JPH08178937A - Magnetism detecting device - Google Patents

Magnetism detecting device

Info

Publication number
JPH08178937A
JPH08178937A JP31532794A JP31532794A JPH08178937A JP H08178937 A JPH08178937 A JP H08178937A JP 31532794 A JP31532794 A JP 31532794A JP 31532794 A JP31532794 A JP 31532794A JP H08178937 A JPH08178937 A JP H08178937A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic detection
bias
detection device
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31532794A
Other languages
Japanese (ja)
Other versions
JP3487452B2 (en
Inventor
Shigehiro Harumi
茂宏 春見
Tatsuo Tamura
龍生 田村
Kenji Yagi
賢次 八木
Masanori Aoyama
正紀 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP31532794A priority Critical patent/JP3487452B2/en
Publication of JPH08178937A publication Critical patent/JPH08178937A/en
Application granted granted Critical
Publication of JP3487452B2 publication Critical patent/JP3487452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE: To provide a magnetism detecting device wherein offset error caused by deviation between a bias magnet and a magnetic reluctance element in the direction of a principal plane of a sensor part is reduced. CONSTITUTION: A pair of bias magnets 11 and 12 are, with a magnetism detecting position P in between, while at the opposite positions in x-direction parallel with a principal plane of a sensor part, extended in y-direction which is parallel with the principal plane of the sensor part and perpendicular to the x-direction. Further, pole faces on the side facing the sensor part of both the bias magnets 11 and 12 have polarities reverse to each other. Thus magnetic field almost toward the x-direction is formed at the magnetism detecting position P, so that magnetic field intensity at each point on a line extending in the x-direction, including the magnetism detecting position P, are almost equal to each other. So that, even when a magnetic reluctance element of the sensor part is relatively displaced in the x-direction to the bias magnets, magnetic field component acting upon the magneto-resistance element is hardly changed, and the change in reluctance value is also small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁電変換素子を用いた
磁気検出装置に関する。本発明の磁気検出装置は例えば
回転検出装置に適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detector using a magnetoelectric conversion element. The magnetic detection device of the present invention is applied to, for example, a rotation detection device.

【0002】[0002]

【従来技術】従来のMR素子を用いた磁気検出装置(以
下、MR式磁気検出装置ともいう)の一例を図11に示
す。この装置は、回転検出装置であって、磁界を検出す
べき磁気検出位置Pに近接配置されてこの位置Pに所定
のバイアス磁界を形成するバイアス磁石111と、抵抗
値が磁界に応じて変化する磁気抵抗素子が主面上に配設
されるとともに位置Pに配設される板状のセンサ部11
2と、位置Pに近接して磁界の主方向Mと直角方向へ回
転する高透磁性の歯部113を有するギヤ114とを有
している。115は、バイアス磁石のN極面上に固着さ
れた一定厚の平板からなるスペーサであって、116は
バイアス磁石111が固定されるベースプレートであ
る。センサ部112には、位置Pに近接してMR素子が
ブリッジ回路構成又は単一又はハーフブリッジ回路構成
で配設されており、歯部113の近接又は離隔に伴うM
R素子位置における主としてX方向の磁界変化を検出し
て回転を検出している。
2. Description of the Related Art FIG. 11 shows an example of a conventional magnetic detection device using an MR element (hereinafter also referred to as an MR type magnetic detection device). This device is a rotation detecting device, and is a bias magnet 111 which is arranged close to a magnetic detection position P where a magnetic field is to be detected and forms a predetermined bias magnetic field at this position P, and a resistance value changes according to the magnetic field. The plate-shaped sensor unit 11 in which the magnetoresistive element is arranged on the main surface and is arranged at the position P
2 and a gear 114 having a highly magnetically permeable tooth portion 113 that rotates close to the position P in the direction perpendicular to the main direction M of the magnetic field. Reference numeral 115 is a spacer made of a flat plate having a constant thickness fixed to the N pole surface of the bias magnet, and 116 is a base plate to which the bias magnet 111 is fixed. In the sensor unit 112, an MR element is arranged in the vicinity of the position P in a bridge circuit configuration or a single or half bridge circuit configuration, and M due to the proximity or separation of the tooth portion 113.
Rotation is detected mainly by detecting a magnetic field change in the X direction at the R element position.

【0003】図12に、一対のMR素子をハーフブリッ
ジ回路構成で配設した場合の出力電圧Voの波形を示
す。MR素子r1は主としてx方向に流れるようにつづ
ら折り状に配設され、MR素子r2は主としてy方向に
流れるようにつづら折り状に配設され、その結果、歯部
113の回転によりMR素子r2の抵抗値の変化によ
り、正弦波状の出力電圧Voが得られる。
FIG. 12 shows a waveform of the output voltage Vo when a pair of MR elements are arranged in a half bridge circuit configuration. The MR element r1 is arranged in a zigzag shape so as to flow mainly in the x direction, and the MR element r2 is arranged in a zigzag shape so as to mainly flow in the y direction. As a result, the resistance of the MR element r2 is caused by the rotation of the tooth portion 113. A sinusoidal output voltage Vo is obtained by changing the value.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記した
従来の磁気検出装置では、MR素子とバイアス磁石との
相対位置が主面方向すなわち図 中、x,y方向でずれ
ると、MR素子の初期バイアス磁界がばらつき、それに
よりMR素子の抵抗値にオフセット誤差が生じ、その両
端にオフセット誤差が増大する。同様に、ブリッジ回路
構成されたMR素子(以下、MR素子ブリッジともい
う)でも、ブリッジの中点電位として発生する信号電圧
のDC成分がばらつき、オフセット誤差電圧が増大す
る。 図13(a)にバイアス磁石111の磁極面を模
式的に示し、図13(b)にバイアス磁石111の磁極
面と直角方向の断面図を示し、図13(c)にバイアス
磁石111のN極面の主面中心kからz方向へ所定距離
dだけ離れた磁気検出位置Pを通ってx方向へ延びる線
上におけるx方向磁界成分(Hx)の変化を示し、図1
3(d)にバイアス磁石111のN極面の主面中心kか
らz方向へ所定距離dだけ離れた磁気検出位置Pを通っ
てy方向へ延びる線上におけるy方向磁界成分(Hy)
の変化を示す。センサ部112上のMR素子の電気抵抗
はx方向磁界成分(Hx)又はy方向磁界成分(Hy)
の変化により変化してしまう。 すなわち、このような
オフセット誤差の増大は、センサ感度、精度の向上を図
る上の重大な障害となっていた。
However, in the above-mentioned conventional magnetic detecting device, when the relative position between the MR element and the bias magnet is deviated in the principal plane direction, that is, in the x and y directions in the drawing, the initial bias magnetic field of the MR element is generated. , Which causes an offset error in the resistance value of the MR element, and the offset error increases at both ends thereof. Similarly, in an MR element having a bridge circuit configuration (hereinafter, also referred to as an MR element bridge), the DC component of the signal voltage generated as the midpoint potential of the bridge varies and the offset error voltage increases. FIG. 13A schematically shows the magnetic pole surface of the bias magnet 111, FIG. 13B shows a sectional view in a direction perpendicular to the magnetic pole surface of the bias magnet 111, and FIG. 13C shows N of the bias magnet 111. 1 shows changes in the x-direction magnetic field component (Hx) on a line extending in the x direction through a magnetic detection position P that is apart from the principal surface center k of the pole surface in the z direction by a predetermined distance d.
3 (d), the y-direction magnetic field component (Hy) on the line extending in the y direction through the magnetic detection position P separated from the principal plane center k of the N pole surface of the bias magnet 111 in the z direction by the predetermined distance d in the z direction.
Shows the change in The electric resistance of the MR element on the sensor unit 112 is the x-direction magnetic field component (Hx) or the y-direction magnetic field component (Hy).
Will change due to changes in. That is, such an increase in offset error has been a serious obstacle to improving sensor sensitivity and accuracy.

【0005】本発明は上記問題点に鑑みなされたもので
あり、センサ部の磁気検出方向におけるバイアス磁石と
磁電変換素子との位置ずれにともなうオフセット誤差を
低減可能な磁気検出装置を提供することを、その目的と
している。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a magnetic detection device capable of reducing an offset error due to a positional deviation between a bias magnet and a magnetoelectric conversion element in a magnetic detection direction of a sensor section. , Its purpose is.

【0006】[0006]

【課題を解決するための手段】本発明の第1の構成は、
磁界を検出すべき磁気検出位置に近接配置されて前記磁
気検出位置に所定のバイアス磁界を形成するバイアス磁
石と、前記バイアス磁界の変化を電気的変化に変換する
磁電変換素子を備えて前記磁気検出位置又はその近傍に
配設されるセンサ部とを備える磁気検出装置において、
少なくとも一対の前記バイアス磁石は、前記磁気検出位
置を挟んで前記センサ部の磁気検出方向に平行なx方向
における互いに反対の位置にて前記センサ部の磁気検出
方向に平行で前記x方向と直角なy方向へそれぞれ延設
されるとともに、互いに反対極性の磁極面を前記センサ
部に向けた姿勢を有することを特徴とする磁気検出装置
である。
The first structure of the present invention is as follows.
The magnetic detection includes a bias magnet that is arranged close to a magnetic detection position where a magnetic field is to be detected and that forms a predetermined bias magnetic field at the magnetic detection position, and a magnetoelectric conversion element that converts a change in the bias magnetic field into an electrical change. In a magnetic detection device including a position or a sensor unit arranged in the vicinity thereof,
At least a pair of the bias magnets are parallel to the magnetic detection direction of the sensor unit and are perpendicular to the x direction at positions opposite to each other in the x direction parallel to the magnetic detection direction of the sensor unit with the magnetic detection position sandwiched therebetween. The magnetic detection device is characterized in that it extends in the y-direction and has magnetic pole surfaces of opposite polarities facing the sensor unit.

【0007】本発明の第2の構成は、上記第1の構成に
おいて更に、前記磁電変換素子が磁気抵抗素子であるこ
とを特徴としている。本発明の第3の構成は、上記第1
の構成において更に、前記バイアス磁石の磁極面が前記
センサ部の主面に平行に配設されることを特徴としてい
る。本発明の第4の構成は、上記第3の構成において更
に、前記一対のバイアス磁石の互いに異なる極性の磁極
面上に一定厚の平板からなる非磁性のスペーサの一主面
が固着され、前記センサ部は前記スペーサの反対主面に
固着されることを特徴としている。
A second structure of the present invention is characterized in that, in the first structure, the magnetoelectric conversion element is a magnetoresistive element. The third configuration of the present invention is the above first aspect.
Further, in the above configuration, the magnetic pole surface of the bias magnet is arranged parallel to the main surface of the sensor unit. In a fourth configuration of the present invention, in addition to the third configuration, one main surface of a non-magnetic spacer made of a flat plate having a constant thickness is fixed on the magnetic pole surfaces of the pair of bias magnets having different polarities, The sensor part is fixed to the opposite main surface of the spacer.

【0008】本発明の第5の構成は、上記第2の構成に
おいて更に、前記磁気抵抗素子は、前記センサ部の前記
主面上にて前記y方向へ往復して延設された感磁導電路
部から主として構成されることを特徴としている。本発
明の第6の構成は、上記第1の構成において更に、前記
磁電変換素子がホール素子であることを特徴としてい
る。
According to a fifth aspect of the present invention, in addition to the second configuration, the magnetoresistive element is a magnetically sensitive conductive member extending back and forth in the y direction on the main surface of the sensor section. It is characterized in that it is mainly composed of road parts. A sixth configuration of the present invention is characterized in that, in the first configuration, the magnetoelectric conversion element is a Hall element.

【0009】本発明の第7の構成は、上記第1の構成に
おいて更に、前記両バイアス磁石は互いに反対極性を有
して対面する磁極面を有することを特徴としている。本
発明の第8の構成は、上記第1〜第7の構成において更
に、前記磁気検出位置に近接しつつ前記x方向へ回転可
能な高透磁性の歯部を有するギヤを有し、回転検出装置
として用いられることを特徴としている。
A seventh structure of the present invention is characterized in that, in the first structure, the both bias magnets have magnetic pole surfaces facing each other with polarities opposite to each other. An eighth structure of the present invention further includes a gear having a highly magnetically permeable tooth portion that is rotatable in the x direction while being close to the magnetic detection position in the first to seventh structures. It is characterized by being used as a device.

【0010】[0010]

【作用及び発明の効果】本発明の第1の構成では、一対
のバイアス磁石が、磁気検出位置を挟んでセンサ部の磁
気検出方向に平行なx方向における互いに反対の位置に
てセンサ部の磁気検出方向に平行でx方向と直角なy方
向へそれぞれ延設される。更に、両バイアス磁石のセン
サ部対面側の磁極面は互いに反対極性を有する。
According to the first structure of the present invention, the pair of bias magnets are arranged such that the pair of bias magnets are arranged at opposite positions in the x direction parallel to the magnetic detection direction of the sensor unit with the magnetic detection position interposed therebetween. It extends in the y direction parallel to the detection direction and perpendicular to the x direction. Further, the magnetic pole surfaces of the both bias magnets on the side facing the sensor section have polarities opposite to each other.

【0011】このようにすれば、ほぼx方向へ向かう磁
界が磁気検出位置に形成され、したがって、磁気検出位
置を含んでx方向に延びる線上の各点の磁界強度はほと
んど等しくなる。したがって、センサ部の磁電変換素子
がバイアス磁石に対してx方向に相対変位しても、磁電
変換素子に作用する磁界成分は殆ど変化せず、電気的変
化も小さい。
With this configuration, a magnetic field that extends substantially in the x direction is formed at the magnetic detection position, so that the magnetic field strengths at points on the line extending in the x direction including the magnetic detection position are almost equal. Therefore, even if the magnetoelectric conversion element of the sensor section is displaced relative to the bias magnet in the x direction, the magnetic field component acting on the magnetoelectric conversion element hardly changes and the electrical change is small.

【0012】したがって、センサ部のx方向におけるバ
イアス磁石と磁電変換素子との位置ずれにともなうオフ
セット誤差は従来より格段に低減される。本発明の第2
の構成では、上記第1の構成において更に、磁電変換素
子が磁気抵抗素子であるため、検出すべき磁界の変化を
抵抗値の変化に変換できる。本発明の第3の構成では、
上記第2の構成において更に、バイアス磁石の磁極面が
センサ部の主面に平行に配設されるので、配設が容易と
なる。
Therefore, the offset error due to the positional displacement between the bias magnet and the magnetoelectric conversion element in the x direction of the sensor section is significantly reduced as compared with the prior art. Second of the present invention
In the above configuration, since the magnetoelectric conversion element is a magnetoresistive element in the first configuration, a change in the magnetic field to be detected can be converted into a change in resistance value. In the third configuration of the present invention,
Further, in the second configuration, the magnetic pole surface of the bias magnet is arranged parallel to the main surface of the sensor portion, which facilitates the arrangement.

【0013】本発明の第4の構成では、上記第3の構成
において更に、一対のバイアス磁石の互いに異なる極性
の磁極面上に一定厚の平板からなる非磁性のスペーサの
一主面が固着され、センサ部はスペーサの反対主面に固
着されるので、配設が更に容易となる。本発明の第5の
構成は、上記第2の構成において更に、磁気抵抗素子
が、センサ部の主面上にてy方向へ往復して延設された
感磁導電路部から主として構成されるので、感度(抵抗
値変化率)を向上することができる。
In a fourth structure of the present invention, in addition to the third structure, one main surface of a nonmagnetic spacer made of a flat plate having a constant thickness is fixed on the magnetic pole surfaces of the pair of bias magnets having different polarities. Since the sensor portion is fixed to the opposite main surface of the spacer, the arrangement becomes easier. In a fifth configuration of the present invention, in addition to the second configuration, the magnetoresistive element is mainly composed of a magnetically sensitive conductive path portion extending back and forth in the y direction on the main surface of the sensor portion. Therefore, the sensitivity (rate of change in resistance value) can be improved.

【0014】本発明の第6の構成では、上記第1の構成
において更に、磁電変換素子がホール素子であるため、
検出すべき磁界の変化をホール電圧の変化に変換でき
る。本発明の第7の構成では、上記第1の構成において
更に、両バイアス磁石が互いに反対極性を有して対面す
る磁極面を有するので、磁気検出位置を含んでx方向に
延びる線上の各点の磁界強度は更に一層等しくなり、磁
電変換素子のx方向変位による磁界変化による電気的変
化は一層低減できる。
In the sixth structure of the present invention, since the magnetoelectric conversion element is a Hall element in the first structure,
Changes in the magnetic field to be detected can be converted into changes in Hall voltage. In the seventh configuration of the present invention, further, in the first configuration, since both bias magnets have magnetic pole surfaces facing each other with opposite polarities, each point on the line extending in the x direction including the magnetic detection position. The magnetic field strengths of 1 and 2 are further equalized, and the electrical change due to the magnetic field change due to the x-direction displacement of the magnetoelectric conversion element can be further reduced.

【0015】[0015]

【実施例】【Example】

(実施例1)本発明の磁気検出装置の一実施例を図1〜
図4を参照して説明する。この装置は、回転検出装置で
あって、磁界を検出すべき磁気検出位置Pに近接配置さ
れてこの位置Pに所定のバイアス磁界を形成する一対の
バイアス磁石11、12と抵抗値が磁界に応じて変化す
る磁気抵抗素子が主面上に配設されるとともに位置Pに
配設される板状(チップ状)のセンサ部2と、位置Pに
近接してx、z面内にて回転する高透磁性の歯部3を有
するギヤ4とを有している。ベースプレート5は、バイ
アス磁石11のS極面及びバイアス磁石12のN極面が
主面に接着される平板状のベースプレートであり、非磁
性体又は磁性体により構成されている。6は一定厚を有
する非磁性の平板からなるスペーサであって、その上面
はバイアス磁石11のN極面及びバイアス磁石12のS
極面に接着され、その下面にはセンサ部2が接着されて
いる。すなわち、スペーサ6は、バイアス磁界の大きさ
及び方向を磁気検出位置Pの近傍にてできるだけ等しく
するために、バイアス磁石11、12とセンサ部2との
間に一定の間隔を確保するためのものである。
(Embodiment 1) An embodiment of the magnetic detection device of the present invention is shown in FIGS.
This will be described with reference to FIG. This device is a rotation detecting device, and a pair of bias magnets 11 and 12 that are arranged in proximity to a magnetic detection position P where a magnetic field is to be detected and that form a predetermined bias magnetic field at this position P have a resistance value that depends on the magnetic field. The sensor unit 2 in the form of a plate (chip) disposed at the position P and the magnetoresistive element that changes as a function of the magnetoresistive element are rotated in the x and z planes close to the position P. And a gear 4 having a highly magnetically permeable tooth portion 3. The base plate 5 is a flat base plate in which the S pole surface of the bias magnet 11 and the N pole surface of the bias magnet 12 are bonded to the main surface, and is made of a non-magnetic material or a magnetic material. 6 is a spacer made of a non-magnetic flat plate having a constant thickness, the upper surface of which is the N pole surface of the bias magnet 11 and the S of the bias magnet 12.
It is adhered to the polar surface, and the sensor portion 2 is adhered to the lower surface thereof. That is, the spacer 6 is for ensuring a certain space between the bias magnets 11 and 12 and the sensor unit 2 so that the magnitude and direction of the bias magnetic field are as close as possible in the vicinity of the magnetic detection position P. Is.

【0016】更に説明すると、バイアス磁石11、12
は、略正方形の平板形状を有し、板厚方向に異方性があ
るフェライト系のプラスチック磁石板1の着磁部から構
成されており、図2(a),(b)に示すように、プラ
スチック磁石板1の左右両側端から距離d1〜d2の間
をy方向に着磁したものである。なお、(a)はプラス
チック磁石板1をz方向上側(図1において)へ見上げ
た図でであり、(b)はそのx,z方向断面を示す図で
ある。y方向に延在するこれらバイアス磁石11、12
以外のプラスチック磁石板1の部分は着磁されていな
い。なお、この実施例では、磁気検出位置Pとギヤ4の
軸心とを結ぶ線はz方向に延在するものとし、x方向は
歯部3の回転面内におけるz方向と直角な方向とし、こ
れらx,y方向と直交する方向をy方向としている。こ
の3次元空間座標の原点は磁気検出位置Pとする。ま
た、プラスチック磁石板1の主面、センサ部2の主面は
x,y面内に延在するものとし、図2(a)に示される
プラスチック磁石板1の4辺は、x、y方向に延在する
ものとする。図2(b)に示すk点はプラスチック磁石
板1の下向き主面の中央点であり、k点は磁気検出位置
Pからz方向へ所定距離dだけ離れた点である。すなわ
ち、k点は、スペーサ6の厚さとセンサ部2の厚さの分
だけP点より反ギヤ側に変位して配設されている。
Explaining further, the bias magnets 11 and 12
Is composed of a magnetized portion of a ferrite-based plastic magnet plate 1 having a substantially square flat plate shape and having anisotropy in the plate thickness direction, as shown in FIGS. 2 (a) and 2 (b). , The plastic magnet plate 1 is magnetized in the y-direction between the left and right ends of the plastic magnet plate 1 at distances d1 to d2. Note that (a) is a view of the plastic magnet plate 1 looking up in the z direction (in FIG. 1), and (b) is a view showing a cross section thereof in the x and z directions. These bias magnets 11, 12 extending in the y direction
The other parts of the plastic magnet plate 1 are not magnetized. In this embodiment, the line connecting the magnetic detection position P and the axis of the gear 4 extends in the z direction, and the x direction is the direction perpendicular to the z direction in the rotation plane of the tooth portion 3, The direction orthogonal to these x and y directions is the y direction. The origin of the three-dimensional space coordinates is the magnetic detection position P. In addition, the main surface of the plastic magnet plate 1 and the main surface of the sensor unit 2 are assumed to extend in the x and y planes, and the four sides of the plastic magnet plate 1 shown in FIG. Shall extend to. Point k shown in FIG. 2B is a center point of the downward main surface of the plastic magnet plate 1, and point k is a point separated from the magnetic detection position P by a predetermined distance d in the z direction. That is, the k point is disposed so as to be displaced from the P point to the opposite gear side by the thickness of the spacer 6 and the thickness of the sensor portion 2.

【0017】センサ部2は、シリコン基板上に図3に示
すパターンを強磁性体金属の薄膜で形成されてハーフブ
リッジ回路を構成する一対のMR素子21、22と、こ
のハーフブリッジ回路の出力電圧(信号電圧)を増幅す
る不図示の増幅回路、定電圧回路等を有しており、これ
らMR素子はセンサ部2のギヤ側の主面に形成されてい
るものとする。更に説明すると、MR素子21はy方向
へ往復して延設された感磁導電路部21aから主として
構成され、MR素子22はx方向へ往復して延設された
感磁導電路部22aから主として構成され、磁気検出位
置Pは図3に示すように両素子21、22の中間に設定
され、両素子21、22はx方向へ配列される。 もち
ろん、両素子21、22が磁気検出位置Pに近接配置さ
れる限り、他の配列も可能であり、例えば素子21を重
視して図3のP’の点に磁気検出位置Pを設定してもよ
い。
The sensor section 2 includes a pair of MR elements 21 and 22 each of which has a pattern shown in FIG. 3 formed of a thin film of a ferromagnetic metal on a silicon substrate to form a half bridge circuit, and an output voltage of the half bridge circuit. It has an amplification circuit (not shown) for amplifying (signal voltage), a constant voltage circuit, and the like, and these MR elements are formed on the main surface of the sensor section 2 on the gear side. More specifically, the MR element 21 is mainly composed of a magnetically sensitive conductive path portion 21a extending back and forth in the y direction, and the MR element 22 is composed of a magnetically sensitive conductive path portion 22a extending back and forth in the x direction. It is mainly configured, and the magnetic detection position P is set in the middle of both elements 21 and 22, as shown in FIG. 3, and both elements 21 and 22 are arranged in the x direction. Of course, other arrangements are possible as long as both the elements 21 and 22 are arranged close to the magnetic detection position P. For example, the element 21 is emphasized and the magnetic detection position P is set at the point P ′ in FIG. Good.

【0018】ギヤ5は高透磁性材からなるので、ギヤ5
の歯部3の移動に伴いMR素子21、22に作用する磁
界が変化する。以下、磁気検出位置P点を通ってx方向
に延びる線上の各位置における磁界強度(通常、磁界強
度は単に磁界とも呼ばれる)を図2(c)に示し、磁気
検出位置P点を通ってx方向及びy方向に延びる線上の
各位置における磁界強度(通常、磁界強度は単に磁界と
も呼ばれる)を図2(d)に示す。磁界Hのx方向成分
Hx、磁界Hのy方向成分Hyは、磁気検出位置Pから
x、y方向に変位しても磁界変化が小さいことがわか
る。したがって、センサ部2がバイアス磁石11、12
に対して相対的にx方向又はy方向へ多少ずれても、ほ
とんど磁界のx方向成分Hx又はy方向成分Hyが変化
せず、これら変位に8より出力電圧のDC変動いわゆる
オフセット誤差電圧はほとんど生じないことがわかる。
Since the gear 5 is made of a highly magnetically permeable material, the gear 5
The magnetic field acting on the MR elements 21 and 22 changes as the tooth portion 3 moves. Hereinafter, the magnetic field strength (normally, the magnetic field strength is also simply referred to as a magnetic field) at each position on the line extending in the x direction through the magnetic detection position P is shown in FIG. The magnetic field strength at each position on the line extending in the y-direction and the y-direction (normally, the magnetic field strength is also simply referred to as a magnetic field) is shown in FIG. It can be seen that the x-direction component Hx of the magnetic field H and the y-direction component Hy of the magnetic field H have small changes in the magnetic field even when displaced from the magnetic detection position P in the x and y directions. Therefore, the sensor unit 2 is configured such that the bias magnets 11, 12
Relative to the x direction or the y direction, the x direction component Hx or the y direction component Hy of the magnetic field hardly changes, and the DC fluctuation of the output voltage due to these displacements, so-called offset error voltage is almost You can see that it does not occur.

【0019】次にMR素子21、22の磁界ー抵抗変化
特性を図4に示す。Aは、MR素子21における磁界の
y方向成分の変化による抵抗変化率の変化、又は、MR
素子22における磁界のx方向成分の変化による抵抗変
化率の変化を示し、Bは、MR素子22における磁界の
y方向成分の変化による抵抗変化、又は、MR素子21
における磁界のx方向成分の変化による抵抗変化を示
す。このような特性は周知のものである。したがって、
歯部3のx方向への接近、離遠により、MR素子21の
抵抗値が大幅に変化することになる。MR素子21、2
2は図3に示すようにハーフブリッジ回路を構成してい
るので、その出力電圧はMR素子21の抵抗値変化に応
じて変化し、これにより回転軸の回転を検出することが
できる。なお、スペーサ6の省略は可能である。
Next, the magnetic field-resistance change characteristics of the MR elements 21 and 22 are shown in FIG. A is the change in resistance change rate due to the change in the y-direction component of the magnetic field in the MR element 21, or MR
The change in the resistance change rate due to the change in the x direction component of the magnetic field in the element 22 is shown, and B is the resistance change due to the change in the y direction component of the magnetic field in the MR element 22, or the MR element 21.
4 shows a change in resistance due to a change in the x-direction component of the magnetic field at. Such characteristics are well known. Therefore,
The resistance value of the MR element 21 changes significantly due to the approach and separation of the tooth portion 3 in the x direction. MR elements 21, 2
Since 2 constitutes a half bridge circuit as shown in FIG. 3, its output voltage changes according to the change in the resistance value of the MR element 21, and the rotation of the rotary shaft can be detected by this. The spacer 6 may be omitted.

【0020】(実施例2)他の実施例を図5に示す。こ
の実施例では、プラスチック磁石板1の図5中左半分は
下主面がN極となるように着磁され、その図5中左半分
は下主面がS極となるように着磁され、実施例1と同様
の効果を奏する。
(Embodiment 2) Another embodiment is shown in FIG. In this embodiment, the left half of the plastic magnet plate 1 in FIG. 5 is magnetized so that the lower main surface becomes the N pole, and the left half of FIG. 5 is magnetized so that the lower main surface becomes the S pole. The same effect as the first embodiment is obtained.

【0021】(実施例3)他の実施例を図6に示す。こ
の実施例では、センサ部2が接着されるx方向中央部の
無着磁部がその両側の着磁部よりz方向下向きに突出し
たものであり、このようにすれば実施例1のスペーサ6
を省略することができる。
(Embodiment 3) Another embodiment is shown in FIG. In this embodiment, the non-magnetized portion at the central portion in the x direction to which the sensor portion 2 is adhered is projected downward in the z direction from the magnetized portions on both sides thereof.
Can be omitted.

【0022】(実施例4)他の実施例を図7に示す。但
し、実施例1と共通の機能を有する構成要素には同一符
号を付す。この実施例では、一種のスペーサ兼ベースで
ある樹脂板部8に、バイアス磁石11、12及びセンサ
部2が接着されている。ただし、この実施例では、バイ
アス磁石11のN極面及びバイアス磁石12のS極面は
それぞれややセンサ部2に向かう斜め方向に傾斜した姿
勢で樹脂板部2に接着されている。
(Embodiment 4) Another embodiment is shown in FIG. However, components having the same functions as those in the first embodiment are designated by the same reference numerals. In this embodiment, the bias magnets 11 and 12 and the sensor portion 2 are bonded to the resin plate portion 8 which is a kind of spacer and base. However, in this embodiment, the N-pole surface of the bias magnet 11 and the S-pole surface of the bias magnet 12 are respectively bonded to the resin plate portion 2 in a posture inclined slightly toward the sensor portion 2.

【0023】このようにすれば、一層、x方向各位置に
おける磁界の変化が小さくなる。 (実施例5)他の実施例を図8に示す。但し、実施例1
と共通の機能を有する構成要素には同一符号を付す。こ
の実施例では、一種のスペーサ兼ベースである樹脂板部
9の同一面に、バイアス磁石11、12及びセンサ部2
が接着されている。ただし、バイアス磁石11のN極面
及びバイアス磁石12のS極面はセンサ部2を挟んで互
いに真正面に対面しており、その結果、x方向各位置に
おける磁界の変化は更に一層小さくなる。なお、図9は
ギヤ4側から見た図である。
By doing so, the change in the magnetic field at each position in the x direction is further reduced. (Embodiment 5) Another embodiment is shown in FIG. However, Example 1
The same reference numerals are given to the components having the same functions as those of the above. In this embodiment, the bias magnets 11 and 12 and the sensor portion 2 are provided on the same surface of the resin plate portion 9 which is also a kind of spacer and base.
Are glued together. However, the N pole surface of the bias magnet 11 and the S pole surface of the bias magnet 12 face each other in front of each other with the sensor unit 2 interposed therebetween, and as a result, the change in the magnetic field at each position in the x direction is further reduced. Note that FIG. 9 is a view as seen from the gear 4 side.

【0024】(実施例6)他の実施例を図9に示す。こ
の実施例では、K点を中心としてプラスチック磁石板1
にあけられた固定用の穴に、ホール素子部101が磁気
検出位置Pに近接配置されるとともに、ホール素子10
1の磁気検出方向がプラスチック磁石板1の主面に平行
になるように、ホールセンサ10を通し、固着されてい
る。このようにすればホールセンサにおいても実施例1
と同様の効果を奏する。
(Embodiment 6) Another embodiment is shown in FIG. In this embodiment, the plastic magnet plate 1 is centered on the point K.
The Hall element portion 101 is disposed near the magnetic detection position P in the fixing hole formed in the
The Hall sensor 10 is passed through and fixed so that the magnetic detection direction of 1 is parallel to the main surface of the plastic magnet plate 1. In this way, the Hall sensor according to the first embodiment
Has the same effect as.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) 本発明の磁気検出装置の一実施例を示
す模式正面図である。 (b) 図1の装置における磁束Φの分布をしめす磁力
線図である。
FIG. 1A is a schematic front view showing an embodiment of a magnetic detection device of the present invention. (B) It is a magnetic force diagram which shows distribution of the magnetic flux (PHI) in the apparatus of FIG.

【図2】(a) 図1のプラスチック磁石板1の平面図
である。 (b) そのx、z方向断面図である。 (c) 磁気検出位置Pがx方向へ移動した場合の磁界
Hxの変化を示す特性図である。 (d) 磁気検出位置Pがy方向へ移動した場合の磁界
Hxの変化を示す特性図である。
2 (a) is a plan view of the plastic magnet plate 1 of FIG. 1. FIG. (B) It is the x, z direction sectional view. (C) A characteristic diagram showing changes in the magnetic field Hx when the magnetic detection position P moves in the x direction. (D) A characteristic diagram showing a change in the magnetic field Hx when the magnetic detection position P moves in the y direction.

【図3】図1のセンサ部2に形成されたMR素子21、
22の模式配置図である。
3 is an MR element 21 formed in the sensor unit 2 of FIG.
22 is a schematic layout diagram of 22. FIG.

【図4】MR素子21、22のx方向又はy方向の磁界
変化と抵抗値との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relation between a magnetic field change of the MR elements 21 and 22 in the x direction or the y direction and a resistance value.

【図5】実施例2の磁気検出装置の正面図である。FIG. 5 is a front view of the magnetic detection device according to the second embodiment.

【図6】実施例3の磁気検出装置の正面図である。FIG. 6 is a front view of a magnetic detection device according to a third embodiment.

【図7】実施例4の磁気検出装置の正面図である。FIG. 7 is a front view of a magnetic detection device according to a fourth embodiment.

【図8】実施例5の磁気検出装置の正面図である。FIG. 8 is a front view of a magnetic detection device of Example 5.

【図9】図8の磁気検出装置の平面図である。9 is a plan view of the magnetic detection device of FIG. 8. FIG.

【図10】実施例6の磁気検出装置の正面図である。FIG. 10 is a front view of a magnetic detection device according to a sixth embodiment.

【図11】従来の磁気検出装置の正面図である。FIG. 11 is a front view of a conventional magnetic detection device.

【図12】図10の従来装置の出力特性を示すタイミン
グチャートである。
12 is a timing chart showing output characteristics of the conventional device of FIG.

【図13】(a) 図11のバイアス磁石の平面であ
る。 (b) 図11のバイアス磁石の正面断面図である。 (c) 磁気検出位置Pがx方向へ移動した場合の磁界
Hxの変化を示す特性図である。 (d) 磁気検出位置Pがy方向へ移動した場合の磁界
Hxの変化を示す特性図である。
13 (a) is a plane of the bias magnet of FIG. 11. FIG. (B) It is a front sectional view of the bias magnet of FIG. 11. (C) A characteristic diagram showing changes in the magnetic field Hx when the magnetic detection position P moves in the x direction. (D) A characteristic diagram showing a change in the magnetic field Hx when the magnetic detection position P moves in the y direction.

【符号の説明】[Explanation of symbols]

Pは磁気検出位置、1はプラスチック磁石板、2はセン
サ部、3は歯部、4はギヤ、6はスペーサ、11、12
はバイアス磁石。
P is a magnetic detection position, 1 is a plastic magnet plate, 2 is a sensor part, 3 is a tooth part, 4 is a gear, 6 is a spacer, 11, 12
Is a bias magnet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青山 正紀 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masanori Aoyama 1-1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】磁界を検出すべき磁気検出位置に近接配置
されて前記磁気検出位置に所定のバイアス磁界を形成す
るバイアス磁石と、前記バイアス磁界の変化を電気的変
化に変換する磁電変換素子を備えて前記磁気検出位置又
はその近傍に配設されるセンサ部とを備える磁気検出装
置において、 少なくとも一対の前記バイアス磁石は、前記磁気検出位
置を挟んで前記センサ部の磁気検出方向に平行なx方向
における互いに反対の位置にて前記センサ部の磁気検出
方向に平行で前記x方向と直角なy方向へそれぞれ延設
されるとともに、互いに反対極性の磁極面を前記センサ
部に向けた姿勢を有することを特徴とする磁気検出装
置。
1. A bias magnet which is arranged close to a magnetic detection position where a magnetic field is to be detected and forms a predetermined bias magnetic field at the magnetic detection position, and a magnetoelectric conversion element which converts a change in the bias magnetic field into an electrical change. In the magnetic detection device including the magnetic detection position or a sensor unit arranged in the vicinity thereof, at least a pair of the bias magnets are arranged in parallel to the magnetic detection direction of the sensor unit with the magnetic detection position interposed therebetween. The magnetic pole surfaces of the magnetic poles having opposite polarities toward the sensor portion, the magnetic pole surfaces being parallel to the magnetic detection direction of the sensor portion and extending in the y direction perpendicular to the x direction. A magnetic detection device characterized by the above.
【請求項2】前記磁電変換素子は、磁気抵抗素子である
請求項1に記載の磁気検出装置。
2. The magnetic detection device according to claim 1, wherein the magnetoelectric conversion element is a magnetoresistive element.
【請求項3】前記バイアス磁石の磁極面は前記センサ部
の主面に平行に配設される請求項2記載の磁気検出装
置。
3. The magnetic detection device according to claim 2, wherein a magnetic pole surface of the bias magnet is arranged parallel to a main surface of the sensor unit.
【請求項4】前記一対のバイアス磁石の互いに異なる極
性の磁極面上に一定厚の平板からなる非磁性のスペーサ
の一主面が固着され、前記センサ部は前記スペーサの反
対主面に固着される請求項3記載の磁気検出装置。
4. A main surface of a non-magnetic spacer made of a flat plate having a constant thickness is fixed to the magnetic pole surfaces of the pair of bias magnets having different polarities, and the sensor portion is fixed to the opposite main surface of the spacer. The magnetic detection device according to claim 3,
【請求項5】前記磁気抵抗素子は、前記センサ部の前記
主面上にて前記y方向へ往復して延設された感磁導電路
部から主として構成される請求項2記載の磁気検出装
置。
5. The magnetic detection device according to claim 2, wherein the magnetoresistive element is mainly composed of a magnetically sensitive conductive path portion extending back and forth in the y direction on the main surface of the sensor portion. .
【請求項6】前記磁電変換素子は、ホール素子である請
求項1に記載の磁気検出装置。
6. The magnetic detection device according to claim 1, wherein the magnetoelectric conversion element is a Hall element.
【請求項7】前記両バイアス磁石は互いに反対極性を有
して対面する磁極面を有する請求項1記載の磁気検出装
置。
7. The magnetic detection device according to claim 1, wherein the both bias magnets have magnetic pole surfaces facing each other with polarities opposite to each other.
【請求項8】前記磁気検出位置に近接しつつ前記x方向
へ回転可能な高透磁性の歯部を有するギヤを有し、回転
検出装置として用いられる請求項1〜7のいずれか記載
の磁気検出装置。
8. The magnetic device according to claim 1, further comprising a gear having a highly magnetically permeable tooth portion that is rotatable in the x direction while being close to the magnetic detection position, and is used as a rotation detecting device. Detection device.
JP31532794A 1994-12-19 1994-12-19 Magnetic detector Expired - Fee Related JP3487452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31532794A JP3487452B2 (en) 1994-12-19 1994-12-19 Magnetic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31532794A JP3487452B2 (en) 1994-12-19 1994-12-19 Magnetic detector

Publications (2)

Publication Number Publication Date
JPH08178937A true JPH08178937A (en) 1996-07-12
JP3487452B2 JP3487452B2 (en) 2004-01-19

Family

ID=18064078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31532794A Expired - Fee Related JP3487452B2 (en) 1994-12-19 1994-12-19 Magnetic detector

Country Status (1)

Country Link
JP (1) JP3487452B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227807A (en) * 1997-02-18 1998-08-25 Toyota Motor Corp Rotation sensor
JP2002206904A (en) * 2000-11-08 2002-07-26 Yamaha Corp Sensor
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
JP2009204340A (en) * 2008-02-26 2009-09-10 Tokai Rika Co Ltd Position detecting device and shift lever device
WO2012015012A1 (en) * 2010-07-30 2012-02-02 三菱電機株式会社 Magnetic sensor device
WO2012014546A1 (en) * 2010-07-30 2012-02-02 三菱電機株式会社 Magnetic substance detection device
JP2012122983A (en) * 2010-11-16 2012-06-28 Mitsubishi Electric Corp Magnetic sensor device
CN102565508A (en) * 2010-12-22 2012-07-11 三菱电机株式会社 Semiconductor device
WO2014045559A1 (en) * 2012-09-19 2014-03-27 株式会社デンソー Current sensor
US20140292314A1 (en) * 2013-03-29 2014-10-02 Tdk Corporation Magnetic sensor system including two detection circuits
US20150022197A1 (en) * 2013-07-19 2015-01-22 Allegro Microsystems, Llc Magnet with opposing directions of magnetization for a magnetic sensor
US20150102808A1 (en) * 2012-04-09 2015-04-16 Mitsubishi Electric Corporation Magnetic sensor
JP2015179042A (en) * 2014-03-19 2015-10-08 株式会社デンソー current sensor
US9244135B2 (en) 2011-05-16 2016-01-26 Mitsubishi Electric Corporation Magnetic sensor device
US9583247B2 (en) * 2014-05-27 2017-02-28 Allegro Microsystems, Llc Systems and methods for a magnet with uniform magnetic flux
WO2018078856A1 (en) * 2016-10-31 2018-05-03 三菱電機株式会社 Rotation angle detection device and rotation angle detection method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227807A (en) * 1997-02-18 1998-08-25 Toyota Motor Corp Rotation sensor
JP2002206904A (en) * 2000-11-08 2002-07-26 Yamaha Corp Sensor
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
US7582489B2 (en) 2002-11-21 2009-09-01 Denso Corporation Method for manufacturing magnetic sensor apparatus
JP2009204340A (en) * 2008-02-26 2009-09-10 Tokai Rika Co Ltd Position detecting device and shift lever device
WO2012014546A1 (en) * 2010-07-30 2012-02-02 三菱電機株式会社 Magnetic substance detection device
KR101427543B1 (en) * 2010-07-30 2014-08-07 미쓰비시덴키 가부시키가이샤 Magnetic substance detection device
WO2012015012A1 (en) * 2010-07-30 2012-02-02 三菱電機株式会社 Magnetic sensor device
US9234947B2 (en) 2010-07-30 2016-01-12 Mitsubishi Electric Corporation Magnetic sensor device
CN103038659A (en) * 2010-07-30 2013-04-10 三菱电机株式会社 Magnetic substance detection device
US20130127457A1 (en) * 2010-07-30 2013-05-23 Mitsubishi Electric Corporation Magnetic substance detection device
JPWO2012014546A1 (en) * 2010-07-30 2013-09-12 三菱電機株式会社 Magnetic detection device
US9222993B2 (en) 2010-07-30 2015-12-29 Mitsubishi Electric Corporation Magnetic substance detection device
JP5474195B2 (en) * 2010-07-30 2014-04-16 三菱電機株式会社 Magnetic detection device
JP2012122983A (en) * 2010-11-16 2012-06-28 Mitsubishi Electric Corp Magnetic sensor device
CN102565508A (en) * 2010-12-22 2012-07-11 三菱电机株式会社 Semiconductor device
US9244135B2 (en) 2011-05-16 2016-01-26 Mitsubishi Electric Corporation Magnetic sensor device
US20150102808A1 (en) * 2012-04-09 2015-04-16 Mitsubishi Electric Corporation Magnetic sensor
US9279866B2 (en) 2012-04-09 2016-03-08 Mitsubishi Electric Corporation Magnetic sensor
WO2014045559A1 (en) * 2012-09-19 2014-03-27 株式会社デンソー Current sensor
US20140292314A1 (en) * 2013-03-29 2014-10-02 Tdk Corporation Magnetic sensor system including two detection circuits
US9297635B2 (en) * 2013-03-29 2016-03-29 Tdk Corporation Magnetic sensor system including two detection circuits
US10408892B2 (en) 2013-07-19 2019-09-10 Allegro Microsystems, Llc Magnet with opposing directions of magnetization for a magnetic sensor
US20150022197A1 (en) * 2013-07-19 2015-01-22 Allegro Microsystems, Llc Magnet with opposing directions of magnetization for a magnetic sensor
JP2015179042A (en) * 2014-03-19 2015-10-08 株式会社デンソー current sensor
US9583247B2 (en) * 2014-05-27 2017-02-28 Allegro Microsystems, Llc Systems and methods for a magnet with uniform magnetic flux
WO2018078856A1 (en) * 2016-10-31 2018-05-03 三菱電機株式会社 Rotation angle detection device and rotation angle detection method
JPWO2018078856A1 (en) * 2016-10-31 2019-02-28 三菱電機株式会社 Rotation angle detection device and rotation angle detection method

Also Published As

Publication number Publication date
JP3487452B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
US9103657B2 (en) Magnetic field sensor system with a biasing magnet producing a spatially symmetric magnetic field within a plane being defined by magnetoresistive sensor elements
US7126327B1 (en) Asymmetrical AMR wheatstone bridge layout for position sensor
JP3028377B2 (en) Magnetoresistive proximity sensor
US9347799B2 (en) Magnetic field sensor system with a magnetic wheel rotatable around a wheel axis and with magnetic sensor elements being arranged within a plane perpendicular to the wheel axis
US7112957B2 (en) GMR sensor with flux concentrators
US7969148B2 (en) Magnetic sensor device, magnetic encoder device and magnetic scale manufacturing method
JP3487452B2 (en) Magnetic detector
US6559638B1 (en) Magnetic positioning detector using field direction as primary detecting means
US7064537B2 (en) Rotation angle detecting device
JP2819507B2 (en) Magnetic measuring system
JP4028971B2 (en) Assembling method of magnetic sensor
JP4281913B2 (en) Moving body detection device
US7019607B2 (en) Precision non-contact digital switch
JPH04282481A (en) Magnetoelectric converter
JP2001174286A (en) Magnetic encoder
JP2008014954A (en) Magnetic sensor
JP3186656B2 (en) Speed sensor
WO2022244734A1 (en) Magnetic sensor and magnetic detection system
JPH069306Y2 (en) Position detector
JP7341454B2 (en) magnetic sensor
WO2022244735A1 (en) Magnetic sensor and magnetic detection system
JPH10255236A (en) Magnetism detecting apparatus
JP3067484B2 (en) Magnetic position and rotation detection element
JP2005043209A (en) Magnetic detection device
JP2535170Y2 (en) Magnetic circuit of magnetic sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees