WO2014045559A1 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
WO2014045559A1
WO2014045559A1 PCT/JP2013/005449 JP2013005449W WO2014045559A1 WO 2014045559 A1 WO2014045559 A1 WO 2014045559A1 JP 2013005449 W JP2013005449 W JP 2013005449W WO 2014045559 A1 WO2014045559 A1 WO 2014045559A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
region
magnetic
bias magnet
side portion
Prior art date
Application number
PCT/JP2013/005449
Other languages
French (fr)
Japanese (ja)
Inventor
紀博 車戸
亮輔 酒井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014045559A1 publication Critical patent/WO2014045559A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present disclosure relates to a current sensor including a magnetic detection element and a bias magnet that applies a bias magnetic field to the magnetic detection element.
  • a current sensor including a magnetic detection element that outputs a sensor signal corresponding to an applied magnetic field and a bias magnet that applies a bias magnetic field to the magnetic detection element is known (see, for example, Patent Document 1). .
  • Such a current sensor is used, for example, for measuring a detected current flowing in a bus bar or the like as a detected current path.
  • the current sensor is assembled to the bus bar so that the current direction of the detected current is parallel to the bias magnetic field.
  • a current magnetic field proportional to the current to be detected is formed in a direction perpendicular to the bias magnetic field. Therefore, the magnetic detection element has a combined magnetic field composed of the bias magnetic field and the current magnetic field. Applied. Therefore, a sensor signal corresponding to the combined magnetic field is output from the magnetic detection element.
  • a current sensor has been proposed in which a magnetic detection element is directly mounted at the center of a bias magnet made of a so-called bar magnet having a rectangular plate shape. According to this, since the magnetic detection element is mounted on the bias magnet, the size in the planar direction can be reduced.
  • the arrangement direction of the N pole and the S pole is the first direction
  • the direction orthogonal to the first direction and parallel to the surface direction of the one surface is the second direction.
  • the magnetic field is constituted by magnetic lines extending in the first direction through the center of the bias magnet and magnetic lines expanded in the second direction with respect to the magnetic lines.
  • the magnetic field lines extending in the first direction are formed only on the center of the bias magnet.
  • the current sensor is arranged and used so that the current direction of the detected current flowing through the bus bar or the like as the detected current path is parallel to the first direction. For this reason, if a magnetic detection element is arrange
  • the magnetic field lines in the same direction as the magnetic field lines formed on one surface of the bias magnet are formed in the space located on one surface of the bias magnet. Therefore, in the above description, the current sensor in which the magnetic detection element is directly mounted on the bias magnet is described as an example.
  • the bias magnet is mounted on one side of the substrate, and the other side of the substrate is Similarly, in a current sensor in which a magnetic detection element is mounted so as to face the center of the bias magnet, the magnetic detection element passes through the magnetic detection element when it is disposed, for example, in a region shifted from the center of the bias magnet.
  • the magnetic field lines and the current magnetic field are not perpendicular to each other, and the detection accuracy is lowered.
  • the bias magnet includes a bottom portion having one surface, and a first side portion of the N pole that is provided on one surface of the bottom portion and projects in a direction perpendicular to the surface direction of the one surface.
  • a second side portion of the S pole that is provided in a region different from the first side portion of the one surface of the bottom portion, protrudes in a direction perpendicular to the surface direction of the one surface and is disposed to face the first side portion
  • the magnetic detection element is characterized in that magnetic lines of force extending in a direction parallel to the arrangement direction of the first and second side portions are arranged in a state of passing through the magnetic detection element.
  • the bottom portion there are magnetic lines of force extending in the arrangement direction of the first and second side portions in a portion disposed between the central portion of the first side portion and the central portion of the second side portion. Composed. That is, the lines of magnetic force extending in the arrangement direction of the first and second side portions can be increased compared to a rectangular plate-shaped bias magnet having no first and second side portions. For this reason, even if the mounting position of the magnetic detection element is slightly deviated from the center of the one surface of the bottom, magnetic lines of force in a direction parallel to the arrangement direction of the first and second side portions pass through the magnetic detection element. A decrease in detection accuracy can be suppressed. In other words, the attachment range of the magnetic detection element can be widened without reducing the detection accuracy.
  • the first side portion of the bias magnet extends in a direction perpendicular to the surface direction of the one surface, and the first central region sandwiches the first central region.
  • the first center region and the first end region are integrally formed.
  • the second side portion extends in a direction perpendicular to the surface direction of the one surface, and is disposed opposite to the first end region, with the second central region disposed opposite to the first central region, and the second central region interposed therebetween.
  • Two second end regions, and the second central region and the second end region are integrally formed.
  • the magnetic field formed between the first and second central regions may be weaker than the magnetic field formed between the opposing first and second end regions.
  • the magnetic force lines on the first and second end region sides are formed between the opposing first and second end regions.
  • the magnetic field lines are likely to be parallel to the arrangement direction of the first and second side portions due to interference with the magnetic field lines on the first and second central region sides. For this reason, it is possible to further increase the lines of magnetic force that are parallel to the arrangement direction of the first and second side portions, and it is possible to suppress a decrease in detection accuracy due to a shift in the mounting position of the magnetic detection element.
  • the first to fourth regions in which the bottom portion of the bias magnet is divided in the plane direction of the bottom portion and in the thickness direction of the bottom portion have The first region connected to the first side is the N pole, the second region connected to the first region in the thickness direction is the S pole, and the third region connected to the second side is the S pole.
  • the fourth region connected to the third region in the thickness direction may be an N pole.
  • the bias magnet since the bias magnet has a quadrupole structure, it is possible to improve control accuracy for generating a parallel magnetic field in a direction parallel to the arrangement direction of the first and second side portions while reducing the size. That is, when the bias magnet has a two-pole structure, the magnetic pole surface is formed in the first side portion or the second side portion by facing the direction parallel to the arrangement direction of the first and second side portions. Where the magnet length in the direction between the magnetized surfaces is short and the generated magnetic force is weak, when the bias magnet has a quadrupole structure, the magnet composed of the first side portion or the second side portion It is possible to increase the magnet length in the direction between the magnetized surfaces.
  • the bias magnet has a quadrupole structure
  • the strength of the magnetic field can be increased with a small volume, and by obtaining the necessary magnetic force with a small magnet, the arrangement direction of the first and second side portions can be determined.
  • Control accuracy for creating a parallel magnetic field in parallel directions can be improved. In other words, the detection accuracy can be improved.
  • FIG. 2 is a cross-sectional view of the current sensor along the line II-II in FIG. It is the top view which looked at the bias magnet from one side.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a figure which shows the magnetic field formed on one surface of the rectangular-plate-shaped bias magnet as a comparative example. It is a figure which shows the magnetic field formed on one surface of the bias magnet shown in FIG.
  • the current sensor in the present embodiment is preferably used for detecting a current to be detected flowing in a bus bar connected to an in-vehicle battery or the like.
  • the current sensor includes a connection terminal 50 on which a magnetic detection element 20, a bias magnet 30, and a circuit chip 40 are mounted on a substrate 10 and electrically connected to the circuit chip 40.
  • Each member 10 to 50 is sealed with a mold resin 60 so that the outer lead portion is exposed.
  • the substrate 10 is composed of islands of lead frames having islands and connection leads formed by etching or pressing a plate material such as Cu or Fe, and a rectangular plate having one surface 10a and another surface 10b. It is made into a shape.
  • the magnetic detection element 20 is configured using, for example, a well-known sensor chip on which an anisotropic magnetoresistive element (AMR), a giant magnetoresistive element (GMR), a tunnel porcelain resistive element (TMR), etc. are formed. A sensor signal corresponding to the applied magnetic field is output.
  • AMR anisotropic magnetoresistive element
  • GMR giant magnetoresistive element
  • TMR tunnel porcelain resistive element
  • the bias magnet 30 applies a bias magnetic field Bb to the magnetic detection element 20 and is composed of ferrite or the like. As shown in FIGS. 3 and 4, a rectangular plate-shaped bottom 31, The cross section is formed into a U-shape formed by first and second side portions 32 and 33 provided on one surface 31a.
  • the longitudinal direction in the surface direction of the bottom 31 is the X direction (left and right direction in FIG. 3), and the direction perpendicular to the X direction and parallel to the surface direction of the bottom 31 is the Y direction (up and down direction in FIG. 3).
  • a direction perpendicular to the X direction and the Y direction is defined as a Z direction (up and down direction in FIG. 4).
  • a columnar first side portion 32 protruding in the Z direction is provided at one end portion in the X direction of the bottom portion 31, and a columnar second side portion protruding in the Z direction is provided at the other end portion in the X direction of the bottom portion 31.
  • 33 is provided, and the first and second side portions 32 and 33 are arranged to face each other.
  • the X direction can be said to be an arrangement direction of the first and second side portions 32 and 33.
  • the first and second side portions 32 and 33 have the same length in the Y direction as the length of the bottom portion 31 in the Y direction.
  • the bias magnet 30 has the first side portion 32 as an N pole and the second side portion 33 as an S pole. Further, the bottom 31 is equally divided into two in the X direction and the Z direction (up and down direction in FIG. 4), and is on the one surface 31a side where the first and second side portions 33 and 33 are provided.
  • the first region 31b connected to the first side portion 32 is the N pole
  • the second region 31c connected to the first region 31b in the thickness direction is the S pole
  • the one surface 31a side and the second side portion.
  • the third region 31d connected to 33 is an S pole
  • the fourth region 31e connected to the third region 31d in the thickness direction is an N pole.
  • the bias magnet 30 of this embodiment is a quadrupole magnet.
  • the magnetic detection element 20 is arranged at a substantially central portion of the one surface 31a of the bottom 31 of the bias magnet 30 so that a magnetic force line extending in the X direction passes through, as specifically described later.
  • bias magnetic field Bb applied to the magnetic detection element 20 is constituted by magnetic lines of force that pass through the magnetic detection element 20.
  • the circuit chip 40 is arranged side by side with the bias magnet 30 on one surface 10a of the substrate 10, as shown in FIGS.
  • this circuit chip 40 a well-known circuit chip in which a power circuit for applying a predetermined voltage to the magnetic detection element 20 and an arithmetic circuit for performing a predetermined arithmetic process on a sensor signal output from the magnetic detection element 20 is used. And is electrically connected to the magnetic detection element 20 via a wire (not shown).
  • connection terminal 50 is composed of a connection lead of a lead frame, and is arranged separately from the substrate 10 outside the end of the substrate 10. And it is electrically connected to the circuit chip 40 via a wire (not shown).
  • the mold resin 60 is made of, for example, an epoxy resin, and the substrate 10, the magnetic detection element 20, the bias magnet 30, and the circuit so that the outer lead portion (portion opposite to the substrate 10 side) of the connection terminal 50 is exposed. Of the chip 40 and the connection terminal 50, the inner lead portion (the portion on the substrate 10 side) is sealed.
  • FIG. 5 is a diagram showing a magnetic field on one surface J31a of the bias magnet J30, and a diagram showing a magnetic field when the bias magnet J30 is viewed from the one surface J31a side.
  • FIG. 6 is a diagram showing a magnetic field on one surface 31 a of the bias magnet 30 and a magnetic field viewed from the one surface 31 a side of the bias magnet 30.
  • the bias magnet J30 in the current sensor as a comparative example has a rectangular plate shape, as described above, the surface J31a passes through the center of the bias magnet J30, and X A magnetic field line extending in the direction (see arrow J1) and a magnetic field line bulging in the Y direction with respect to the magnetic field line (see arrow J2) are configured. That is, the magnetic field lines extending in the X direction are formed only on the center of the bias magnet J30.
  • the bias magnet 30 is provided with a first side portion 32 that is an N pole and a second side portion 33 that is an S pole facing the bottom portion 31. For this reason, on one surface 31a of the bottom portion 31, a magnetic force line (see arrow E1) extending in the X direction is formed in a portion disposed between the central portion of the first side portion 32 and the central portion of the second side portion 33. Is done.
  • the magnetic field lines in the X direction among the magnetic field lines formed on the one surface 31a of the bottom 31 can be increased with respect to the bias magnet J30 of the comparative example. For this reason, even if the mounting position of the magnetic detection element 20 is shifted from the center of the bottom 31 to the region A, the magnetic force lines extending in the X direction pass through the magnetic detection element 20.
  • the current sensor as described above is used by being assembled to a bus bar 70 corresponding to the detected current path of the present disclosure.
  • the direction of the current flowing through the bus bar 70 (the left-right direction in FIG. 1) is parallel to the arrangement direction of the first and second side portions 32 and 33 (the X direction in FIG. 6).
  • the magnetic detection element 20 outputs a sensor signal corresponding to the combined magnetic field Bs because the combined magnetic field Bs composed of the bias magnetic field Bb (lines of magnetic force passing through the magnetic detection element 20) and the current magnetic field Bi is applied.
  • the sensor signal is subjected to a predetermined calculation by the circuit chip 40 and then output to the external circuit via the connection terminal 50, and the detected current is measured by the external circuit.
  • the bias magnet 30 has a U-shaped cross section having the first and second side portions 32 and 33. For this reason, on one surface 31a of the bottom portion 31, a magnetic force line extending in the X direction is formed in a portion disposed between the central portion of the first side portion 32 and the central portion of the second side portion 33 (FIG. 6). reference). That is, the magnetic field lines in the X direction among the magnetic field lines formed on the one surface 31a of the bottom 31 can be increased with respect to the bias magnet J30 of the comparative example.
  • the magnetic detection line 20 passes through the magnetic detection element 20 and suppresses a decrease in detection accuracy. it can. In other words, the attachment range of the magnetic detection element 20 can be widened without reducing the detection accuracy.
  • the bias magnet 30 has a quadrupole structure, it is possible to improve control accuracy for creating a parallel magnetic field in the X direction while reducing the size. That is, when the bias magnet 30 has a two-pole structure, the magnetic pole surface faces in the X direction, so that the direction between the magnetized surfaces formed by the first side portion 32 or the second side portion 33 (FIG. 3).
  • the bias magnet 30 has a quadrupole structure, the length of the magnet (in the X direction in the middle) is short and the generated magnetic force is weak, but the first side portion 32 or the second side portion 33 is configured. It becomes possible to lengthen the magnet length in the direction between the magnetized surfaces of the magnets (Z direction in FIG. 3).
  • the bias magnet 30 has a quadrupole structure
  • the strength of the magnetic field can be increased with a small volume, and control for creating a parallel magnetic field in the X direction by obtaining a necessary magnetic force with a small magnet.
  • Accuracy can be improved. In other words, the detection accuracy can be improved.
  • the polarity of the bottom 31 is divided into two in the X direction, the region connected to the first side 32 is the N pole, and the region connected to the second side 33 is the S pole. It is a magnet.
  • the bias magnet 30 is configured so that the first side portion 32 has a central portion out of the surfaces facing the second side portion 33, from the end portion on the opposite side to the one surface 31 a of the bottom portion 31.
  • a groove 34 reaching the one surface 31a of the bottom 31 extends in the Z direction.
  • a groove 35 extending from the end portion on the side opposite to the one surface 31a of the bottom portion 31 to the one surface 31a of the bottom portion 31 extends in the Z direction at the center portion of the surface facing the first side portion 32.
  • the grooves 34 and 35 have the same shape, and the grooves 34 and 35 face each other.
  • the first side portion 32 of the present embodiment is composed of three regions divided into three in the Y direction.
  • the first central region 32a and the first central region 32a are sandwiched between the first side region 32 and the second side portion 33. It can be said that the two first end regions 32b protruding in an integrated manner are configured.
  • the second side portion 33 is composed of three regions divided into three in the Y direction.
  • the second central region 33a and the two central regions 33a sandwiching the second central region 33a and projecting toward the first side portion 32. It can be said that the second end region 33b is integrated.
  • the interval between the first and second central regions 32a and 33a facing each other is longer than the interval between the first and second end regions 32b and 33b facing each other.
  • regions 32a and 33a which oppose becomes weaker than the magnetic field comprised between the 1st, 2nd edge part area
  • the magnetic field lines on the first and second end regions 32 b and 33 b side among the magnetic field lines configured between the first and second central regions 32 a and 33 a facing each other are as follows.
  • the first and second central regions 32a and 33a among the magnetic lines of force formed between the opposing first and second end regions 32b and 33b become magnetic lines of force bulging toward the first and second end regions 32b and 33b.
  • the magnetic field lines on the side are magnetic field lines that swell toward the first and second central regions 32a and 33a.
  • regions 32a and 33a which oppose is made weaker than the magnetic field comprised between the 1st, 2nd edge part area
  • the magnetic lines of force on the first and second end regions 32b and 33b side (Refer to E2 in FIG. 7) is the X direction by being interfered with the magnetic lines of force between the first and second end regions 32b and 33b facing each other on the first and second central regions 32a and 33a side. It is easy to become parallel with.
  • the groove 34 is not formed in the first side portion 32, and the length in the X direction in the first central region 32a and the first end region 32b. Are the same. Moreover, the groove
  • regions 32a and 33a of the 1st, 2nd side parts 32 and 33 are comprised with the ferrite etc. which are weak magnetic materials.
  • the first and second end regions 32b and 33b of the first and second side portions 32 and 33 are ferromagnetic materials having stronger magnetism than the material constituting the first and second central regions 32a and 33a. It is composed of neodymium or samarium cobalt.
  • the magnetic field formed between the first and second central regions 32a and 33a facing each other is weaker than the magnetic field formed between the first and second end regions 32b and 33b facing each other. Therefore, the same effect as the second embodiment can be obtained.
  • the entire bias magnet 30 is made of a weak magnetic material, and the surface of the first end region 32b facing the second end region 33b and the first end of the second end region 33b. The same effect can be obtained even if a sheet or the like made of a ferromagnetic material is attached to the surface facing the end region 32b.
  • the magnetic detection element 20 and the bias magnet 30 are sealed with the mold resin 60.
  • the magnetic detection element 20 and the bias magnet 30 are sealed with the mold resin 60. It does not have to be stopped. In this case, for example, only the magnetic detection element 20 may be sealed with a mold resin or the like.
  • a current sensor that combines the above embodiments may be used. That is, the first and second central regions 32a, the second embodiment and the third embodiment are combined to form the groove 34 on the first side 32 and the groove 35 on the second side 33.
  • 33a may be made of a weak magnetic material
  • the first and second end regions 32b and 33b may be made of a ferromagnetic material.
  • the bias magnet 30 may be a two-pole magnet.
  • the magnetic field formed between the opposed first and second central regions 32a and 33a is configured between the opposed first and second end regions 32b and 33b.
  • the configuration of the bias magnet 30 is not limited to the second and third embodiments.
  • a groove 34 extends in the Z direction at the center of the surface of the first side portion 32 opposite to the surface facing the second side portion 33, and the second side portion 33.
  • a groove 34 may be extended in the Z direction at the center of the surface opposite to the surface facing the first side portion 32.
  • the magnetic field formed between the first and second side portions 32 and 33 also depends on the lengths of the first and second side portions 32 and 33 in the X direction, and the first and second side portions 32 and 33 are. When the distance between the two is constant in the Y direction, the magnetic field becomes stronger as the length in the X direction becomes longer. Therefore, the current sensor using such a bias magnet 30 is also used in the second and third embodiments. The same effect can be obtained.
  • the distance between the center of the first side portion 32 and the center of the second side portion 33 is the longest on the one surface 31 a of the bottom portion 31.
  • a bias magnet 30 may be used in which the distance between the end portion in the Y direction of the first side portion 32 and the end portion in the Y direction of the second side portion 33 is the shortest. That is, the surface of the first side portion 32 that faces the second side portion 33 and the surface of the second side portion 33 that faces the first side portion 32 may be tapered.
  • the surface opposite to the one surface facing the portion 32 may be tapered.
  • the bottom 31 is bonded to the substrate 10.
  • the magnetic detection element 20 is directly mounted on one surface 10 a of the substrate 10, and the first of the bias magnets 30 so that the magnetic detection element 20 and the central portion of the bottom portion 31 face each other.
  • the end of the second side portions 32 and 33 opposite to the one surface 31a may be joined to the substrate 10.
  • 13B as a modification of FIG. 13A, one surface of the first and second side portions 32 and 33 of the bias magnet 30 with the magnetic detection element 20 mounted on the one surface 31a of the bottom 31. You may make it join the edge part on the opposite side to 31a to the board
  • the magnetic detection element 20 is directly mounted on one surface 10a of the substrate 10, and the magnetic detection element 20 and the central portion of the bottom 31 are opposed to the other surface 10b of the substrate 10.
  • the ends of the first and second side portions 32 and 33 on the opposite side of the one surface 31a of the bias magnet 30 may be joined.
  • the magnetic force lines in the same direction as the magnetic force lines formed on the one surface 31a of the bias magnet 30 are formed in the space located on the one surface 31a of the bottom portion 31 of the bias magnet 30. Therefore, the same effects as those in the above embodiments can be obtained.
  • the bottom 31 of the bias magnet 30 on which the magnetic detection element 20 is mounted may be directly joined to the bus bar 70 on one surface 31a of the bottom 31.
  • the magnetic detection element 20 is directly mounted on the bus bar 70, and the first and second of the bias magnet 30 are arranged so that the magnetic detection element 20 and the central portion of the bottom 31 face each other. You may make it join the edge part on the opposite side to the one surface 31a in the side parts 32 and 33 to the bus-bar 70.
  • FIG. 14C as a modification of FIG. 14B, one surface of the first and second side portions 32 and 33 of the bias magnet 30 with the magnetic detection element 20 mounted on the one surface 31a of the bottom portion 31.
  • FIG. 14D the magnetic detection element 20 is directly mounted on one surface of the bus bar 70, and the center of the magnetic detection element 20 and the central portion of the bottom 31 are opposed to the other surface of the bus bar 70. The ends of the first and second side portions 32 and 33 on the opposite side of the one surface 31a of the bias magnet 30 may be joined.
  • a portion of the magnetic detection element 20, the bias magnet 30, and the bus bar 70 on which the magnetic detection element 20 and the bias magnet 30 are mounted may be sealed with a mold resin or the like. Good. Alternatively, only the magnetic detection element 20 may be sealed with a mold resin or the like.

Abstract

This current sensor is provided with: a bias magnet (30) which generates a bias magnetic field (Bb) that constitutes a synthetic magnetic field (Bs) with a current magnetic field (Bi) generated when a current to be detected flows in a path (70) for the current to be detected; and a magnetic detection element (20) that outputs sensor signals corresponding to the synthetic magnetic field. The bias magnet has: a bottom portion (31) having one surface (31a); an N-pole first side portion (32), which is provided on the one surface of the bottom portion, and which protrudes in the direction perpendicular to the surface direction of the one surface; and an S-pole second side portion (33), which is provided in a region of the one surface of the bottom portion, said region being different from a region where the first side portion is provided, and which protrudes in the direction perpendicular to the surface direction of the one surface, and which is disposed to face the first side portion. The magnetic detection element is disposed in a state wherein magnetic lines extending in the direction parallel to the alignment direction of the first and second side portions pass through the magnetic detection element. Consequently, deterioration of detection accuracy can be suppressed even if the attaching position of the magnetic detection element is shifted.

Description

電流センサCurrent sensor 関連出願の相互参照Cross-reference of related applications
 本開示は、2012年9月19日に出願された日本出願番号2012-206288号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Patent Application No. 2012-206288 filed on September 19, 2012, the contents of which are incorporated herein.
 本開示は、磁気検出素子と、この磁気検出素子にバイアス磁界を印加するバイアス磁石とを備える電流センサに関するものである。 The present disclosure relates to a current sensor including a magnetic detection element and a bias magnet that applies a bias magnetic field to the magnetic detection element.
 従来より、印加される磁界に応じたセンサ信号を出力する磁気検出素子と、この磁気検出素子にバイアス磁界を印加するバイアス磁石とを備える電流センサが知られている(例えば、特許文献1参照)。 Conventionally, a current sensor including a magnetic detection element that outputs a sensor signal corresponding to an applied magnetic field and a bias magnet that applies a bias magnetic field to the magnetic detection element is known (see, for example, Patent Document 1). .
 このような電流センサは、例えば、被検出電流経路としてのバスバー等に流れる被検出電流を測定するのに用いられる。具体的には、電流センサは、被検出電流の電流方向とバイアス磁界とが平行となるようにバスバーに組み付けられる。そして、バスバーに被検出電流が流れると当該被検出電流に比例する電流磁界がバイアス磁界と垂直方向に形成されるため、磁気検出素子には、バイアス磁界と電流磁界とによって構成される合成磁界が印加される。したがって、磁気検出素子から合成磁界に応じたセンサ信号が出力される。 Such a current sensor is used, for example, for measuring a detected current flowing in a bus bar or the like as a detected current path. Specifically, the current sensor is assembled to the bus bar so that the current direction of the detected current is parallel to the bias magnetic field. When a current to be detected flows through the bus bar, a current magnetic field proportional to the current to be detected is formed in a direction perpendicular to the bias magnetic field. Therefore, the magnetic detection element has a combined magnetic field composed of the bias magnetic field and the current magnetic field. Applied. Therefore, a sensor signal corresponding to the combined magnetic field is output from the magnetic detection element.
特開2007-155399号公報JP 2007-155399 A
 最近では、矩形板状のいわゆる棒磁石からなるバイアス磁石の中心に磁気検出素子を直接搭載してなる電流センサが提案されている。これによれば、バイアス磁石上に磁気検出素子を搭載しているため、平面方向における小型化を図ることができる。 Recently, a current sensor has been proposed in which a magnetic detection element is directly mounted at the center of a bias magnet made of a so-called bar magnet having a rectangular plate shape. According to this, since the magnetic detection element is mounted on the bias magnet, the size in the planar direction can be reduced.
 しかしながら、このような電流センサでは、バイアス磁石上における磁気検出素子の取付位置がバイアス磁石の中心からずれると、検出精度が低下してしまう。 However, in such a current sensor, if the mounting position of the magnetic detection element on the bias magnet deviates from the center of the bias magnet, the detection accuracy is lowered.
 すなわち、上記バイアス磁石における磁気検出素子を搭載する一面上では、N極およびS極の配列方向を第1方向とし、この第1方向と直交し、一面の面方向と平行な方向を第2方向とすると、磁界は、バイアス磁石の中心を通り、第1方向に延びる磁力線と、この磁力線に対して第2方向に膨らんだ磁力線とにより構成される。言い換えると、第1方向に延びる磁力線は、バイアス磁石の中心上にしか形成されない。 That is, on one surface on which the magnetic detection element of the bias magnet is mounted, the arrangement direction of the N pole and the S pole is the first direction, the direction orthogonal to the first direction and parallel to the surface direction of the one surface is the second direction. Then, the magnetic field is constituted by magnetic lines extending in the first direction through the center of the bias magnet and magnetic lines expanded in the second direction with respect to the magnetic lines. In other words, the magnetic field lines extending in the first direction are formed only on the center of the bias magnet.
 そして、上記電流センサは、被検出電流経路としてのバスバー等に流れる被検出電流の電流方向が第1方向と平行となるように配置されて用いられる。このため、磁気検出素子が、例えば、バイアス磁石の中心からずれた領域に配置されると、磁気検出素子を通過する磁力線と電流磁界とが垂直とならずに検出精度が低下してしまう。 The current sensor is arranged and used so that the current direction of the detected current flowing through the bus bar or the like as the detected current path is parallel to the first direction. For this reason, if a magnetic detection element is arrange | positioned in the area | region which shifted | deviated from the center of the bias magnet, for example, the magnetic field line which passes a magnetic detection element and an electric current magnetic field will not become perpendicular | vertical, but detection accuracy will fall.
 なお、バイアス磁石の一面上に位置する空間には、バイアス磁石の一面に形成される磁力線と同じ方向の磁力線が構成される。このため、上記では、バイアス磁石上に磁気検出素子を直接搭載してなる電流センサを例に挙げて説明したが、例えば、基板の一面側にバイアス磁石を搭載し、基板の他面側に、バイアス磁石の中心と対向するように磁気検出素子を搭載してなる電流センサにおいても同様に、磁気検出素子が、例えば、バイアス磁石の中心からずれた領域に配置されると、磁気検出素子を通過する磁力線と電流磁界とが垂直とならずに検出精度が低下してしまう。 In addition, the magnetic field lines in the same direction as the magnetic field lines formed on one surface of the bias magnet are formed in the space located on one surface of the bias magnet. Therefore, in the above description, the current sensor in which the magnetic detection element is directly mounted on the bias magnet is described as an example. For example, the bias magnet is mounted on one side of the substrate, and the other side of the substrate is Similarly, in a current sensor in which a magnetic detection element is mounted so as to face the center of the bias magnet, the magnetic detection element passes through the magnetic detection element when it is disposed, for example, in a region shifted from the center of the bias magnet. The magnetic field lines and the current magnetic field are not perpendicular to each other, and the detection accuracy is lowered.
 本開示は上記点に鑑みて、磁気検出素子の取付位置がずれても検出精度の低下を抑制できる電流センサを提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a current sensor that can suppress a decrease in detection accuracy even when the mounting position of a magnetic detection element is shifted.
 本開示の第一の態様によれば、電流センサにおいて、バイアス磁石は、一面を有する底部と、底部の一面に備えられ、一面の面方向と垂直方向に突出するN極の第1側部と、底部の一面のうち第1側部と異なる領域に備えられ、一面の面方向と垂直方向に突出すると共に第1側部と対向配置されたS極の第2側部と、を有し、磁気検出素子は、第1、第2側部の配列方向と平行な方向に延びる磁力線が磁気検出素子を通過する状態で配置されていることを特徴としている。 According to the first aspect of the present disclosure, in the current sensor, the bias magnet includes a bottom portion having one surface, and a first side portion of the N pole that is provided on one surface of the bottom portion and projects in a direction perpendicular to the surface direction of the one surface. A second side portion of the S pole that is provided in a region different from the first side portion of the one surface of the bottom portion, protrudes in a direction perpendicular to the surface direction of the one surface and is disposed to face the first side portion, The magnetic detection element is characterized in that magnetic lines of force extending in a direction parallel to the arrangement direction of the first and second side portions are arranged in a state of passing through the magnetic detection element.
 これによれば、底部の一面には、第1側部の中央部と第2側部の中央部との間に配置されている部分に第1、第2側部の配列方向に延びる磁力線が構成される。つまり、第1、第2側部を有さない矩形板状のバイアス磁石に比較して、第1、第2側部の配列方向に延びる磁力線を増加させることができる。このため、磁気検出素子の取付位置が底部の一面の中心から多少ずれたとしても、磁気検出素子には第1、第2側部の配列方向と平行な方向の磁力線が通過することになり、検出精度の低下を抑制できる。言い換えると、検出精度を低下させずに、磁気検出素子の取付範囲を広くすることができる。 According to this, on one surface of the bottom portion, there are magnetic lines of force extending in the arrangement direction of the first and second side portions in a portion disposed between the central portion of the first side portion and the central portion of the second side portion. Composed. That is, the lines of magnetic force extending in the arrangement direction of the first and second side portions can be increased compared to a rectangular plate-shaped bias magnet having no first and second side portions. For this reason, even if the mounting position of the magnetic detection element is slightly deviated from the center of the one surface of the bottom, magnetic lines of force in a direction parallel to the arrangement direction of the first and second side portions pass through the magnetic detection element. A decrease in detection accuracy can be suppressed. In other words, the attachment range of the magnetic detection element can be widened without reducing the detection accuracy.
 本開示の第二の態様によれば、第一の態様による電流センサにおいて、バイアス磁石の第1側部は一面の面方向と垂直方向に延びる第1中央領域と、第1中央領域を挟む2つの第1端部領域とを有し、第1中央領域と第1端部領域が一体となって構成されている。また、第2側部は、一面の面方向と垂直方向に延び、第1中央領域と対向配置される第2中央領域と、第2中央領域を挟み、第1端部領域とそれぞれ対向配置される2つの第2端部領域とを有し、第2中央領域と第2端部領域が一体となって構成されている。このバイアス磁石において、第1、第2中央領域の間に構成される磁界は、対向する第1、第2端部領域の間に構成される磁界より弱くされているものとすることができる。 According to the second aspect of the present disclosure, in the current sensor according to the first aspect, the first side portion of the bias magnet extends in a direction perpendicular to the surface direction of the one surface, and the first central region sandwiches the first central region. The first center region and the first end region are integrally formed. The second side portion extends in a direction perpendicular to the surface direction of the one surface, and is disposed opposite to the first end region, with the second central region disposed opposite to the first central region, and the second central region interposed therebetween. Two second end regions, and the second central region and the second end region are integrally formed. In this bias magnet, the magnetic field formed between the first and second central regions may be weaker than the magnetic field formed between the opposing first and second end regions.
 これによれば、第1、第2中央領域の間に構成される磁力線のうち第1、第2端部領域側の磁力線は、対向する第1、第2端部領域の間に構成される磁力線のうち第1、第2中央領域側の磁力線に干渉されて第1、第2側部の配列方向と平行になりやすい。このため、第1、第2側部の配列方向と平行となる磁力線をさらに増加させることができ、より磁気検出素子の取付位置のずれに対する検出精度の低下を抑制できる。 According to this, among the magnetic force lines formed between the first and second central regions, the magnetic force lines on the first and second end region sides are formed between the opposing first and second end regions. The magnetic field lines are likely to be parallel to the arrangement direction of the first and second side portions due to interference with the magnetic field lines on the first and second central region sides. For this reason, it is possible to further increase the lines of magnetic force that are parallel to the arrangement direction of the first and second side portions, and it is possible to suppress a decrease in detection accuracy due to a shift in the mounting position of the magnetic detection element.
 本開示の第三の態様によれば、第一の態様による電流センサにおいて、バイアス磁石の底部は、底部の平面方向に分割されると共に底部の厚さ方向に分割された第1~第4領域を有する。第1側部と連結されている第1領域がN極、第1領域と厚さ方向に連結されている第2領域がS極、第2側部と連結されている第3領域がS極、第3領域と厚さ方向に連結されている第4領域がN極とされているものとすることができる。 According to the third aspect of the present disclosure, in the current sensor according to the first aspect, the first to fourth regions in which the bottom portion of the bias magnet is divided in the plane direction of the bottom portion and in the thickness direction of the bottom portion. Have The first region connected to the first side is the N pole, the second region connected to the first region in the thickness direction is the S pole, and the third region connected to the second side is the S pole. The fourth region connected to the third region in the thickness direction may be an N pole.
 これによれば、バイアス磁石を4極構造としているため、小型化しつつ、第1、第2側部の配列方向と平行な方向に平行磁界をつくるための制御精度を向上させることができる。すなわち、バイアス磁石が2極構造の場合には、磁極面が第1、第2側部の配列方向と平行な方向を向くことで、第1側部または第2側部の部分で構成される磁石着磁面間方向の磁石長さが短く、発生する磁力が弱いのに対し、バイアス磁石が4極構造の場合には、第1側部または第2側部の部分で構成される磁石の磁石着磁面間方向の磁石長さを長くすることが可能となる。したがって、バイアス磁石が4極構造の場合には、小さな体積で磁界の強さを大きくすることができ、小型な磁石で必要な磁力を得ることで、第1、第2側部の配列方向と平行な方向に平行磁界をつくるための制御精度を向上させることができる。言い換えれば、検出精度を向上させることができる。 According to this, since the bias magnet has a quadrupole structure, it is possible to improve control accuracy for generating a parallel magnetic field in a direction parallel to the arrangement direction of the first and second side portions while reducing the size. That is, when the bias magnet has a two-pole structure, the magnetic pole surface is formed in the first side portion or the second side portion by facing the direction parallel to the arrangement direction of the first and second side portions. Where the magnet length in the direction between the magnetized surfaces is short and the generated magnetic force is weak, when the bias magnet has a quadrupole structure, the magnet composed of the first side portion or the second side portion It is possible to increase the magnet length in the direction between the magnetized surfaces. Therefore, when the bias magnet has a quadrupole structure, the strength of the magnetic field can be increased with a small volume, and by obtaining the necessary magnetic force with a small magnet, the arrangement direction of the first and second side portions can be determined. Control accuracy for creating a parallel magnetic field in parallel directions can be improved. In other words, the detection accuracy can be improved.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
本開示の第1実施形態における電流センサを被検出電流経路としてのバスバーに組みつけたときの模式図である。 図1中のII-II線に沿った電流センサの断面図である。 バイアス磁石を一面上から視た平面図である。 図3中のIV-IV線に沿った断面図である。 比較例としての矩形板状のバイアス磁石の一面上に形成される磁界を示す図である。 図3に示すバイアス磁石の一面上に形成される磁界を示す図である。 本開示の第2実施形態におけるバイアス磁石を一面側から視た図である。 図7中の二点鎖線部分の磁力線の干渉を示す図である。 本開示の第3実施形態におけるバイアス磁石を一面側から視た図である。 本開示の他の実施形態におけるバイアス磁石を一面側から視た図である。 本開示の他の実施形態におけるバイアス磁石を一面側から視た図である。 本開示の他の実施形態におけるバイアス磁石を一面側から視た図である。 本開示の他の実施形態における電流センサの断面図である。 本開示の他の実施形態における電流センサの断面図である。 本開示の他の実施形態における電流センサの断面図である。 本開示の他の実施形態における電流センサとバスバーとの関係を示す断面図である。 本開示の他の実施形態における電流センサとバスバーとの関係を示す断面図である。 本開示の他の実施形態における電流センサとバスバーとの関係を示す断面図である。 本開示の他の実施形態における電流センサとバスバーとの関係を示す断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing
It is a mimetic diagram when attaching the current sensor in a 1st embodiment of this indication to the bus bar as a detected current course. FIG. 2 is a cross-sectional view of the current sensor along the line II-II in FIG. It is the top view which looked at the bias magnet from one side. FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a figure which shows the magnetic field formed on one surface of the rectangular-plate-shaped bias magnet as a comparative example. It is a figure which shows the magnetic field formed on one surface of the bias magnet shown in FIG. It is the figure which looked at the bias magnet in 2nd Embodiment of this indication from the one surface side. It is a figure which shows interference of the magnetic force line of the dashed-two dotted line part in FIG. It is the figure which looked at the bias magnet in 3rd Embodiment of this indication from the one surface side. It is the figure which looked at the bias magnet in other embodiment of this indication from the one surface side. It is the figure which looked at the bias magnet in other embodiment of this indication from the one surface side. It is the figure which looked at the bias magnet in other embodiment of this indication from the one surface side. It is sectional drawing of the current sensor in other embodiment of this indication. It is sectional drawing of the current sensor in other embodiment of this indication. It is sectional drawing of the current sensor in other embodiment of this indication. It is sectional drawing which shows the relationship between the current sensor and bus bar in other embodiment of this indication. It is sectional drawing which shows the relationship between the current sensor and bus bar in other embodiment of this indication. It is sectional drawing which shows the relationship between the current sensor and bus bar in other embodiment of this indication. It is sectional drawing which shows the relationship between the current sensor and bus bar in other embodiment of this indication.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本開示の第1実施形態について図面を参照しつつ説明する。なお、本実施形態における電流センサは、例えば、車載バッテリ等に接続されるバスバーに流れる被検出電流を検出するものに用いられると好適である。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to the drawings. Note that the current sensor in the present embodiment is preferably used for detecting a current to be detected flowing in a bus bar connected to an in-vehicle battery or the like.
 図1および図2に示されるように、電流センサは、基板10上に、磁気検出素子20、バイアス磁石30、回路チップ40が搭載され、回路チップ40と電気的に接続される接続端子50のアウターリード部が露出するように各部材10~50がモールド樹脂60に封止されて構成されている。 As shown in FIGS. 1 and 2, the current sensor includes a connection terminal 50 on which a magnetic detection element 20, a bias magnet 30, and a circuit chip 40 are mounted on a substrate 10 and electrically connected to the circuit chip 40. Each member 10 to 50 is sealed with a mold resin 60 so that the outer lead portion is exposed.
 基板10は、CuやFe等の板材をエッチングやプレス加工等によって形成されるアイランドや接続リード等を有するリードフレームのアイランドにて構成されるものであり、一面10aおよび他面10bを有する矩形板状とされている。 The substrate 10 is composed of islands of lead frames having islands and connection leads formed by etching or pressing a plate material such as Cu or Fe, and a rectangular plate having one surface 10a and another surface 10b. It is made into a shape.
 磁気検出素子20は、例えば、異方性磁気抵抗素子(AMR)、巨大磁気抵抗素子(GMR)、トンネル磁器抵抗素子(TMR)等が形成された周知のセンサチップを用いて構成されており、印加される磁界に応じたセンサ信号を出力するものである。 The magnetic detection element 20 is configured using, for example, a well-known sensor chip on which an anisotropic magnetoresistive element (AMR), a giant magnetoresistive element (GMR), a tunnel porcelain resistive element (TMR), etc. are formed. A sensor signal corresponding to the applied magnetic field is output.
 バイアス磁石30は、磁気検出素子20にバイアス磁界Bbを印加するものであってフェライト等で構成されており、図3および図4に示されるように、矩形板状の底部31と、底部31の一面31aに備えられた第1、第2側部32、33とにより構成される断面U字型とされている。 The bias magnet 30 applies a bias magnetic field Bb to the magnetic detection element 20 and is composed of ferrite or the like. As shown in FIGS. 3 and 4, a rectangular plate-shaped bottom 31, The cross section is formed into a U-shape formed by first and second side portions 32 and 33 provided on one surface 31a.
 ここで、底部31の面方向における長手方向をX方向(図3中紙面左右方向)、X方向と直交し、かつ底部31の面方向と平行な方向をY方向(図3中紙面上下方向)、X方向およびY方向と直交する方向をZ方向(図4中紙面上下方向)とする。底部31のX方向における一端部には、Z方向に突出する柱状の第1側部32が備えられ、底部31のX方向における他端部には、Z方向に突出する柱状の第2側部33が備えられ、第1、第2側部32、33は対向して配置されている。X方向とは、言い換えると、第1、第2側部32、33の配列方向といえる。また、第1、第2側部32、33は、それぞれY方向の長さが底部31のY方向の長さと同じとされている。 Here, the longitudinal direction in the surface direction of the bottom 31 is the X direction (left and right direction in FIG. 3), and the direction perpendicular to the X direction and parallel to the surface direction of the bottom 31 is the Y direction (up and down direction in FIG. 3). A direction perpendicular to the X direction and the Y direction is defined as a Z direction (up and down direction in FIG. 4). A columnar first side portion 32 protruding in the Z direction is provided at one end portion in the X direction of the bottom portion 31, and a columnar second side portion protruding in the Z direction is provided at the other end portion in the X direction of the bottom portion 31. 33 is provided, and the first and second side portions 32 and 33 are arranged to face each other. In other words, the X direction can be said to be an arrangement direction of the first and second side portions 32 and 33. The first and second side portions 32 and 33 have the same length in the Y direction as the length of the bottom portion 31 in the Y direction.
 そして、図4に示されるように、バイアス磁石30は、第1側部32がN極、第2側部33がS極とされている。また、底部31は、極性がX方向およびZ方向(図4中紙面上下方向)にそれぞれ均等に2分割されており、第1、第2側部33、33が備えられる一面31a側であって第1側部32と連結されている第1領域31bがN極、この第1領域31bと厚さ方向に連結されている第2領域31cがS極、一面31a側であって第2側部33と連結されている第3領域31dがS極、この第3領域31dと厚さ方向に連結されている第4領域31eがN極とされている。 As shown in FIG. 4, the bias magnet 30 has the first side portion 32 as an N pole and the second side portion 33 as an S pole. Further, the bottom 31 is equally divided into two in the X direction and the Z direction (up and down direction in FIG. 4), and is on the one surface 31a side where the first and second side portions 33 and 33 are provided. The first region 31b connected to the first side portion 32 is the N pole, the second region 31c connected to the first region 31b in the thickness direction is the S pole, the one surface 31a side, and the second side portion. The third region 31d connected to 33 is an S pole, and the fourth region 31e connected to the third region 31d in the thickness direction is an N pole.
 つまり、本実施形態のバイアス磁石30は、4極構造の磁石とされている。そして、バイアス磁石30における底部31の一面31aの略中央部に、具体的には後述するが、X方向に延びる磁力線が通過するように上記磁気検出素子20が配置されている。 That is, the bias magnet 30 of this embodiment is a quadrupole magnet. The magnetic detection element 20 is arranged at a substantially central portion of the one surface 31a of the bottom 31 of the bias magnet 30 so that a magnetic force line extending in the X direction passes through, as specifically described later.
 なお、磁気検出素子20に印加されるバイアス磁界Bbとは、磁気検出素子20を通過する磁力線によって構成されるものである。 Note that the bias magnetic field Bb applied to the magnetic detection element 20 is constituted by magnetic lines of force that pass through the magnetic detection element 20.
 回路チップ40は、図1および図2に示されるように、基板10の一面10a上にバイアス磁石30と並べて配置されている。この回路チップ40は、磁気検出素子20に所定の電圧を印加する電源回路や磁気検出素子20から出力されるセンサ信号に対して所定の演算処理を行う演算回路が形成された周知のものが用いられ、図示しないワイヤを介して磁気検出素子20と電気的に接続されている。 The circuit chip 40 is arranged side by side with the bias magnet 30 on one surface 10a of the substrate 10, as shown in FIGS. As this circuit chip 40, a well-known circuit chip in which a power circuit for applying a predetermined voltage to the magnetic detection element 20 and an arithmetic circuit for performing a predetermined arithmetic process on a sensor signal output from the magnetic detection element 20 is used. And is electrically connected to the magnetic detection element 20 via a wire (not shown).
 接続端子50は、リードフレームの接続リードで構成され、基板10の端部の外側にて基板10とは分離して配置されている。そして、回路チップ40と図示しないワイヤを介して電気的に接続されている。 The connection terminal 50 is composed of a connection lead of a lead frame, and is arranged separately from the substrate 10 outside the end of the substrate 10. And it is electrically connected to the circuit chip 40 via a wire (not shown).
 モールド樹脂60は、例えば、エポキシ樹脂等からなり、接続端子50のうちアウターリード部(基板10側と反対側の部分)が露出するように、基板10、磁気検出素子20、バイアス磁石30、回路チップ40、接続端子50のうちインナーリード部(基板10側の部分)を封止している。 The mold resin 60 is made of, for example, an epoxy resin, and the substrate 10, the magnetic detection element 20, the bias magnet 30, and the circuit so that the outer lead portion (portion opposite to the substrate 10 side) of the connection terminal 50 is exposed. Of the chip 40 and the connection terminal 50, the inner lead portion (the portion on the substrate 10 side) is sealed.
 以上が本実施形態における電流センサの構成である。次に、バイアス磁石30の底部31の一面31a上に形成される磁界について、図5に示す比較例としての電流センサにおけるバイアス磁石の一面上に形成される磁界と比較しつつ説明する。 The above is the configuration of the current sensor in the present embodiment. Next, the magnetic field formed on one surface 31a of the bottom 31 of the bias magnet 30 will be described in comparison with the magnetic field formed on one surface of the bias magnet in the current sensor as a comparative example shown in FIG.
 なお、バイアス磁石30の底部31の一面31a上に位置する空間には、バイアス磁石30の一面31aに形成される磁力線と同じ方向の磁力線が構成される。つまり、図5は、バイアス磁石J30の一面J31a上における磁界を示す図であると共に、バイアス磁石J30を一面J31a側から視た磁界を示す図である。同様に、図6は、バイアス磁石30の一面31a上における磁界を示す図であると共に、バイアス磁石30の一面31a側から視た磁界を示す図である。 In the space located on the one surface 31a of the bottom 31 of the bias magnet 30, magnetic force lines in the same direction as the magnetic force lines formed on the one surface 31a of the bias magnet 30 are configured. That is, FIG. 5 is a diagram showing a magnetic field on one surface J31a of the bias magnet J30, and a diagram showing a magnetic field when the bias magnet J30 is viewed from the one surface J31a side. Similarly, FIG. 6 is a diagram showing a magnetic field on one surface 31 a of the bias magnet 30 and a magnetic field viewed from the one surface 31 a side of the bias magnet 30.
 まず、図5に示されるように、比較例としての電流センサにおけるバイアス磁石J30は、矩形板状とされているため、上記のように、一面J31aには、バイアス磁石J30の中心を通り、X方向に延びる磁力線(矢印J1参照)と、この磁力線に対してY方向に膨らんだ磁力線(矢印J2参照)が構成される。つまり、X方向に延びる磁力線は、バイアス磁石J30の中心上にしか形成されない。 First, as shown in FIG. 5, since the bias magnet J30 in the current sensor as a comparative example has a rectangular plate shape, as described above, the surface J31a passes through the center of the bias magnet J30, and X A magnetic field line extending in the direction (see arrow J1) and a magnetic field line bulging in the Y direction with respect to the magnetic field line (see arrow J2) are configured. That is, the magnetic field lines extending in the X direction are formed only on the center of the bias magnet J30.
 これに対し、本実施形態では、バイアス磁石30は、底部31に、N極である第1側部32とS極である第2側部33とが対向して備えられている。このため、底部31の一面31aには、第1側部32の中央部と第2側部33の中央部との間に配置されている部分にX方向に延びる磁力線(矢印E1参照)が構成される。 On the other hand, in the present embodiment, the bias magnet 30 is provided with a first side portion 32 that is an N pole and a second side portion 33 that is an S pole facing the bottom portion 31. For this reason, on one surface 31a of the bottom portion 31, a magnetic force line (see arrow E1) extending in the X direction is formed in a portion disposed between the central portion of the first side portion 32 and the central portion of the second side portion 33. Is done.
 つまり、比較例のバイアス磁石J30に対して、底部31の一面31aに形成される磁力線のうちX方向の磁力線を増加させることができる。このため、磁気検出素子20の取付位置が底部31の中心から領域Aにずれたとしても、磁気検出素子20にはX方向に延びる磁力線が通過する。 That is, the magnetic field lines in the X direction among the magnetic field lines formed on the one surface 31a of the bottom 31 can be increased with respect to the bias magnet J30 of the comparative example. For this reason, even if the mounting position of the magnetic detection element 20 is shifted from the center of the bottom 31 to the region A, the magnetic force lines extending in the X direction pass through the magnetic detection element 20.
 以上説明したような電流センサは、図1に示されるように、本開示の被検出電流経路に相当するバスバー70に組みつけられて用いられる。具体的には、電流センサは、バスバー70に流れる電流方向(図1中紙面左右方向)と、第1、第2側部32、33の配列方向(図6中X方向)とが平行となるように、バスバー70に組み付けられる。そして、磁気検出素子20は、バイアス磁界Bb(磁気検出素子20を通過する磁力線)と電流磁界Biとによって構成される合成磁界Bsが印加されるため、合成磁界Bsに応じたセンサ信号を出力する。これにより、センサ信号が回路チップ40で所定の演算をされた後に接続端子50を介して外部回路に出力され、外部回路で被検出電流が測定される。 As described above, the current sensor as described above is used by being assembled to a bus bar 70 corresponding to the detected current path of the present disclosure. Specifically, in the current sensor, the direction of the current flowing through the bus bar 70 (the left-right direction in FIG. 1) is parallel to the arrangement direction of the first and second side portions 32 and 33 (the X direction in FIG. 6). Thus, it is assembled to the bus bar 70. The magnetic detection element 20 outputs a sensor signal corresponding to the combined magnetic field Bs because the combined magnetic field Bs composed of the bias magnetic field Bb (lines of magnetic force passing through the magnetic detection element 20) and the current magnetic field Bi is applied. . Thus, the sensor signal is subjected to a predetermined calculation by the circuit chip 40 and then output to the external circuit via the connection terminal 50, and the detected current is measured by the external circuit.
 以上説明したように、本実施形態の電流センサでは、バイアス磁石30が第1、第2側部32、33を有する断面U字型とされている。このため、底部31の一面31aには、第1側部32の中央部と第2側部33の中央部との間に配置されている部分にX方向に延びる磁力線が構成される(図6参照)。つまり、比較例のバイアス磁石J30に対して、底部31の一面31aに形成される磁力線のうちX方向の磁力線を増加させることができる。このため、磁気検出素子20の取付位置が底部31の一面31aの中心から多少ずれたとしても、磁気検出素子20にはX方向の磁力線が通過することになり、検出精度が低下することを抑制できる。言い換えると、検出精度を低下させずに磁気検出素子20の取付範囲を広くすることができる。 As described above, in the current sensor of this embodiment, the bias magnet 30 has a U-shaped cross section having the first and second side portions 32 and 33. For this reason, on one surface 31a of the bottom portion 31, a magnetic force line extending in the X direction is formed in a portion disposed between the central portion of the first side portion 32 and the central portion of the second side portion 33 (FIG. 6). reference). That is, the magnetic field lines in the X direction among the magnetic field lines formed on the one surface 31a of the bottom 31 can be increased with respect to the bias magnet J30 of the comparative example. For this reason, even if the mounting position of the magnetic detection element 20 is slightly deviated from the center of the one surface 31a of the bottom 31, the magnetic detection line 20 passes through the magnetic detection element 20 and suppresses a decrease in detection accuracy. it can. In other words, the attachment range of the magnetic detection element 20 can be widened without reducing the detection accuracy.
 バイアス磁石30を4極構造とした場合、小型化しつつX方向に平行磁界をつくるための制御精度を向上させることができる。すなわち、バイアス磁石30が2極構造の場合には、磁極面がX方向を向くことで、第1側部32または第2側部33の部分で構成される磁石着磁面間方向(図3中のX方向)の磁石長さが短く、発生する磁力が弱いのに対し、バイアス磁石30が4極構造の場合には、第1側部32または第2側部33の部分で構成される磁石の磁石着磁面間方向(図3中のZ方向)の磁石長さを長くすることが可能となる。したがって、バイアス磁石30が4極構造の場合には、小さな体積で磁界の強さを大きくすることができ、小型な磁石で必要な磁力を得ることで、X方向に平行磁界をつくるための制御精度を向上させることができる。言い換えれば、検出精度を向上させることができる。 When the bias magnet 30 has a quadrupole structure, it is possible to improve control accuracy for creating a parallel magnetic field in the X direction while reducing the size. That is, when the bias magnet 30 has a two-pole structure, the magnetic pole surface faces in the X direction, so that the direction between the magnetized surfaces formed by the first side portion 32 or the second side portion 33 (FIG. 3). When the bias magnet 30 has a quadrupole structure, the length of the magnet (in the X direction in the middle) is short and the generated magnetic force is weak, but the first side portion 32 or the second side portion 33 is configured. It becomes possible to lengthen the magnet length in the direction between the magnetized surfaces of the magnets (Z direction in FIG. 3). Therefore, when the bias magnet 30 has a quadrupole structure, the strength of the magnetic field can be increased with a small volume, and control for creating a parallel magnetic field in the X direction by obtaining a necessary magnetic force with a small magnet. Accuracy can be improved. In other words, the detection accuracy can be improved.
 なお、2極構造のバイアス磁石30とは、底部31の極性がX方向に2分割され、第1側部32と連なる領域がN極、第2側部33と連なる領域がS極とされた磁石のことである。 In the bipolar magnet 30 having a bipolar structure, the polarity of the bottom 31 is divided into two in the X direction, the region connected to the first side 32 is the N pole, and the region connected to the second side 33 is the S pole. It is a magnet.
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対してバイアス磁石30の構成を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
(Second Embodiment)
A second embodiment of the present disclosure will be described. In the present embodiment, the configuration of the bias magnet 30 is changed with respect to the first embodiment, and the other aspects are the same as those in the first embodiment, and thus the description thereof is omitted here.
 図7に示されるように、本実施形態のバイアス磁石30は、第1側部32において、第2側部33と対向する面のうち中央部に底部31の一面31aと反対側の端部から底部31の一面31aに達する溝34がZ方向に延設されている。また、第2側部33において、第1側部32と対向する面のうち中央部に底部31の一面31aと反対側の端部から底部31の一面31aに達する溝35がZ方向に延設されている。そして、これら各溝34、35は同じ形状とされており、溝34、35同士が対向している。 As shown in FIG. 7, the bias magnet 30 according to the present embodiment is configured so that the first side portion 32 has a central portion out of the surfaces facing the second side portion 33, from the end portion on the opposite side to the one surface 31 a of the bottom portion 31. A groove 34 reaching the one surface 31a of the bottom 31 extends in the Z direction. Further, in the second side portion 33, a groove 35 extending from the end portion on the side opposite to the one surface 31a of the bottom portion 31 to the one surface 31a of the bottom portion 31 extends in the Z direction at the center portion of the surface facing the first side portion 32. Has been. The grooves 34 and 35 have the same shape, and the grooves 34 and 35 face each other.
 言い換えると、本実施形態の第1側部32は、Y方向に3分割された3つの領域からなり、第1中央領域32aと、この第1中央領域32aを挟み、第2側部33に向かって突出する2つの第1端部領域32bとが一体化されて構成されているといえる。また、第2側部33は、Y方向に3分割された3つの領域からなり、第2中央領域33aと、この第2中央領域33aを挟み、第1側部32に向かって突出する2つの第2端部領域33bとが一体化されて構成されているといえる。 In other words, the first side portion 32 of the present embodiment is composed of three regions divided into three in the Y direction. The first central region 32a and the first central region 32a are sandwiched between the first side region 32 and the second side portion 33. It can be said that the two first end regions 32b protruding in an integrated manner are configured. The second side portion 33 is composed of three regions divided into three in the Y direction. The second central region 33a and the two central regions 33a sandwiching the second central region 33a and projecting toward the first side portion 32. It can be said that the second end region 33b is integrated.
 すなわち、本実施形態のバイアス磁石30は、対向する第1、第2中央領域32a、33aの間隔が、対向する第1、第2端部領域32b、33bの間隔より長くされている。このため、対向する第1、第2中央領域32a、33aの間に構成される磁界が対向する第1、第2端部領域32b、33bの間に構成される磁界より弱くなる。 That is, in the bias magnet 30 of this embodiment, the interval between the first and second central regions 32a and 33a facing each other is longer than the interval between the first and second end regions 32b and 33b facing each other. For this reason, the magnetic field comprised between the 1st, 2nd center area | regions 32a and 33a which oppose becomes weaker than the magnetic field comprised between the 1st, 2nd edge part area | regions 32b and 33b which oppose.
 これによれば、図8に示されるように、対向する第1、第2中央領域32a、33aの間に構成される磁力線のうち第1、第2端部領域32b、33b側の磁力線は、第1、第2端部領域32b、33b側に膨らんだ磁力線となり、対向する第1、第2端部領域32b、33bの間に構成される磁力線のうち第1、第2中央領域32a、33a側の磁力線は第1、第2中央領域32a、33a側に膨らんだ磁力線となる。また、対向する第1、第2中央領域32a、33aの間に構成される磁界は対向する第1、第2端部領域32b、33bの間に構成される磁界より弱くされている。 According to this, as shown in FIG. 8, the magnetic field lines on the first and second end regions 32 b and 33 b side among the magnetic field lines configured between the first and second central regions 32 a and 33 a facing each other are as follows. The first and second central regions 32a and 33a among the magnetic lines of force formed between the opposing first and second end regions 32b and 33b become magnetic lines of force bulging toward the first and second end regions 32b and 33b. The magnetic field lines on the side are magnetic field lines that swell toward the first and second central regions 32a and 33a. Moreover, the magnetic field comprised between the 1st, 2nd center area | regions 32a and 33a which oppose is made weaker than the magnetic field comprised between the 1st, 2nd edge part area | regions 32b and 33b which oppose.
 このため、図7および図8に示されるように、対向する第1、第2中央領域32a、33aの間に構成される磁力線のうち第1、第2端部領域32b、33b側の磁力線(図7中のE2参照)は、対向する第1、第2端部領域32b、33bの間に構成される磁力線のうち第1、第2中央領域32a、33a側の磁力線に干渉されてX方向と平行になりやすい。 For this reason, as shown in FIG. 7 and FIG. 8, among the magnetic lines of force formed between the first and second central regions 32a and 33a facing each other, the magnetic lines of force on the first and second end regions 32b and 33b side ( (Refer to E2 in FIG. 7) is the X direction by being interfered with the magnetic lines of force between the first and second end regions 32b and 33b facing each other on the first and second central regions 32a and 33a side. It is easy to become parallel with.
 したがって、X方向に延びる磁力線をさらに増加させることができ、より磁気検出素子20の取付位置のずれに対して検出精度が低下することを抑制できる。 Therefore, it is possible to further increase the lines of magnetic force extending in the X direction, and it is possible to further suppress a decrease in detection accuracy due to a shift in the mounting position of the magnetic detection element 20.
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態は、第2実施形態に対してバイアス磁石30の構成を変更したものであり、その他に関しては第2実施形態と同様であるため、ここでは説明を省略する。
(Third embodiment)
A third embodiment of the present disclosure will be described. In the present embodiment, the configuration of the bias magnet 30 is changed with respect to the second embodiment, and the other aspects are the same as those of the second embodiment, and thus the description thereof is omitted here.
 図9に示されるように、本実施形態のバイアス磁石30は、第1側部32に溝34が形成されておらず、第1中央領域32aおよび第1端部領域32bにおけるX方向の長さが同じとされている。また、第2側部33に溝35が形成されておらず、第2中央領域33aおよび第2端部領域33bにおけるX方向の長さが同じとされている。 As shown in FIG. 9, in the bias magnet 30 of the present embodiment, the groove 34 is not formed in the first side portion 32, and the length in the X direction in the first central region 32a and the first end region 32b. Are the same. Moreover, the groove | channel 35 is not formed in the 2nd side part 33, but the length of the X direction in the 2nd center area | region 33a and the 2nd edge part area | region 33b is made the same.
 そして、本実施形態では、第1、第2側部32、33の第1、第2中央領域32a、33aは弱磁性材料であるフェライト等で構成されている。また、第1、第2側部32、33の第1、第2端部領域32b、33bは、第1、第2中央領域32a、33aを構成する材料よりも磁性が強い強磁性材料であるネオジウムやサマリウムコバルト等で構成されている。 And in this embodiment, the 1st, 2nd center area | regions 32a and 33a of the 1st, 2nd side parts 32 and 33 are comprised with the ferrite etc. which are weak magnetic materials. In addition, the first and second end regions 32b and 33b of the first and second side portions 32 and 33 are ferromagnetic materials having stronger magnetism than the material constituting the first and second central regions 32a and 33a. It is composed of neodymium or samarium cobalt.
 このような電流センサとしても、対向する第1、第2中央領域32a、33aの間に構成される磁界が対向する第1、第2端部領域32b、33bの間に構成される磁界より弱くなるため、上記第2実施形態と同様の効果を得ることができる。 Even in such a current sensor, the magnetic field formed between the first and second central regions 32a and 33a facing each other is weaker than the magnetic field formed between the first and second end regions 32b and 33b facing each other. Therefore, the same effect as the second embodiment can be obtained.
 なお、本実施形態において、バイアス磁石30の全体を弱磁性体材料で構成し、第1端部領域32bのうち第2端部領域33bと対向する面および第2端部領域33bのうち第1端部領域32bと対向する面に強磁性材料で構成されたシート等を貼り付けるようにしても同様の効果を得ることができる。 In the present embodiment, the entire bias magnet 30 is made of a weak magnetic material, and the surface of the first end region 32b facing the second end region 33b and the first end of the second end region 33b. The same effect can be obtained even if a sheet or the like made of a ferromagnetic material is attached to the surface facing the end region 32b.
 (他の実施形態)
 (1)上記第1~第3実施形態では、磁気検出素子20およびバイアス磁石30がモールド樹脂60で封止されたものを説明したが、磁気検出素子20およびバイアス磁石30はモールド樹脂60で封止されていなくてもよい。この場合、例えば、磁気検出素子20のみをモールド樹脂等で封止するようにしてもよい。
(Other embodiments)
(1) In the first to third embodiments, the magnetic detection element 20 and the bias magnet 30 are sealed with the mold resin 60. However, the magnetic detection element 20 and the bias magnet 30 are sealed with the mold resin 60. It does not have to be stopped. In this case, for example, only the magnetic detection element 20 may be sealed with a mold resin or the like.
 また、上記各実施形態を組み合わせた電流センサとしてもよい。すなわち、上記第2実施形態と上記第3実施形態を組み合わせ、第1側部32に溝34を形成すると共に第2側部33に溝35を形成しつつ、第1、第2中央領域32a、33aを弱磁性材料で構成すると共に第1、第2端部領域32b、33bを強磁性材料で構成するようにしてもよい。 Also, a current sensor that combines the above embodiments may be used. That is, the first and second central regions 32a, the second embodiment and the third embodiment are combined to form the groove 34 on the first side 32 and the groove 35 on the second side 33. 33a may be made of a weak magnetic material, and the first and second end regions 32b and 33b may be made of a ferromagnetic material.
 さらに、上記各実施形態において、バイアス磁石30を2極構造の磁石としてもよい。 Furthermore, in each of the above embodiments, the bias magnet 30 may be a two-pole magnet.
 (2)上記第2、第3実施形態では、対向する第1、第2中央領域32a、33aの間に構成される磁界が対向する第1、第2端部領域32b、33bの間に構成される磁界より弱くなるバイアス磁石30を用いた電流センサを説明したが、このようなバイアス磁石30の構成は上記第2、第3実施形態に限られるものではない。 (2) In the second and third embodiments, the magnetic field formed between the opposed first and second central regions 32a and 33a is configured between the opposed first and second end regions 32b and 33b. Although the current sensor using the bias magnet 30 that becomes weaker than the magnetic field to be applied has been described, the configuration of the bias magnet 30 is not limited to the second and third embodiments.
 例えば、図10に示されるように、第1側部32のうち第2側部33と対向する面と反対側の面の中央部に溝34をZ方向に延設し、第2側部33のうち第1側部32と対向する面と反対側の面の中央部に溝34をZ方向に延設してもよい。第1、第2側部32、33の間に形成される磁界は、第1、第2側部32、33のX方向の長さにも依存し、第1、第2側部32、33の間隔がY方向に一定である場合には、X方向の長さが長くなる部分ほど磁界が強くなるため、このようなバイアス磁石30を用いた電流センサとしても上記第2、第3実施形態と同様の効果を得ることができる。 For example, as shown in FIG. 10, a groove 34 extends in the Z direction at the center of the surface of the first side portion 32 opposite to the surface facing the second side portion 33, and the second side portion 33. Of these, a groove 34 may be extended in the Z direction at the center of the surface opposite to the surface facing the first side portion 32. The magnetic field formed between the first and second side portions 32 and 33 also depends on the lengths of the first and second side portions 32 and 33 in the X direction, and the first and second side portions 32 and 33 are. When the distance between the two is constant in the Y direction, the magnetic field becomes stronger as the length in the X direction becomes longer. Therefore, the current sensor using such a bias magnet 30 is also used in the second and third embodiments. The same effect can be obtained.
 また、上記第2実施形態の変形例として、図11に示されるように、底部31の一面31aにおいて、第1側部32の中心と第2側部33の中心との間隔が最も長くなり、第1側部32のY方向における端部と第2側部33のY方向における端部との間隔が最も短くなるようなバイアス磁石30を用いてもよい。つまり、第1側部32のうち第2側部33と対向する面および第2側部33のうち第1側部32と対向する面をテーパ状にしてもよい。 As a modification of the second embodiment, as shown in FIG. 11, the distance between the center of the first side portion 32 and the center of the second side portion 33 is the longest on the one surface 31 a of the bottom portion 31. A bias magnet 30 may be used in which the distance between the end portion in the Y direction of the first side portion 32 and the end portion in the Y direction of the second side portion 33 is the shortest. That is, the surface of the first side portion 32 that faces the second side portion 33 and the surface of the second side portion 33 that faces the first side portion 32 may be tapered.
 同様に、図10の変形例として、図12に示されるように、第1側部32のうち第2側部33と対向する一面と反対側の面および第2側部33のうち第1側部32と対向する一面と反対側の面をテーパ状にしてもよい。 Similarly, as a modification of FIG. 10, as shown in FIG. 12, the surface of the first side portion 32 opposite to the one surface facing the second side portion 33 and the first side of the second side portion 33. The surface opposite to the one surface facing the portion 32 may be tapered.
 また、上記各実施形態では、底部31が基板10と接合されているものを説明したが、次のようにしてもよい。すなわち、図13Aに示されるように、基板10の一面10aに磁気検出素子20を直接搭載すると共に、磁気検出素子20と底部31の中央部とが対向するように、バイアス磁石30のうち第1、第2側部32、33における一面31aと反対側の端部を基板10に接合するようにしてもよい。また、図13Bに示されるように、図13Aの変形例として、底部31の一面31aに磁気検出素子20を搭載した状態で、バイアス磁石30のうち第1、第2側部32、33における一面31aと反対側の端部を基板10に接合するようにしてもよい。 In the above embodiments, the bottom 31 is bonded to the substrate 10. However, the following may be employed. That is, as shown in FIG. 13A, the magnetic detection element 20 is directly mounted on one surface 10 a of the substrate 10, and the first of the bias magnets 30 so that the magnetic detection element 20 and the central portion of the bottom portion 31 face each other. The end of the second side portions 32 and 33 opposite to the one surface 31a may be joined to the substrate 10. 13B, as a modification of FIG. 13A, one surface of the first and second side portions 32 and 33 of the bias magnet 30 with the magnetic detection element 20 mounted on the one surface 31a of the bottom 31. You may make it join the edge part on the opposite side to 31a to the board | substrate 10. FIG.
 さらに、図13Cに示されるように、基板10の一面10aに磁気検出素子20を直接搭載すると共に、基板10の他面10bに、磁気検出素子20と底部31の中央部とが対向するように、バイアス磁石30のうち第1、第2側部32、33における一面31aと反対側の端部を接合するようにしてもよい。 Further, as shown in FIG. 13C, the magnetic detection element 20 is directly mounted on one surface 10a of the substrate 10, and the magnetic detection element 20 and the central portion of the bottom 31 are opposed to the other surface 10b of the substrate 10. The ends of the first and second side portions 32 and 33 on the opposite side of the one surface 31a of the bias magnet 30 may be joined.
 このような電流センサとしても、上記のように、バイアス磁石30の底部31の一面31a上に位置する空間には、バイアス磁石30の一面31aに形成される磁力線と同じ方向の磁力線が構成されるため、上記各実施形態と同様の効果を得ることができる。 Also in such a current sensor, as described above, the magnetic force lines in the same direction as the magnetic force lines formed on the one surface 31a of the bias magnet 30 are formed in the space located on the one surface 31a of the bottom portion 31 of the bias magnet 30. Therefore, the same effects as those in the above embodiments can be obtained.
 さらに、図14Aに示されるように、底部31の一面31aに磁気検出素子20を搭載したバイアス磁石30の底部31をバスバー70に直接接合してもよい。また、図14Bに示されるように、磁気検出素子20をバスバー70に直接搭載すると共に、磁気検出素子20と底部31の中央部とが対向するように、バイアス磁石30のうち第1、第2側部32、33における一面31aと反対側の端部をバスバー70に接合するようにしてもよい。そして、図14Cに示されるように、図14Bの変形例として、底部31の一面31aに磁気検出素子20を搭載した状態で、バイアス磁石30のうち第1、第2側部32、33における一面31aと反対側の端部をバスバー70に接合するようにしてもよい。さらに、図14Dに示されるように、バスバー70の一面に磁気検出素子20を直接搭載すると共に、バスバー70の他面に、磁気検出素子20の中心と底部31の中央部とが対向するように、バイアス磁石30のうち第1、第2側部32、33における一面31aと反対側の端部を接合するようにしてもよい。 Further, as shown in FIG. 14A, the bottom 31 of the bias magnet 30 on which the magnetic detection element 20 is mounted may be directly joined to the bus bar 70 on one surface 31a of the bottom 31. Further, as shown in FIG. 14B, the magnetic detection element 20 is directly mounted on the bus bar 70, and the first and second of the bias magnet 30 are arranged so that the magnetic detection element 20 and the central portion of the bottom 31 face each other. You may make it join the edge part on the opposite side to the one surface 31a in the side parts 32 and 33 to the bus-bar 70. FIG. 14C, as a modification of FIG. 14B, one surface of the first and second side portions 32 and 33 of the bias magnet 30 with the magnetic detection element 20 mounted on the one surface 31a of the bottom portion 31. You may make it join the edge part on the opposite side to 31a to the bus-bar 70. FIG. Further, as shown in FIG. 14D, the magnetic detection element 20 is directly mounted on one surface of the bus bar 70, and the center of the magnetic detection element 20 and the central portion of the bottom 31 are opposed to the other surface of the bus bar 70. The ends of the first and second side portions 32 and 33 on the opposite side of the one surface 31a of the bias magnet 30 may be joined.
 なお、このような電流センサとした場合には、磁気検出素子20、バイアス磁石30、バスバー70のうち磁気検出素子20およびバイアス磁石30を搭載する部分をモールド樹脂等で封止するようにしてもよい。また、磁気検出素子20のみをモールド樹脂等で封止するようにしてもよい。 In the case of such a current sensor, a portion of the magnetic detection element 20, the bias magnet 30, and the bus bar 70 on which the magnetic detection element 20 and the bias magnet 30 are mounted may be sealed with a mold resin or the like. Good. Alternatively, only the magnetic detection element 20 may be sealed with a mold resin or the like.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (7)

  1.  被検出電流経路(70)に被検出電流が流れることによって生じる電流磁界(Bi)と共に合成磁界(Bs)を構成するバイアス磁界(Bb)を生成するバイアス磁石(30)と、
     前記合成磁界に応じたセンサ信号を出力する磁気検出素子(20)と、を備え、
     前記バイアス磁石は、一面(31a)を有する底部(31)と、前記底部の一面に備えられ、前記一面の面方向と垂直方向に突出するN極の第1側部(32)と、前記底部の一面のうち前記第1側部と異なる領域に備えられ、前記一面の面方向と垂直方向に突出すると共に前記第1側部と対向配置されたS極の第2側部(33)と、を有し、
     前記磁気検出素子は、前記第1、第2側部の配列方向と平行な方向に延びる磁力線が前記磁気検出素子を通過する状態で配置されていることを特徴とする電流センサ。
    A bias magnet (30) that generates a bias magnetic field (Bb) that constitutes a combined magnetic field (Bs) together with a current magnetic field (Bi) generated by the flow of the detected current through the detected current path (70);
    A magnetic detection element (20) for outputting a sensor signal corresponding to the combined magnetic field,
    The bias magnet includes a bottom portion (31) having one surface (31a), a first side portion (32) of an N pole that is provided on one surface of the bottom portion and projects in a direction perpendicular to the surface direction of the one surface, and the bottom portion. A second side portion (33) of an S pole that is provided in a region different from the first side portion of the one surface, protrudes in a direction perpendicular to the surface direction of the one surface and is opposed to the first side portion; Have
    The magnetic sensor is arranged in such a manner that magnetic lines extending in a direction parallel to the arrangement direction of the first and second side portions pass through the magnetic sensor.
  2.  前記バイアス磁石の前記第1側部は、前記一面の面方向と垂直方向に延びる第1中央領域(32a)と、前記第1中央領域を挟む2つの第1端部領域(32b)とを有し、前記第1中央領域と前記第1端部領域は一体となって構成され、
    前記バイアス磁界の前記第2側部は、前記一面の面方向と垂直方向に延び、前記第1中央領域と対向配置される第2中央領域(33a)と、前記第2中央領域を挟み、前記第1端部領域とそれぞれ対向配置される2つの第2端部領域(33b)とを有し、前記第2中央領域と前記第2端部領域は一体となって構成され、
    前記バイアス磁界において、前記第1、第2中央領域の間に構成される磁界は、対向する前記第1、第2端部領域の間に構成される磁界より弱くされていることを特徴とする請求項1に記載の電流センサ。
    The first side portion of the bias magnet has a first central region (32a) extending in a direction perpendicular to the surface direction of the one surface, and two first end regions (32b) sandwiching the first central region. The first central region and the first end region are integrally formed;
    The second side portion of the bias magnetic field extends in a direction perpendicular to the surface direction of the one surface and sandwiches the second central region with a second central region (33a) disposed opposite to the first central region, The first end region and the two second end regions (33b) disposed opposite to each other, the second central region and the second end region are configured integrally;
    In the bias magnetic field, a magnetic field formed between the first and second central regions is weaker than a magnetic field formed between the opposed first and second end regions. The current sensor according to claim 1.
  3.  前記バイアス磁石は、第1、第2中央領域の間隔が第1、第2端部領域の間隔より長くされていることを特徴とする請求項2に記載の電流センサ。 3. The current sensor according to claim 2, wherein the bias magnet has an interval between the first and second central regions longer than an interval between the first and second end regions.
  4.  前記バイアス磁石は、前記第1、第2中央領域が前記第1、第2端部領域に対して弱磁性材料で構成されていることを特徴とする請求項2または3に記載の電流センサ。 4. The current sensor according to claim 2, wherein the first and second central regions of the bias magnet are made of a weak magnetic material with respect to the first and second end regions.
  5.  前記バイアス磁石は、前記第1、第2中央領域の前記配列方向と平行な方向の長さが前記第1、第2端部領域の前記配列方向と平行な方向の長さより短くされていることを特徴とする請求項2ないし4のいずれか1つに記載の電流センサ。 The bias magnet has a length in a direction parallel to the arrangement direction of the first and second central regions shorter than a length in a direction parallel to the arrangement direction of the first and second end regions. The current sensor according to any one of claims 2 to 4, wherein:
  6.  前記バイアス磁石の前記底部は、平面方向に分割されると共に厚さ方向に分割された第1~第4領域(31b~31e)を有し、前記第1側部と連結されている第1領域がN極、前記第1領域と厚さ方向に連結されている第2領域がS極、前記第2側部と連結されている第3領域がS極、前記第3領域と厚さ方向に連結されている第4領域がN極とされていることを特徴とする請求項1ないし5のいずれか1つに記載の電流センサ。 The bottom portion of the bias magnet has first to fourth regions (31b to 31e) which are divided in the planar direction and divided in the thickness direction, and are connected to the first side portion. Is the N pole, the second region connected to the first region in the thickness direction is the S pole, the third region connected to the second side is the S pole, and the third region is in the thickness direction. The current sensor according to any one of claims 1 to 5, wherein the connected fourth region has an N pole.
  7.  前記磁気検出素子は、前記一面の中央部に搭載されていることを特徴とする請求項1ないし6のいずれか1つに記載の電流センサ。 The current sensor according to any one of claims 1 to 6, wherein the magnetic detection element is mounted at a central portion of the one surface.
PCT/JP2013/005449 2012-09-19 2013-09-13 Current sensor WO2014045559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-206288 2012-09-19
JP2012206288A JP5849914B2 (en) 2012-09-19 2012-09-19 Current sensor

Publications (1)

Publication Number Publication Date
WO2014045559A1 true WO2014045559A1 (en) 2014-03-27

Family

ID=50340900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005449 WO2014045559A1 (en) 2012-09-19 2013-09-13 Current sensor

Country Status (2)

Country Link
JP (1) JP5849914B2 (en)
WO (1) WO2014045559A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007305A (en) * 2013-02-20 2014-08-27 爱信精机株式会社 Current sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179042A (en) * 2014-03-19 2015-10-08 株式会社デンソー current sensor
JP2016176911A (en) * 2015-03-23 2016-10-06 Tdk株式会社 Magnetic sensor
CN113302693B (en) * 2019-01-17 2022-08-23 佳能电子株式会社 Magnetic identification sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178937A (en) * 1994-12-19 1996-07-12 Nippondenso Co Ltd Magnetism detecting device
JPH08304479A (en) * 1995-05-08 1996-11-22 Matsushita Electric Ind Co Ltd Current switch
JPH10142263A (en) * 1996-11-11 1998-05-29 Murata Mfg Co Ltd Current detecting device
WO2012014546A1 (en) * 2010-07-30 2012-02-02 三菱電機株式会社 Magnetic substance detection device
JP2012050555A (en) * 2010-08-31 2012-03-15 Seberu Piko:Kk Magnet clasp for accessory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178937A (en) * 1994-12-19 1996-07-12 Nippondenso Co Ltd Magnetism detecting device
JPH08304479A (en) * 1995-05-08 1996-11-22 Matsushita Electric Ind Co Ltd Current switch
JPH10142263A (en) * 1996-11-11 1998-05-29 Murata Mfg Co Ltd Current detecting device
WO2012014546A1 (en) * 2010-07-30 2012-02-02 三菱電機株式会社 Magnetic substance detection device
JP2012050555A (en) * 2010-08-31 2012-03-15 Seberu Piko:Kk Magnet clasp for accessory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007305A (en) * 2013-02-20 2014-08-27 爱信精机株式会社 Current sensor

Also Published As

Publication number Publication date
JP5849914B2 (en) 2016-02-03
JP2014062738A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
US8878520B2 (en) Current sensor
JP5531215B2 (en) Current sensor
US9086444B2 (en) Magnetic field detection device and current sensor
WO2015111408A1 (en) Electrical current detection system
WO2013080557A1 (en) Current sensor
JP6107942B2 (en) Magnetic current sensor and current measuring method
JP5535139B2 (en) Proximity sensor
JP6119296B2 (en) Current sensor
JP5906488B2 (en) Current sensor
WO2017158900A1 (en) Magnetic sensor
JP6427588B2 (en) Magnetic sensor
JP5899012B2 (en) Magnetic sensor
WO2014045559A1 (en) Current sensor
JPWO2014192625A1 (en) Current sensor
JP2013145165A (en) Current sensor mechanism
WO2011074488A1 (en) Magnetic sensor
JP5284024B2 (en) Magnetic sensor
JP2012063203A (en) Magnetic sensor
JP2019174140A (en) Magnetic sensor
JP2012052980A (en) Current sensor
JP2014185935A (en) Current sensor
JP2013142604A (en) Current sensor
JP2013142569A (en) Current sensor
JP5479796B2 (en) Component arrangement structure of magnetic sensor
JP2013047610A (en) Magnetic balance type current sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838333

Country of ref document: EP

Kind code of ref document: A1