JPH03131716A - Linear position detector - Google Patents

Linear position detector

Info

Publication number
JPH03131716A
JPH03131716A JP26981989A JP26981989A JPH03131716A JP H03131716 A JPH03131716 A JP H03131716A JP 26981989 A JP26981989 A JP 26981989A JP 26981989 A JP26981989 A JP 26981989A JP H03131716 A JPH03131716 A JP H03131716A
Authority
JP
Japan
Prior art keywords
magnetic
linear position
scale
magnetic scale
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26981989A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
浩 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP26981989A priority Critical patent/JPH03131716A/en
Publication of JPH03131716A publication Critical patent/JPH03131716A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the linear position detecting device which is not affected by the magnetization of the magnetic part of a magnetic scale by adding a degausser at a specific position. CONSTITUTION:The degausser 40 is provided at a position which is in the moving direction of a magnetic sensor element 40 and almost circumscribed with the linear position detecting device. Consequently, even if the magnetic part 11 of the magnetic scale 10 is magnetized, the degausser 40 erases the magnetism of the magnetism part before a magnetic sensor 30 performs detection. Consequently, the detection output is not affected by the magnetism. Thus, the linear position detecting device which is not affected by the magnetization of the magnetic part of the magnetic scale is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、直線位置検出装置に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a linear position detection device.

[従来の技術] 従来の技術を、第2図を借用して説明すれば。[Conventional technology] The conventional technology will be explained with reference to FIG.

磁性部11と非磁性部12とからなる周期パターンを表
面に備える磁気スケール10と、前記周期パターンに対
向して設けられ、かつ、前記磁気スケール10にバイア
ス磁場を印加するために設けられた励磁装置20と、前
記磁気スケール10と前記励磁装置20との間に設けら
れ、かつ、前記磁気スケール10に対して接触又は非接
触して設けられた磁気センサ素子30とで構成される直
線位置検出装置には各種のものが知られる。例えば磁気
スケール10は凹凸パターンをその表面に備えたものが
ある。この場合、磁性部11は凹部の空間を指し、他方
非磁性部12は凸部の1例えば母材を指す。その他、上
記構成において、凹部に別途非磁性材を充填した構成も
知られる。更に他の構成として、母材表面を周期的に変
質せしめそれぞれ異なる透磁率とした構成のものもある
。励磁装置20は永久磁石を利用するもの又はソレノイ
ド形コイルを利用するもの等が知られる。
A magnetic scale 10 having a periodic pattern on its surface consisting of a magnetic part 11 and a non-magnetic part 12, and an excitation part provided opposite to the periodic pattern and for applying a bias magnetic field to the magnetic scale 10. A linear position detection device comprising a device 20 and a magnetic sensor element 30 provided between the magnetic scale 10 and the excitation device 20 and provided in contact or non-contact with the magnetic scale 10. Various types of devices are known. For example, some magnetic scales 10 have an uneven pattern on their surface. In this case, the magnetic part 11 refers to the space of the concave part, while the non-magnetic part 12 refers to one of the convex parts, for example, the base material. In addition, in the above structure, a structure in which the recessed portion is separately filled with a nonmagnetic material is also known. Still another configuration is one in which the surface of the base material is periodically altered to have different magnetic permeability. The excitation device 20 is known to use a permanent magnet or a solenoid coil.

この励磁方式についても直流励磁と交流励磁とがある。This excitation method also includes DC excitation and AC excitation.

磁気センサ素子はホール素子や磁気抵抗素子等の半導体
素子又は強磁性体磁気抵抗素子等が知られる。
Known magnetic sensor elements include semiconductor elements such as Hall elements and magnetoresistive elements, and ferromagnetic magnetoresistive elements.

[発明が解決しようとする課題] しかしながら、上記従来の直線位置検出装置は磁−気ス
ケールの磁性部が9例えば外部からのいたずらによって
不均一に着磁され、この結果、磁気センサ素子の検出精
度が低下してしまうという難点がある。
[Problems to be Solved by the Invention] However, in the conventional linear position detection device described above, the magnetic portion of the magnetic scale is non-uniformly magnetized due to, for example, external mischief, and as a result, the detection accuracy of the magnetic sensor element is reduced. The problem is that it decreases.

本発明は、上記従来の問題点に鑑み、磁気スケールの磁
性部の着磁によって影響されない直線位置検出装置を提
供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, it is an object of the present invention to provide a linear position detection device that is not affected by the magnetization of the magnetic portion of a magnetic scale.

[課題を解決するための手段] 上記目的を達成するため9本発明に係わる直線位置検出
装置は、第2図を参照して説明すれば。
[Means for Solving the Problems] To achieve the above object, a linear position detection device according to the present invention will be described with reference to FIG.

磁性部11と非磁性部12とからなる周期パターンを表
面に備える磁気スケール10と、前記周期パターンに対
向して設けられ、かつ、前記磁気スケール10にバイア
ス磁場を印加するために設けられた励磁装置20と、前
記磁気スケール10と前記励磁装置20との間に設けら
れ、かつ、前記磁気スケール10に対して接触又は非接
触して設けられた磁気センサ素子30とで構成される直
線位置検出装置において、前記磁気センサ素子30の移
動方向の位置であって、かつ、前記直線位置検出装置と
略外接する位置に、消磁装置40を備える構成とした。
A magnetic scale 10 having a periodic pattern on its surface consisting of a magnetic part 11 and a non-magnetic part 12, and an excitation part provided opposite to the periodic pattern and for applying a bias magnetic field to the magnetic scale 10. A linear position detection device comprising a device 20 and a magnetic sensor element 30 provided between the magnetic scale 10 and the excitation device 20 and provided in contact or non-contact with the magnetic scale 10. In the apparatus, a demagnetizing device 40 is provided at a position in the moving direction of the magnetic sensor element 30 and at a position substantially circumscribing the linear position detecting device.

更に上記構成において、消磁装置40が着磁装置50で
ある構成でもよい。
Furthermore, in the above configuration, the demagnetizing device 40 may be a magnetizing device 50.

[作用コ 請求項1の構成によれば、たとえ磁気スケール10の磁
性部11が着磁していても、磁気センサ素子30が検出
する以前に、消磁装置40が当該着磁部の着磁を消磁し
てしまうため、検出出力が着磁により影響を受けること
がなくなる。請求項2の構成によっても、たとえ磁気ス
ケール10の磁性部11が着磁していても、磁気センサ
素子30が検出する以前に9着磁装置50が、磁気スケ
ールのいずれの磁性部11も同一磁場で着磁するので、
先の不如意による着磁の影響がなくなり。
[Function] According to the structure of claim 1, even if the magnetic part 11 of the magnetic scale 10 is magnetized, the demagnetizing device 40 demagnetizes the magnetized part before the magnetic sensor element 30 detects it. Since it is demagnetized, the detection output is no longer affected by magnetization. According to the structure of claim 2, even if the magnetic parts 11 of the magnetic scale 10 are magnetized, the nine magnetizing devices 50 detect that all the magnetic parts 11 of the magnetic scale are the same before the magnetic sensor element 30 detects the magnetic parts 11 of the magnetic scale 10. Because it is magnetized by a magnetic field,
The influence of magnetization caused by the previous accident is eliminated.

この結果、検出にばらつきがなくなる。尚、請求項2の
構成にあっては、励磁装置20による検出用のバイアス
磁場は9着磁装置50による磁性部11へのバイアス磁
場以上の磁場である必要がある。また1着磁装置50に
よる磁性部11へのバイアス磁場は磁性部11の保持力
以上であることが望ましく、この場合、前記同様の思想
により。
As a result, there is no variation in detection. In the configuration of claim 2, the bias magnetic field for detection by the excitation device 20 needs to be greater than the bias magnetic field applied to the magnetic section 11 by the magnetizing device 50. Further, it is desirable that the bias magnetic field applied to the magnetic part 11 by the first magnetizing device 50 is greater than or equal to the coercive force of the magnetic part 11, and in this case, the same idea as above is used.

励磁装置20による検出用のバイアス磁場は磁性部11
の飽和磁場以上である必要がある。
The bias magnetic field for detection by the excitation device 20 is applied to the magnetic part 11.
It must be greater than the saturation magnetic field of .

[実施例] 請求項1の実施例は第1図〜第3図に示される。先ず第
2図を参照して説明する。磁気スケール10はSCM4
35Hの板材である。この磁気スケールlOは表面にピ
ッチ1mm、幅1mm及び深さ0.1mmの凹部を周期
的に設け、この凹部内をCrで充填し、最後に全表面を
厚さ50μmでCrメツキしたものである。かかる磁気
スケール10 i:オイ”(、’;!i性部11は母材
SCM435Hであり、他方非磁性部12は凹部のCr
である。励磁装置20は長さ20mm、幅10mm及び
厚さ5mmの永久磁石21を、長さ75mm、幅10m
m及び厚さ1.5mmでなるパーマロイを両端から20
mmずつ直角に折り曲げてなるヨーク22内に収めて構
成したものである。このヨーク22の両端は磁気スケー
ル10の表面に対向するよう設置されている。磁気セン
サ素子30はガラス基板上にパーマロイを蒸着して作成
した強磁性体磁気抵抗素子である。磁気センサ素子30
は基板上で4素子ブリツジを形成している。この磁気セ
ンサ素子30は磁気スケール10の漏れ磁束を検出する
ように、前記ヨーク22内に位置しかつ、前記磁気スケ
ールとの間に位置して備えである。実施例は、かかる構
成の従前の直線位置検出装置から移動検出方向に2mm
離れた位置に消磁装置40を備えて構成しである。この
消磁装置40は、第2図のX視である第1図に示すよう
に、長さ56mm、幅3mm及び厚さ2mmのケイ素鋼
を1両端から20mmずつ直角に折り曲げてなるヨーク
の中央部に、長さ10mm及び巻数200のコイルを巻
いて構成したものである。このコイルへの励磁電流はI
Ap−p及び周波数は100Hzである。この実施例の
効果を第3図により説明する。第3図は実施例と、実施
例の消磁装置40を取り除いた比較例とにおける消磁装
置40の効果を示す特性グラフである。同グラフにおい
て、Pは永久磁石で磁気スケールを擦り、予め着磁して
おいた範囲を示し、線A1は実施例の特性を示し、線B
1は比較例の特性を示す。同グラフから分かるように、
実施例A1では波形が規則正しいが、従来の技術なる比
較例B1では着磁部Pにおいて波形が崩れている。つま
り、従来の構成では、磁気スケールの磁性部が着磁され
るとコンパレータによる矩形波としてその部位を出力で
きないが9本実施例によれば、消磁装置40により、支
障無く検出することができることが分かる。次に請求項
2の実施例を第4図及び第5図を参照して説明する。第
4図において、磁気スケール10と、励磁装置20と、
磁気センサ素子30とからなる従前の直線位置検出装置
は上述請求項1の実施例の従前の直線位置検出装置と同
じ構成である。そこで着磁装置50は前記従前の直線位
置検出装置から移動方向へ2 m m離れるように設置
した。尚、この着磁部N50は幅10mm。
[Embodiment] An embodiment of claim 1 is shown in FIGS. 1 to 3. First, explanation will be given with reference to FIG. Magnetic scale 10 is SCM4
It is a 35H plate material. This magnetic scale IO has recesses with a pitch of 1 mm, width of 1 mm, and depth of 0.1 mm periodically provided on the surface, the recesses filled with Cr, and finally the entire surface is plated with Cr to a thickness of 50 μm. . Such a magnetic scale 10 i:oi''(,';!i The magnetic part 11 is the base material SCM435H, and the non-magnetic part 12 is the Cr concave part.
It is. The excitation device 20 has a permanent magnet 21 with a length of 20 mm, a width of 10 mm, and a thickness of 5 mm, and a permanent magnet 21 with a length of 75 mm and a width of 10 m.
20 mm permalloy from both ends with a thickness of 1.5 mm.
It is constructed by being housed in a yoke 22 which is bent at right angles by mm. Both ends of this yoke 22 are installed to face the surface of the magnetic scale 10. The magnetic sensor element 30 is a ferromagnetic magnetoresistive element made by depositing permalloy on a glass substrate. Magnetic sensor element 30
forms a four-element bridge on the substrate. This magnetic sensor element 30 is located within the yoke 22 and between the magnetic scale 10 and the magnetic scale 10 so as to detect leakage magnetic flux of the magnetic scale 10. In this embodiment, the distance from the conventional linear position detection device having such a configuration is 2 mm in the movement detection direction.
A demagnetizing device 40 is provided at a remote location. As shown in FIG. 1, which is an X view of FIG. 2, this degaussing device 40 is constructed by bending silicon steel with a length of 56 mm, a width of 3 mm, and a thickness of 2 mm at a right angle by 20 mm from both ends of the yoke. It was constructed by winding a coil with a length of 10 mm and a number of turns of 200. The excitation current to this coil is I
Ap-p and frequency are 100Hz. The effects of this embodiment will be explained with reference to FIG. FIG. 3 is a characteristic graph showing the effects of the demagnetizing device 40 in the example and a comparative example in which the demagnetizing device 40 of the example is removed. In the same graph, P indicates the range that has been magnetized in advance by rubbing the magnetic scale with a permanent magnet, line A1 indicates the characteristics of the example, and line B
1 shows the characteristics of a comparative example. As can be seen from the same graph,
In Example A1, the waveform is regular, but in Comparative Example B1, which is a conventional technique, the waveform is distorted at the magnetized portion P. In other words, in the conventional configuration, when the magnetic part of the magnetic scale is magnetized, the comparator cannot output that part as a rectangular wave, but according to this embodiment, the degaussing device 40 can detect it without any trouble. I understand. Next, an embodiment of claim 2 will be described with reference to FIGS. 4 and 5. In FIG. 4, a magnetic scale 10, an excitation device 20,
The conventional linear position detecting device comprising the magnetic sensor element 30 has the same configuration as the conventional linear position detecting device of the embodiment of claim 1 described above. Therefore, the magnetizing device 50 was installed at a distance of 2 mm from the conventional linear position detection device in the moving direction. Note that this magnetized portion N50 has a width of 10 mm.

厚さ2mm及び高さ20mmのケイ素鋼板に高さ15m
mの範囲で巻数150でコイルを巻いて構成したもので
ある。この実施例の効果を第5図により説明する。第5
図は、全域に渡って永久磁石で予め着磁しておいた磁気
スケールにおいて、実施例の着磁装置50を全域に渡り
作動させた場合(A2)と、実施例の着磁装置50を途
中で作動停止させた場合(B2)とにおける着磁装置5
0の効果を示す特性グラフである。同グラフから分かる
ように9着磁装置50を作動しつづけることにより、検
出出力の波形は周期的に現れる(A2)。これに対し、
途中で着磁装置50の作動を停止した場合の比較例では
、停止後の出力波形Qは先の予め着磁しておいた着磁の
影響を受けて波形が崩れている(B2)。つまり、従来
の構成では、磁気スケールの磁性部が着磁されると、コ
ンパレータによる矩形波としてその着磁部を出力できな
いが9本実施例によれば9着磁装置50により、支障無
く検出することができることが分かる。他の実施例とし
て、検出方向が往復方向であれば、消磁装置又は着磁装
置は2個ずつ従前の直線位置検出装置の挟むように設置
することになる。
15m high on a silicon steel plate with a thickness of 2mm and a height of 20mm
It is constructed by winding a coil with a number of turns of 150 within a range of m. The effects of this embodiment will be explained with reference to FIG. Fifth
The figure shows a case where the magnetizing device 50 of the embodiment is operated over the entire region (A2) and a case where the magnetizing device 50 of the embodiment is operated in the middle of the magnetic scale, which has been magnetized in advance with a permanent magnet over the entire region. Magnetizing device 5 in the case where the operation is stopped (B2)
It is a characteristic graph showing the effect of 0. As can be seen from the graph, by continuing to operate the magnetizing device 50, the waveform of the detection output appears periodically (A2). In contrast,
In a comparative example where the operation of the magnetizing device 50 is stopped midway, the output waveform Q after the stop is affected by the previous magnetization and is distorted (B2). In other words, in the conventional configuration, when the magnetic part of the magnetic scale is magnetized, the comparator cannot output the magnetized part as a rectangular wave, but according to this embodiment, the magnetizing device 50 can detect it without any problem. I know that I can do it. As another embodiment, if the detection direction is the reciprocating direction, two demagnetizing devices or two magnetizing devices are installed between the conventional linear position detecting devices.

[発明の効果] 以上説明したように9本発明に係わる直線位置検出装置
は、従来の直線位置検出装置に消磁装置又は着磁装置を
追設した構成であるため、磁メスケールの磁性部が着磁
しても、この影響を受けることなく9位置検出を高精度
に行うことができるようになる。
[Effects of the Invention] As explained above, the linear position detecting device according to the present invention has a configuration in which a degaussing device or a magnetizing device is added to a conventional linear position detecting device, so that the magnetic part of the magnetic scale is not attached. Even if the magnet is magnetized, nine positions can be detected with high precision without being affected by this effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・ ・請求項1の直線位置検出装置の実施例の消
磁装置の構成図 第2図・・・請求項1の直線位置検出装置の実施例の構
成図 f:J3図・・・請求項1の直線位置検出装置の実施例
の効果を示すグラフ 第4図・ ・請求項2の直線位置検出装置の実施例の構
成図 第5図・・・請求項2の直線位置検出装置の実施例の効
果を示すグラフ 10・・・磁気スケール 11・・・磁性部 12・・・非磁性部 20・・・励磁装置 30・・・磁気センサ素子 40・・・消磁装置 50・・・着磁装置 第1図 1U 第2図 第4図
Fig. 1... A block diagram of a degaussing device in an embodiment of the linear position detecting device of claim 1. Fig. 2... A block diagram of an embodiment of the linear position detecting device in claim 1. Figure f: J3... Claim Graph showing the effects of the embodiment of the linear position detection device of claim 1. Figure 4. Block diagram of the embodiment of the linear position detection device of claim 2. Figure 5. Implementation of the linear position detection device of claim 2. Graph 10 showing the effect of the example... Magnetic scale 11... Magnetic part 12... Non-magnetic part 20... Exciter 30... Magnetic sensor element 40... Demagnetizing device 50... Magnetizing Apparatus Figure 1 1U Figure 2 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)磁性部11と非磁性部12とからなる周期パター
ンを表面に備える磁気スケール10と、前記周期パター
ンに対向して設けられ、かつ、前記磁気スケール10に
バイアス磁場を印加するために設けられた励磁装置20
と、前記磁気スケール10と前記励磁装置20との間に
設けられ、かつ、前記磁気スケール10に対して接触又
は非接触して設けられた磁気センサ素子30とで構成さ
れる直線位置検出装置において、前記磁気センサ素子3
0の移動方向の位置であって、かつ、前記直線位置検出
装置と略外接する位置に、消磁装置40を備えた構成を
特徴とする直線位置検出装置。
(1) A magnetic scale 10 having a periodic pattern on its surface consisting of a magnetic part 11 and a non-magnetic part 12, and a part provided facing the periodic pattern and for applying a bias magnetic field to the magnetic scale 10. excited device 20
and a magnetic sensor element 30 provided between the magnetic scale 10 and the excitation device 20 and provided in contact or non-contact with the magnetic scale 10. , the magnetic sensor element 3
A linear position detecting device characterized by having a demagnetizing device 40 at a position in the moving direction of zero and at a position substantially circumscribing the linear position detecting device.
(2)消磁装置40が着磁装置50である請求項1記載
の直線位置検出装置。
(2) The linear position detection device according to claim 1, wherein the demagnetizing device 40 is a magnetizing device 50.
JP26981989A 1989-10-17 1989-10-17 Linear position detector Pending JPH03131716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26981989A JPH03131716A (en) 1989-10-17 1989-10-17 Linear position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26981989A JPH03131716A (en) 1989-10-17 1989-10-17 Linear position detector

Publications (1)

Publication Number Publication Date
JPH03131716A true JPH03131716A (en) 1991-06-05

Family

ID=17477616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26981989A Pending JPH03131716A (en) 1989-10-17 1989-10-17 Linear position detector

Country Status (1)

Country Link
JP (1) JPH03131716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083007A1 (en) * 2011-09-20 2013-03-21 Zf Friedrichshafen Ag Method and drive device for driving an electromagnetic actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083007A1 (en) * 2011-09-20 2013-03-21 Zf Friedrichshafen Ag Method and drive device for driving an electromagnetic actuator
US9337766B2 (en) 2011-09-20 2016-05-10 Zf Friedrichshafen Ag Method and drive apparatus for driving an electromagnetic actuator
DE102011083007B4 (en) 2011-09-20 2022-12-01 Zf Friedrichshafen Ag Method and control device for controlling an electromagnetic actuator

Similar Documents

Publication Publication Date Title
US6160395A (en) Non-contact position sensor
US5367257A (en) Non-contact, magnetic sensor for determining direction of motion and velocity of a movable member
JP2011163831A (en) Magnetic sensor device
JP2001004728A (en) Magnetism detecting apparatus
JP2001281308A (en) Magnetic sensor and position detector
JP6132085B2 (en) Magnetic detector
EP0749621B1 (en) Deactivating device for magnetic markers in an electronic article surveillance system
US20170350948A1 (en) Bias Magnet and Measurement Device for Measuring Magnetic Properties of The Surroundings of the Measurement Device and Method for Biasing of Magnetic Materials on a Measurement Object
JP2967597B2 (en) Potentiometer
JP4541136B2 (en) Magnetic body detection sensor and magnetic body detection line sensor
JPH03131716A (en) Linear position detector
JP6387788B2 (en) Magnetic medium for magnetic encoder, magnetic encoder, and method for manufacturing magnetic medium
JPH0635128Y2 (en) Position detector
JP3961809B2 (en) Magnetic sensor element
WO2020149375A1 (en) Magnetic identification sensor
JPH03131717A (en) Linear position detector
JP2001221839A (en) Magnetic field sensor
JP3618425B2 (en) Magnetic sensor
Okabe et al. Grooved bar-code pattern recognition system with magnetoresistive sensor
JP4142870B2 (en) Magnetic body detection device
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JPH03179217A (en) Position detecting apparatus
JPH0315702A (en) Position detector for driving cylinder
JP3623588B2 (en) Magnetic sensor
JPH09318391A (en) Magnetic type encoder