JPS63154903A - Linear scale - Google Patents

Linear scale

Info

Publication number
JPS63154903A
JPS63154903A JP30162486A JP30162486A JPS63154903A JP S63154903 A JPS63154903 A JP S63154903A JP 30162486 A JP30162486 A JP 30162486A JP 30162486 A JP30162486 A JP 30162486A JP S63154903 A JPS63154903 A JP S63154903A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic path
path
closed
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30162486A
Other languages
Japanese (ja)
Inventor
Akira Hirano
明 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30162486A priority Critical patent/JPS63154903A/en
Publication of JPS63154903A publication Critical patent/JPS63154903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the effect of a leakage magnetic field, in a linear scale wherein a magnetic detector is arranged in a closed magnetic path in a movable manner, by forming the second magnetic path of the same direction outside the closed magnetic path. CONSTITUTION:Almost semicircular thin plates 115, 117 form an internal closed magnetic path 120 and a movable rod 125 having a magnetic resistance element 119 pierces the centers of magnets 111, 113 in an L-direction. Permanent magnets 143A(143B), 145A(145B) forming the second closed magnetic path are provided outside the magnetic path 120. A pair of thin plates 147A, 149A(147B, 149B) made of a magnetic material form the second closed path and the arrangement of the polarity of the permanent magnets 143A(143B), 145A(145B) is made inverse to that of the magnets 111, 113 of the magnetic path 120 so that the magnetic flux direction 151 of the thin plate 149A(149B) becomes the same to the magnetic flux direction 121 of the corresponding thin plate 115(117). By this constitution, magnetic fluxes 151 in the same direction are formed on both outsides of the magnetic path 120. By this method the effect of the leakage magnetic field due to the magnetic path 120 is prevented.

Description

【発明の詳細な説明】 〔概 要〕 閉磁路内に磁気検出器を可動に配設したリニア・スケー
ルにおいて、閉磁路の外側に同方向の第2の磁路を形成
することにより漏洩磁界の影響を最小にすることができ
る。
[Detailed Description of the Invention] [Summary] In a linear scale in which a magnetic detector is movably disposed within a closed magnetic path, leakage magnetic fields can be reduced by forming a second magnetic path in the same direction outside the closed magnetic path. impact can be minimized.

〔産業上の利用分野〕[Industrial application field]

本発明は閉磁路からの漏洩磁界を検出することにより物
体の位置やストロークを測定するリニア・スケールに関
する。
The present invention relates to a linear scale that measures the position and stroke of an object by detecting leakage magnetic fields from a closed magnetic path.

〔従来の技術〕[Conventional technology]

第4,5図は本願出願人の先行出願に開示した従来のリ
ニア・スケールの構造を示す。
4 and 5 show the structure of the conventional linear scale disclosed in the applicant's earlier application.

第4,5図において; 11.13は永久磁石、15゜
17は磁性材料にてなる薄板(例えば厚さ0.4mmの
鉄板)、19は例えば強磁性金属(パーマロイ等)の磁
気抵抗(バーバーポール型磁気抵抗素子)を収容した磁
気検出器である。
In Figures 4 and 5; 11, 13 is a permanent magnet, 15° 17 is a thin plate made of magnetic material (for example, an iron plate with a thickness of 0.4 mm), and 19 is a magnetic resistance (barber) made of, for example, a ferromagnetic metal (permalloy, etc.). This is a magnetic detector containing a pole-type magnetoresistive element.

帯状をした一対の薄板15.17は両端に永久磁石11
.13を嵌着して閉磁気回路20を構成し、閉磁気回路
20の内側に磁気検出器19を配置してなる。ただし、
薄板15.17の端部に設けた永久磁石11と13の極
性は逆方向であり、閉磁気回路20の長さし方向に移動
可能な磁気検出器19は、収容した磁気検出素子が薄板
15.17の何れか(図は薄板15)に近接し対向して
移動するようになる。
A pair of strip-shaped thin plates 15 and 17 have permanent magnets 11 at both ends.
.. 13 to form a closed magnetic circuit 20, and a magnetic detector 19 is arranged inside the closed magnetic circuit 20. however,
The polarities of the permanent magnets 11 and 13 provided at the ends of the thin plates 15 and 17 are opposite, and the magnetic detector 19, which is movable in the length direction of the closed magnetic circuit 20, has a magnetic detection element accommodated in the thin plate 15. .17 (the thin plate 15 in the figure) and moves in opposition to it.

検出器19をL方向にリニア運動可能とするべく検出器
19は磁石11.13を貫通して延びる可動棒25に取
付けられる。
The detector 19 is mounted on a movable rod 25 extending through the magnet 11.13 to allow linear movement of the detector 19 in the L direction.

このようなリニア・スケールにおける磁気検出器19に
よる漏洩磁束23の検出出力特性は第3図に一点鎖線で
示す如くなる。
The detection output characteristic of the leakage magnetic flux 23 by the magnetic detector 19 in such a linear scale is as shown by the dashed line in FIG.

このように構成されたリニア・スケールにおいて、閉磁
気回路20には第4図に示す如(、薄板15゜17には
永久磁石11のN極−永久磁石13のS極−永久磁石1
3のN極−永久磁石11のS極に向かって磁束21が通
ると共に、閉磁気回路20の内側には両永久磁石の対向
中心(L/2)から離れるに従って大きくなる漏洩磁束
23が流れるようになる第3図において、縦軸は磁気検
出器19の増幅出力電圧(1v)を示し、横軸は永久磁
石11と13の対向中心(中間中心点)を零とし該零位
置から磁気検出器19までの離反距離!l (nun)
を示す。
In the linear scale constructed in this way, the closed magnetic circuit 20 includes the N pole of the permanent magnet 11, the S pole of the permanent magnet 13, and the
The magnetic flux 21 passes from the N pole of No. 3 to the S pole of the permanent magnet 11, and leakage magnetic flux 23 flows inside the closed magnetic circuit 20, increasing as it moves away from the opposing center (L/2) of both permanent magnets. In FIG. 3, the vertical axis shows the amplified output voltage (1V) of the magnetic detector 19, and the horizontal axis shows the zero at the opposing center (intermediate center point) of the permanent magnets 11 and 13, and the magnetic detector output voltage from the zero position. Departure distance up to 19! l (nun)
shows.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第3図に示す如〈従来のリニア・スケールにおいてはそ
の出力と変位(ストローク)とが直線的に比例せずリニ
ア・スケールとしての特性を損うという問題があった。
As shown in FIG. 3, conventional linear scales have a problem in that their output and displacement (stroke) are not linearly proportional, impairing their characteristics as a linear scale.

これは磁束の一部が閉磁路の外部に漏洩してしまうため
である。従来から閉磁路の外側には磁性材からなるシー
ルドケース27゜29が設けられているがこのシールド
ケースは外部からの磁界の影響はある程度防止できるも
のの、閉磁路からシールドケースへの漏洩磁束31(第
4図)は防止することはできない。その結果、このシー
ルドケースを通して漏洩する閉磁路の磁束により、本来
直線的に比例すべきストロークと出力との関係がゆがん
でしまうのである。
This is because part of the magnetic flux leaks to the outside of the closed magnetic circuit. Conventionally, a shield case 27, 29 made of a magnetic material is provided outside the closed magnetic circuit. Although this shield case can prevent the influence of external magnetic fields to some extent, it prevents leakage magnetic flux 31 ( Figure 4) cannot be prevented. As a result, the magnetic flux of the closed magnetic circuit leaking through the shield case distorts the relationship between the stroke and the output, which should be linearly proportional.

本発明の目的は外乱磁界をシールドすると共に上記の問
題点を解決し、信頼性の高いリニア・スケールを提供す
ることにある。
An object of the present invention is to provide a highly reliable linear scale that shields disturbance magnetic fields and solves the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明によれば、閉磁路の
外側に磁石により同方向の磁束を与える第2の磁路が付
設される。
In order to achieve the above object, according to the present invention, a second magnetic path is provided outside the closed magnetic path to provide magnetic flux in the same direction by a magnet.

〔作 用〕[For production]

内部の閉磁路から外部に漏洩する磁界は外部に設けた第
2の磁路により作られる漏洩磁界により相補われていれ
ば漏洩磁束どうしは相殺し合い、その結果外部への漏洩
磁界の影響は排除される。
If the magnetic field leaking to the outside from the internal closed magnetic circuit is complemented by the leakage magnetic field created by the second magnetic path provided outside, the leakage magnetic fluxes cancel each other out, and as a result, the influence of the leakage magnetic field to the outside is eliminated. Ru.

〔実施例〕〔Example〕

第1.2図は本発明の実施例によるリニア・スケールの
長手断面図、横断面図を夫々示す。第4゜5図に対応す
る部品は夫々の部品番号に100を加えた番号で示しで
ある。第1.2図中、115,117は例えば2mrr
I厚の磁性ステンレスやパーマロイから成る内部閉磁路
120を形成する略半円形の薄板、111.113はフ
ェライト又はアルニコ磁石でその中心には磁気抵抗素子
119を有する可動棒125がL方向に貫通する。
FIG. 1.2 shows a longitudinal section and a cross section, respectively, of a linear scale according to an embodiment of the invention. Parts corresponding to FIGS. 4-5 are numbered by adding 100 to the respective part number. In Figure 1.2, 115 and 117 are, for example, 2mrr
A substantially semicircular thin plate 111, 113 forming an internal closed magnetic path 120 made of magnetic stainless steel or permalloy with a thickness of I is a ferrite or alnico magnet, and a movable rod 125 having a magnetic resistance element 119 at its center penetrates in the L direction. .

本発明によれば閉磁路120の外側には第2の閉磁路1
40を形成する永久磁石143A (143B) 、 
145A(145B)が設けられる。第2閉磁路140
を形成する一対の磁性材料にて成る薄板(例えば厚さ2
 mm)147A、 149A (1478,149B
)は従来のシールドケースに相当するものであるが、薄
板149A (149B)での磁束方向151が第1f
li路の対応薄板115(117)の磁束方向121と
同一になるように磁石143A (143B)と145
A(145B)の極性の配置は第1閉磁路120の磁石
111゜113の極性と逆になっている。斯くして第1
閉磁路120の外部両側には磁石143A (143B
)のN極−磁石145A (145B)のS極−磁極1
45A (145B)のN極−磁石143A (143
B)のS極に向う磁束151が形成される。
According to the present invention, the second closed magnetic path 1 is provided outside the closed magnetic path 120.
Permanent magnet 143A (143B) forming 40,
145A (145B) is provided. Second closed magnetic path 140
A pair of thin plates made of magnetic material (for example, a thickness of 2
mm) 147A, 149A (1478, 149B
) corresponds to the conventional shield case, but the magnetic flux direction 151 in the thin plate 149A (149B) is the 1st f.
The magnets 143A (143B) and 145 are arranged so that the direction of magnetic flux is the same as the magnetic flux direction 121 of the corresponding thin plate 115 (117) of the li path.
The polarity arrangement of A (145B) is opposite to the polarity of the magnets 111 and 113 of the first closed magnetic path 120. Thus the first
Magnets 143A (143B
) N pole - magnet 145A (145B) S pole - magnetic pole 1
45A (145B) N pole - magnet 143A (143
A magnetic flux 151 directed toward the S pole of B) is formed.

好ましくは第1閉磁路の磁界の強さと第2閉磁路のそれ
とは等しい。
Preferably, the strength of the magnetic field in the first closed magnetic path is equal to that in the second closed magnetic path.

尚、第1.2図においては薄板、磁石等の形状は第4.
5図に示すものと異なっているがその形状や大きさには
何ら限定されず、例えば薄板115゜117、147八
、 147B、 149A、 149Bを第4図と同様
に平板状とし、弓形の磁石113.143A、 143
B、 145A、 145Bを矩形にしてもよい。
In Figure 1.2, the shapes of the thin plates, magnets, etc. are as shown in Figure 4.
Although it is different from that shown in Fig. 5, its shape and size are not limited in any way; for example, the thin plates 115°, 117, 1478, 147B, 149A, and 149B are made into a flat plate shape as in Fig. 4, and an arcuate magnet is used. 113.143A, 143
B, 145A, and 145B may be rectangular.

尚、150は非磁性スペーサであるが必ずしも必要なも
のでない(第1図にはスペーサ150は示していない)
Note that 150 is a non-magnetic spacer, but it is not necessarily necessary (spacer 150 is not shown in Figure 1).
.

以上の如く構成することにより第1閉磁路120から外
部に漏れる磁束は第2閉磁路140から外部(第1閉磁
路内)に漏れる磁束により相補われ、恰かも相殺された
状態となり、漏洩磁界による影響は防止される。
By configuring as described above, the magnetic flux leaking to the outside from the first closed magnetic path 120 is complemented by the magnetic flux leaking to the outside (inside the first closed magnetic path) from the second closed magnetic path 140, and the magnetic flux is almost canceled out. Impact is prevented.

第3図に本発明における磁気検出器119の出力特性を
実線で示す。これによれば、本発明ではリニア・スケー
ルの出力とストローク(変位)はほぼ直線的に比例する
ことが判る。
In FIG. 3, the output characteristics of the magnetic detector 119 in the present invention are shown by a solid line. According to this, it can be seen that in the present invention, the output of the linear scale and the stroke (displacement) are almost linearly proportional.

上記実施例では、磁束を与える手段として永久磁石を用
いたが、電磁石を利用しても同様の効果を出しうろこと
は勿論である。
In the above embodiment, a permanent magnet is used as a means for applying magnetic flux, but it goes without saying that the same effect can be obtained by using an electromagnet.

また、第2磁路は必ずしも「閉」磁路である必要はなく
、従って、例えば最も外側の薄板147A。
Also, the second magnetic path does not necessarily have to be a "closed" magnetic path, thus, for example, the outermost lamina 147A.

147Bは設けなくてもよい。147B may not be provided.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、外部への漏洩磁界による特性劣化を防
止することができ、信頼性と検出精度の高いリニア・ス
ケールが得られる。
According to the present invention, characteristic deterioration due to external leakage magnetic fields can be prevented, and a linear scale with high reliability and detection accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の長手断面図、第2図は第1図
の■−■線断面図、 第3図はリニア・スケールの特性を示す図、第4図は従
来のリニア・スケールの長手断面図、第5図は第4図の
V−V線断面図。 111.113・・・永久磁石、119・・・磁界検知
器、120・・・第1閉磁路、 140・・・第2閉磁
路、143A、 143B、 145A、 145B・
・・磁石。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, FIG. 3 is a diagram showing the characteristics of a linear scale, and FIG. A longitudinal sectional view of the scale, and FIG. 5 is a sectional view taken along the line V-V in FIG. 4. 111.113... Permanent magnet, 119... Magnetic field detector, 120... First closed magnetic path, 140... Second closed magnetic path, 143A, 143B, 145A, 145B.
··magnet.

Claims (1)

【特許請求の範囲】[Claims] 磁性材より成る閉磁路(120)と、該磁路に磁束を与
える磁石(111、113)と、該磁路の漏洩磁界を検
出するリニア方向に可動な検知手段(119)とを有す
るリニア・スケールであって、磁束を通す閉磁路の外部
に、磁石(143A、143B、145A、145B)
により同方向の磁束を与えられる第2の磁路(140)
が付設されることを特徴とするリニア・スケール。
A linear magnet having a closed magnetic path (120) made of a magnetic material, magnets (111, 113) that apply magnetic flux to the magnetic path, and a linearly movable detection means (119) that detects a leakage magnetic field of the magnetic path. The scale has magnets (143A, 143B, 145A, 145B) outside the closed magnetic circuit that passes magnetic flux.
a second magnetic path (140) that is given magnetic flux in the same direction by
A linear scale that is characterized by being attached.
JP30162486A 1986-12-19 1986-12-19 Linear scale Pending JPS63154903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30162486A JPS63154903A (en) 1986-12-19 1986-12-19 Linear scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30162486A JPS63154903A (en) 1986-12-19 1986-12-19 Linear scale

Publications (1)

Publication Number Publication Date
JPS63154903A true JPS63154903A (en) 1988-06-28

Family

ID=17899184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30162486A Pending JPS63154903A (en) 1986-12-19 1986-12-19 Linear scale

Country Status (1)

Country Link
JP (1) JPS63154903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106705U (en) * 1991-02-28 1992-09-14 富士通テン株式会社 magnetic circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106705U (en) * 1991-02-28 1992-09-14 富士通テン株式会社 magnetic circuit

Similar Documents

Publication Publication Date Title
FR2790549B1 (en) POSITION SENSOR WITH MAGNETO-SENSITIVE PROBE AND MAGNET RECESSED IN IRON
US8203406B2 (en) Magnetic having linear magnetic flux density
JP2967597B2 (en) Potentiometer
JPS63154903A (en) Linear scale
JP3400641B2 (en) Linear displacement detector
CN106716070A (en) Position detecting device and structure for using the position detecting device
JPH0739922B2 (en) Position detector for hydraulic or pneumatic cylinders
JPH0635128Y2 (en) Position detector
US20160370205A1 (en) Position detecting device and image stabilization device
JP4220790B2 (en) Magnetic detector
KR101823571B1 (en) Apparatus for Eliminating Common External B field Interference
US20230037194A1 (en) Magnetic sensor
JPS598761B2 (en) position detection device
JPS621724Y2 (en)
JPH02280007A (en) Position sensor
JPS594247Y2 (en) Fixed position detection device
JPH0477268B2 (en)
JPH03131716A (en) Linear position detector
JPH0749245A (en) Magnetic scale device
JPH03176613A (en) Composite displacement measuring instrument
JP2019060752A (en) Magnet unit for bias magnetic field generation and magnetic sensor
JPS597933B2 (en) electromagnetic flow meter
JPH09113592A (en) Magnetic sensor
JPS5661601A (en) Fixed point detector
JPH02213723A (en) Electromagnetic flow meter for conductive fluid