JP2535170Y2 - Magnetic circuit of magnetic sensor - Google Patents

Magnetic circuit of magnetic sensor

Info

Publication number
JP2535170Y2
JP2535170Y2 JP1991017162U JP1716291U JP2535170Y2 JP 2535170 Y2 JP2535170 Y2 JP 2535170Y2 JP 1991017162 U JP1991017162 U JP 1991017162U JP 1716291 U JP1716291 U JP 1716291U JP 2535170 Y2 JP2535170 Y2 JP 2535170Y2
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
magnetic flux
magnet
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1991017162U
Other languages
Japanese (ja)
Other versions
JPH04106705U (en
Inventor
慎二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP1991017162U priority Critical patent/JP2535170Y2/en
Publication of JPH04106705U publication Critical patent/JPH04106705U/en
Application granted granted Critical
Publication of JP2535170Y2 publication Critical patent/JP2535170Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、磁気センサの零点を磁
気的に調整できる磁気回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic circuit capable of magnetically adjusting a zero point of a magnetic sensor.

【0002】[0002]

【従来の技術】図4に示す磁気センサは回転軸11に支
持された回転板12上に第1および第2の永久磁石1,
2を対向させて固定する一方、MR(磁気抵抗)素子1
3を該回転板12の中心部に非接触で接近させたもので
ある。
2. Description of the Related Art A magnetic sensor shown in FIG. 4 has first and second permanent magnets 1 and 2 on a rotating plate 12 supported on a rotating shaft 11.
2 and the MR (magnetic resistance) element 1
3 is brought closer to the center of the rotating plate 12 in a non-contact manner.

【0003】MR素子13は図5に示す矢印Aの向きに
感度方向があるため、同図(a)のように磁石1のN極
から磁石2のS極へ向かう磁束Bが感度方向Aと直交す
る場合にはセンサ出力は零になり、また同図(b)のよ
うにA,Bの方向が一致する場合が最大出力となる。
A,Bのなす角θは回転板12の回転により変化する。
そして、A方向に加わる磁束の大きさはBsinθで変化す
るので、例えば回転板12を一方向に回転させるとセン
サ出力は同図(c)のように変化する。
Since the MR element 13 has a sensitivity direction in the direction of an arrow A shown in FIG. 5, a magnetic flux B traveling from the N pole of the magnet 1 to the S pole of the magnet 2 as shown in FIG. When they are orthogonal, the sensor output becomes zero, and when the directions of A and B match as shown in FIG.
The angle θ between A and B changes with the rotation of the rotating plate 12.
Since the magnitude of the magnetic flux applied in the direction A changes with Bsinθ, for example, when the rotating plate 12 is rotated in one direction, the sensor output changes as shown in FIG.

【0004】このMR回転センサは図5(a)に示すθ
=0の状態で出力零になる様に製造されるが、実際に
は,回転軸11、回転板12、磁石1,2の組立て寸
法誤差、磁石1,2の位置と発生磁束Bの平行度誤
差、MR素子13の感度方向Aの組立て角度誤差等が
重なり、回転軸11が零点位置にあっても磁束BとMR
素子13の感度方向Aが図6のように直角にならず、い
くらかの出力電圧誤差が発生する。
[0004] This MR rotation sensor has a θ shown in FIG.
Although it is manufactured so that the output becomes zero in the state of = 0, actually, the assembly dimensional error of the rotating shaft 11, the rotating plate 12, the magnets 1 and 2, the parallelism between the positions of the magnets 1 and 2 and the generated magnetic flux B. The error, the assembly angle error of the sensitivity direction A of the MR element 13 and the like overlap, and even if the rotating shaft 11 is at the zero point, the magnetic flux B and the MR
The sensitivity direction A of the element 13 is not perpendicular as shown in FIG. 6, and some output voltage errors occur.

【0005】このため従来は図7のようにMR素子13
(等価的にブリッジ構成で示される)の差動出力から同
相成分を除去する差動アンプDIFの一方の入力にバッ
ファBUFを通して補正用の零点電圧を重畳し、電気的
に零点補正するようにしている。
For this reason, conventionally, as shown in FIG.
A zero-point voltage for correction is superimposed through a buffer BUF on one input of a differential amplifier DIF for removing a common-mode component from a differential output (equivalently represented by a bridge configuration) so as to electrically correct the zero point. I have.

【0006】[0006]

【考案が解決しようとする課題】しかしながら、図7の
回路で零点電圧を発生する手段がaのように固定抵抗R
1,R2であると、調整時の抵抗器交換が不便である。
また、bのようにボリュームVRを使用する場合は調整
し易いが、振動等で設定値が変わるため信頼性に欠ける
欠点がある。
However, means for generating a zero point voltage in the circuit of FIG.
If the value is 1, R2, it is inconvenient to replace the resistor during adjustment.
Further, when the volume VR is used as shown in b, the adjustment is easy, but there is a disadvantage that the set value changes due to vibration or the like, so that the reliability is lacking.

【0007】本考案は磁気的に零点補正を行うことによ
り電気的な零点補正を不要にすることを目的としてい
る。
An object of the present invention is to eliminate the need for electrical zero correction by performing magnetic zero correction.

【0008】[0008]

【課題を解決するための手段】本考案は、第1および第
2の永久磁石を対向させて固定し、両者の間に検出用の
磁束を生じさせる磁気回路において、前記第1および第
2の永久磁石の近くに前記磁束の方向を補正する磁石ま
たは磁性体からなる磁束方向調整体を設けたことを特徴
とするものである。
According to the present invention, there is provided a magnetic circuit in which first and second permanent magnets are fixed to face each other and a magnetic flux for detection is generated therebetween. A magnetic flux direction adjuster made of a magnet or a magnetic material for correcting the direction of the magnetic flux is provided near the permanent magnet.

【0009】[0009]

【作用】磁束方向調整体は第1の永久磁石と第2の永久
磁石との間に発生する磁束の方向を補正することができ
る。従って、零点における出力誤差を磁気的に補正する
ことができるので、センサ信号処理回路側の電気的な補
正を省略できる。
The magnetic flux direction adjuster can correct the direction of the magnetic flux generated between the first permanent magnet and the second permanent magnet. Therefore, the output error at the zero point can be magnetically corrected, and the electrical correction on the sensor signal processing circuit side can be omitted.

【0010】[0010]

【実施例】図1は本考案の第1実施例の構成図である。
本例は図4に示したと同様に回転板12の直径上に第
1、第2の永久磁石1,2を対向して配置、固定する一
方、その付近に第3の永久磁石3Aを配置、固定したも
のである。第3の永久磁石3Aは、第1の永久磁石1か
ら第2の永久磁石2に直接向かう磁束B1とは別の、磁
石1から磁石3Aに向かう磁束B2と、磁石3Aから磁
石2に向かう磁束B3を発生する。
1 is a block diagram of a first embodiment of the present invention.
In this example, the first and second permanent magnets 1 and 2 are arranged and fixed facing each other on the diameter of the rotating plate 12 as shown in FIG. 4, while the third permanent magnet 3A is arranged in the vicinity thereof. It is fixed. The third permanent magnet 3A is different from the magnetic flux B1 directly from the first permanent magnet 1 to the second permanent magnet 2 and is a magnetic flux B2 from the magnet 1 to the magnet 3A and a magnetic flux from the magnet 3A to the magnet 2 Generate B3.

【0011】従って、図1(b)のように磁石3Aが磁
石1,2の中間に固定されている場合には磁石1,2間
の磁束は磁石3Aがない場合と同様に横向きであるが、
同図(a)のように磁石3Aが左側に位置すると磁石
1,2間の磁束はB1,B3成分により総体として右下
向きになる。これとは逆に同図(c)のように磁石3A
が右側に位置すると、磁石1,2間の磁束はB1,B2
成分により総体として右上向きになる。
Therefore, when the magnet 3A is fixed in the middle of the magnets 1 and 2 as shown in FIG. 1 (b), the magnetic flux between the magnets 1 and 2 is horizontal like the case without the magnet 3A. ,
When the magnet 3A is located on the left side as shown in FIG. 3A, the magnetic flux between the magnets 1 and 2 is directed downward as a whole by the B1 and B3 components. On the contrary, as shown in FIG.
Is located on the right side, the magnetic flux between the magnets 1 and 2 is B1, B2
As a whole, the component is directed to the upper right.

【0012】磁石3Aは接着剤により回転板12上の任
意の位置に固定できる。或いは回転板12に長尺な溝を
設け、磁石3Aを磁石1,2を結ぶ線と平行にスライド
させて任意の位置にネジ止めする構造としてもよい。
The magnet 3A can be fixed at any position on the rotating plate 12 by an adhesive. Alternatively, a structure may be adopted in which a long groove is provided in the rotating plate 12, and the magnet 3A is slid in parallel with the line connecting the magnets 1 and 2 and screwed to an arbitrary position.

【0013】図2は本考案の第2実施例の構成図であ
る。本例は図1の磁石3Aの代りに磁性板3Bを使用し
たものである。この磁性板3Bの素材にはパーマロイ、
電磁軟鉄、ケイ素鋼、鋼板などの高透磁率材料を使用す
る。この場合も図1と同様の作用、効果がある。
FIG. 2 is a block diagram of a second embodiment of the present invention. In this example, a magnetic plate 3B is used instead of the magnet 3A of FIG. The material of this magnetic plate 3B is permalloy,
Use high magnetic permeability materials such as electromagnetic soft iron, silicon steel, and steel plate. In this case, the same operation and effect as those in FIG. 1 are obtained.

【0014】図3は本考案の第3実施例の構成図であ
る。本例では図1の磁石3Aの代りにプラスチック磁石
3Cを使用する。このプラスチック磁石3Cはプラスチ
ック内部に磁性粉を散在させて着磁したものであるから
加工し易い。そこで、図3(b)のようにプラスチック
磁石3Cを磁石1,2の中間に接着剤で固定し、必要に
応じて(a)または(c)のように右端または左端を切
除する。これは図1において磁石3Aを左または右へ移
動したことと等価であり、同様に磁石1,2間の磁束の
方向を調整できる。
FIG. 3 is a block diagram of a third embodiment of the present invention. In this example, a plastic magnet 3C is used instead of the magnet 3A of FIG. Since the plastic magnet 3C is magnetized by dispersing magnetic powder inside the plastic, it is easy to process. Therefore, as shown in FIG. 3B, the plastic magnet 3C is fixed between the magnets 1 and 2 with an adhesive, and the right end or the left end is cut off as shown in FIGS. This is equivalent to moving the magnet 3A left or right in FIG. 1, and the direction of the magnetic flux between the magnets 1 and 2 can be similarly adjusted.

【0015】[0015]

【0016】[0016]

【0017】[0017]

【考案の効果】以上述べたように本考案によれば、磁束
方向調整体により磁束方向を磁気的に補正できるので、
センサの零点補正を電気的に行う必要がない。更に、磁
束方向調整体は位置調整が可能であるので、センサ個々
で磁束方向調整体の位置を変えるだけで磁束方向を調整
することができる。
[Effect of the Invention] As described above, according to the present invention, the magnetic flux
Since the magnetic flux direction can be magnetically corrected by the direction adjuster ,
There is no need to electrically correct the zero point of the sensor. Furthermore, magnetic
Since the position of the bundle direction adjuster can be adjusted, individual sensors
Adjust the magnetic flux direction by simply changing the position of the magnetic flux direction adjuster with
can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の第1実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】本考案の第2実施例の構成図である。FIG. 2 is a configuration diagram of a second embodiment of the present invention.

【図3】本考案の第3実施例の構成図である。FIG. 3 is a configuration diagram of a third embodiment of the present invention.

【図4】MR回転センサの構造図である。FIG. 4 is a structural diagram of an MR rotation sensor.

【図5】MR回転センサの動作原理図である。FIG. 5 is an operation principle diagram of the MR rotation sensor.

【図6】零点における出力誤差の説明図である。FIG. 6 is an explanatory diagram of an output error at a zero point.

【図7】MR素子の信号処理回路の構成図である。FIG. 7 is a configuration diagram of a signal processing circuit of an MR element.

【符号の説明】[Explanation of symbols]

1 第1の永久磁石 2 第2の永久磁石 3 磁束方向調整体 DESCRIPTION OF SYMBOLS 1 1st permanent magnet 2 2nd permanent magnet 3 Magnetic flux direction adjustment body

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 第1および第2の永久磁石を対向さ
せて固定し、該第1の永久磁石と該第2の永久磁石との
間に磁気抵抗素子を配置し、該第1の永久磁石と該第2
の永久磁石との間に発生する磁束の方向と該磁気抵抗素
子の感度方向とが直交する場合に出力が零となり、該磁
束の方向と該感度方向とが一致する場合に出力が最大と
なる磁気センサにおいて、 前記第1の永久磁石と第2の永久磁石との間に発生する
磁束の方向と前記磁気抵抗素子の感度方向とが直交して
出力が零となるように、前記第1および第2の永久磁石
の近くに該磁束の方向を補正する位置調整可能な磁石ま
たは磁性体からなる磁束方向調整体を設けたことを特徴
とする磁気センサの磁気回路。
1. A first and a second permanent magnet are fixed to face each other , and a first permanent magnet and a second permanent magnet are fixed to each other.
A magnetoresistive element is interposed between the first permanent magnet and the second permanent magnet.
Of the magnetic flux generated between the permanent magnet and the magnetoresistive element
The output becomes zero when the sensitivity direction of the
The output is maximum when the direction of the bundle and the sensitivity direction match.
The magnetic sensor according to claim 1 , wherein the magnetic field is generated between the first permanent magnet and the second permanent magnet.
The direction of the magnetic flux is perpendicular to the sensitivity direction of the magnetoresistive element.
Such that the output is zero, magnetic, characterized in that a magnetic flux direction adjusting member consisting of positions adjustable magnet or magnetic material for correcting the direction of the magnetic flux in the vicinity of the first and second permanent magnets The magnetic circuit of the sensor .
JP1991017162U 1991-02-28 1991-02-28 Magnetic circuit of magnetic sensor Expired - Lifetime JP2535170Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991017162U JP2535170Y2 (en) 1991-02-28 1991-02-28 Magnetic circuit of magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991017162U JP2535170Y2 (en) 1991-02-28 1991-02-28 Magnetic circuit of magnetic sensor

Publications (2)

Publication Number Publication Date
JPH04106705U JPH04106705U (en) 1992-09-14
JP2535170Y2 true JP2535170Y2 (en) 1997-05-07

Family

ID=31903972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991017162U Expired - Lifetime JP2535170Y2 (en) 1991-02-28 1991-02-28 Magnetic circuit of magnetic sensor

Country Status (1)

Country Link
JP (1) JP2535170Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022154B4 (en) * 2010-03-30 2017-08-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Magnetic shaft encoder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154903A (en) * 1986-12-19 1988-06-28 Fujitsu Ltd Linear scale

Also Published As

Publication number Publication date
JPH04106705U (en) 1992-09-14

Similar Documents

Publication Publication Date Title
EP1352217B1 (en) Amr position sensor with changed magnetization for linearity
JPH11304414A (en) Magnetism detecting device
JPH10232242A (en) Detector
JP3487452B2 (en) Magnetic detector
JP4947250B2 (en) Angle detector
JP2004125635A (en) Rotation angle detector
US4875008A (en) Device for sensing the angular position of a shaft
US6522132B1 (en) Linear angular sensor with magnetoresistors
EP4072161A1 (en) Speaker
JPH11304413A (en) Magnetism detecting device
JP2012127736A (en) Magnetic sensor
JPH10239338A (en) Detector
JP5206962B2 (en) Rotation angle sensor
JP2535170Y2 (en) Magnetic circuit of magnetic sensor
US10497859B2 (en) Two-dimensional magnetic field sensor with a single integrated magnetic field concentrator
US8125217B2 (en) Magnetoresistive array design for improved sensor-to-magnet carrier tolerances
JP5427619B2 (en) Rotation detector
CN110260890B (en) System for determining at least one rotation parameter of a rotating member
JPH069306Y2 (en) Position detector
JPH04282481A (en) Magnetoelectric converter
JPH03226625A (en) Rotation positioner
WO2022244734A1 (en) Magnetic sensor and magnetic detection system
JPH06147816A (en) Angle sensor
JPS62148813A (en) Magnetic sensor
JP2932079B2 (en) Geomagnetic sensor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961119