1 (en) * 2017-10-06 2019-04-11 株式会社村田製作所 Magnetic sensor and current sensor
US11262421B2 (en) 2016-10-14 2022-03-01 Denso Corporation Magnetic detection element having element part and metal film

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037131A1 (en) * 2000-10-26 2002-05-10 The Foundation : The Research Institute For Electric And Magnetic Materials Thin-film magnetic field sensor
US6642714B2 (en) 2000-10-26 2003-11-04 The Research Institute For Electric And Magnetic Materials Thin-film magnetic field sensor
JP2007064813A (en) * 2005-08-31 2007-03-15 Mitsubishi Electric Corp Magnetic field detector, and regulation method therefor
US7786725B2 (en) 2005-08-31 2010-08-31 Mitsubishi Electric Corporation Magnetic field detection apparatus for detecting an external magnetic field applied to a magnetoresistance effect element, and method of adjusting the same
JP2007093328A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Magnetism detection device
WO2008093672A1 (en) * 2007-02-01 2008-08-07 Alps Electric Co., Ltd. Magnetism detection device
JP5184379B2 (en) * 2007-02-01 2013-04-17 アルプス電気株式会社 Magnetic detector
JP2009128301A (en) * 2007-11-27 2009-06-11 Ckd Corp Magnetic linear measuring device
JP2012073034A (en) * 2010-09-27 2012-04-12 Panasonic Electric Works Co Ltd Power measuring device and power measuring method
JP2016105105A (en) * 2011-02-01 2016-06-09 公立大学法人大阪市立大学 Power measuring device and sensor element
JP2014512003A (en) * 2011-04-06 2014-05-19 ジャンス マルチディメンショナル テクノロジー シーオー., エルティーディー Single-chip push-pull bridge type magnetic field sensor
JP2014517264A (en) * 2011-04-21 2014-07-17 ジャンス マルチディメンション テクノロジー シーオー., エルティーディー Single-chip reference full-bridge magnetic field sensor
JP2015511705A (en) * 2012-03-14 2015-04-20 江▲蘇▼多▲維▼科技有限公司Jiang Su Multi Dimension Technology Co.,Ltd Magnetoresistance gradient sensor
WO2014111976A1 (en) * 2013-01-18 2014-07-24 株式会社村田製作所 Magnetic sensor and production method therefor
CN104919328A (en) * 2013-01-18 2015-09-16 株式会社村田制作所 Magnetic sensor and production method therefor
JPWO2014111976A1 (en) * 2013-01-18 2017-01-19 株式会社村田製作所 Magnetic sensor and manufacturing method thereof
WO2014181382A1 (en) 2013-05-10 2014-11-13 株式会社村田製作所 Magnetic current sensor and current measurement method
US10184959B2 (en) 2013-05-10 2019-01-22 Murata Manufacturing Co., Ltd. Magnetic current sensor and current measurement method
US11262421B2 (en) 2016-10-14 2022-03-01 Denso Corporation Magnetic detection element having element part and metal film
WO2019049414A1 (en) * 2017-09-07 2019-03-14 株式会社村田製作所 Magnetic sensor and current sensor provided with same
WO2019069500A1 (en) * 2017-10-06 2019-04-11 株式会社村田製作所 Magnetic sensor and current sensor
US11143719B2 (en) 2017-10-06 2021-10-12 Murata Manufacturing Co., Ltd. Magnetic sensor and current sensor

Similar Documents

Publication Publication Date Title
US9557392B2 (en) Integrated magnetometer and its manufacturing process
EP0286079B1 (en) Sensing devices utilizing magneto electric transducers
US8134361B2 (en) Magnetic sensor including magnetic field detectors and field resistors arranged on inclined surfaces
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
US6191581B1 (en) Planar thin-film magnetic field sensor for determining directional magnetic fields
US5210489A (en) Arrangement with field correcting structure producing a homogeneous magnetic field at a sensor zone for detecting movement of a ferromagnetic element
JPH06148301A (en) Magnetic sensor
US8289021B2 (en) Magnetoresistive sensor and manufacturing method thereof
JPH08178937A (en) Magnetism detecting device
JPH05281319A (en) Magnetic sensor
JPH05264701A (en) Magnetic sensor
JPH0266479A (en) Magnetoresistance effect element
JP3282444B2 (en) Magnetoresistive element
JPH06275887A (en) Magnetoresistance element
JPS6311672Y2 (en)
JPH06177454A (en) Ferromagnetic thin film magnetoresistance element and magnetic sensor using it
JPH0217476A (en) Differential type magnetoresistance effect element
JP2576136B2 (en) Magnetic direction measurement device
JP2663460B2 (en) Magnetic direction sensor
JPH03223685A (en) Detecting sensor for external magnetic field
JP3029581B2 (en) Magnetic encoder
GB2372574A (en) Polarity sensitive magnetic sensor
JP2792523B2 (en) Magnetic sensor
EP3889628A1 (en) Magnetic sensor and hall sensor, each using anomalous hall effect, and method for manufacturing hall sensor
JPH03226625A (en) Rotation positioner

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803