JP2013145165A - Current sensor mechanism - Google Patents

Current sensor mechanism Download PDF

Info

Publication number
JP2013145165A
JP2013145165A JP2012005388A JP2012005388A JP2013145165A JP 2013145165 A JP2013145165 A JP 2013145165A JP 2012005388 A JP2012005388 A JP 2012005388A JP 2012005388 A JP2012005388 A JP 2012005388A JP 2013145165 A JP2013145165 A JP 2013145165A
Authority
JP
Japan
Prior art keywords
conductor
magnetic body
current sensor
sensor mechanism
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012005388A
Other languages
Japanese (ja)
Inventor
Takamasa Kanehara
金原  孝昌
Norihiro Kurumado
紀博 車戸
Kosuke Nomura
江介 野村
Ryosuke Sakai
亮輔 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012005388A priority Critical patent/JP2013145165A/en
Publication of JP2013145165A publication Critical patent/JP2013145165A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a current sensor mechanism that suppresses the decrease of current detection accuracy.SOLUTION: A current sensor mechanism comprises a sensor substrate (10), a conductor (30) in which alternating current flows, and a magnetic body (40). In the conductor (30), a rear face (32) of one face (31) being opposed to the sensor substrate (10) and side faces (33) between the rear face (32) and the one face (31) are respectively facing inner faces of the magnetic body (40). The distance between the rear face (32) and the inner face of the magnetic body (40) in the vertical direction is shorter than the distance between the side face (33) and the inner face of the magnetic body (40) in the horizontal direction. The one face (31) consists of an opposed face (31a) to the sensor substrate (10) and a connecting face (31b) located between the opposed face (31a) and the side face (33). The distance between the connecting face (31b) and a geometric center (GC) of the conductor (30) is longer than the distance between the opposed face (31a) and the geometric center (GC).

Description

本発明は、被測定電流から生じる磁界による磁電変換素子の電気信号の変動に基づいて、被測定電流を測定する電流センサ機構に関するものである。   The present invention relates to a current sensor mechanism that measures a current to be measured based on a change in an electric signal of a magnetoelectric transducer due to a magnetic field generated from the current to be measured.

従来、例えば特許文献1に示されるように、バスバーと、バスバーに流れる電流によって発生する磁界が感磁面に印加されるようにバスバーに対して固定配置された磁気検出素子と、磁気検出素子を磁気遮蔽する磁気シールド体と、を備える電流センサ機構が提案されている。バスバーは、自身の長手方向に対して垂直な断面形状が矩形を成し、その周囲が磁気シールド体によって囲まれている。   Conventionally, for example, as shown in Patent Document 1, a bus bar, a magnetic detection element fixedly arranged with respect to the bus bar so that a magnetic field generated by a current flowing through the bus bar is applied to the magnetic sensitive surface, and a magnetic detection element A current sensor mechanism including a magnetic shield body for magnetic shielding has been proposed. The bus bar has a rectangular cross-sectional shape perpendicular to the longitudinal direction of the bus bar and is surrounded by a magnetic shield.

特開2010−2277号公報JP 2010-2277 A

上記したように、特許文献1に示される電流センサ機構では、バスバーの周囲が磁気シールド体によって囲まれている。これによれば、バスバーに交流電流が流れると、バスバーと磁気シールド体との相互インダクタンスのために、磁気シールド体に渦電流が生じ、その渦電流から、バスバーの電流を相殺する磁界が発生する。この磁界は、バスバーと磁気シールド体との距離が近いほど高くなる。したがって、磁気シールド体とバスバーとの位置によっては、バスバーの電流密度分布が不均一となり、磁気検出素子に印加される磁界を主として生じる、バスバーにおける磁気検出素子側の電流密度分布(素子側の電流密度分布)が不均一となる虞がある。また、バスバーに交流電流が流れると、表皮効果のために、電流密度が導体の中心から表面に向かうほど高まる。上記したように、バスバーは断面形状が矩形を成しているので、その角部の電流密度が局所的に高くなる。そのため、素子側の電流密度分布が不均一となる虞がある。   As described above, in the current sensor mechanism disclosed in Patent Document 1, the periphery of the bus bar is surrounded by the magnetic shield body. According to this, when an alternating current flows through the bus bar, an eddy current is generated in the magnetic shield body due to the mutual inductance between the bus bar and the magnetic shield body, and a magnetic field that cancels the bus bar current is generated from the eddy current. . This magnetic field becomes higher as the distance between the bus bar and the magnetic shield body is shorter. Therefore, depending on the position of the magnetic shield body and the bus bar, the current density distribution of the bus bar becomes non-uniform, and the current density distribution on the magnetic detection element side (current on the element side) in the bus bar mainly generates a magnetic field applied to the magnetic detection element. (Density distribution) may be non-uniform. When an alternating current flows through the bus bar, the current density increases from the center of the conductor toward the surface due to the skin effect. As described above, since the cross-sectional shape of the bus bar is rectangular, the current density at the corners is locally increased. For this reason, the current density distribution on the element side may be non-uniform.

以上、示したように、バスバーに交流電流が流れる場合、磁気シールド体に生じる渦電流、及び、表皮効果のために、素子側の電流密度分布が不均一になる虞がある。この結果、電流の検出精度が低下する虞がある。   As described above, when an alternating current flows through the bus bar, the current density distribution on the element side may become non-uniform due to the eddy current generated in the magnetic shield body and the skin effect. As a result, the current detection accuracy may be reduced.

そこで、本発明は上記問題点に鑑み、電流の検出精度の低下が抑制された電流センサ機構を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a current sensor mechanism in which a decrease in current detection accuracy is suppressed.

上記した目的を達成するために、請求項1に記載の発明は、センサ基板(10)と、該センサ基板(10)に形成された、印加磁界を電気信号に変換する磁電変換素子(20)と、被測定対象である交流電流の流れる導体(30)と、センサ基板(10)への外部磁界の印加を抑制する磁性体(40)と、を有し、交流電流から生じる磁界による磁電変換素子(20)の電気信号の変動に基づいて、交流電流を測定する電流センサ機構であって、交流電流の流れ方向と直交する高さ方向にて、センサ基板(10)、導体(30)、及び、磁性体(40)の一部が並び、導体(30)における、センサ基板(10)と一部が対向する一面(31)の裏面(32)、及び、裏面(32)と一面(31)との間の側面(33)それぞれが、磁性体(40)の内面と対向し、高さ方向における、導体(30)の裏面(32)と磁性体(40)の内面との間の距離が、横方向における、導体(30)の側面(33)と磁性体(40)の内面との間の距離よりも短くなっており、高さ方向、及び、流れ方向と高さ方向とに直交する横方向によって規定される規定平面において、導体(30)は、自身の幾何学的中心(GC)から、表面までの距離が不均一な平面形状を成し、導体(30)の一面(31)は、センサ基板(10)との対向面(31a)と、該対向面(31a)と側面(33)との間に位置する連結面(31b)と、から成り、連結面(31b)と幾何学的中心(GC)との距離は、対向面(31a)と幾何学的中心(GC)との距離よりも長いことを特徴とする。   In order to achieve the above object, the invention described in claim 1 includes a sensor substrate (10) and a magnetoelectric transducer (20) formed on the sensor substrate (10) for converting an applied magnetic field into an electric signal. And a conductor (30) through which an alternating current is to be measured and a magnetic body (40) that suppresses application of an external magnetic field to the sensor substrate (10), and magnetoelectric conversion by a magnetic field generated from the alternating current A current sensor mechanism for measuring an alternating current based on a change in an electrical signal of the element (20), wherein the sensor substrate (10), the conductor (30), in a height direction perpendicular to the direction of the alternating current flow, In addition, a part of the magnetic body (40) is arranged, and the back surface (32) of one surface (31) of the conductor (30) that partially faces the sensor substrate (10), and the back surface (32) and one surface (31 ) Between the magnetic material ( 0), and the distance between the back surface (32) of the conductor (30) and the inner surface of the magnetic body (40) in the height direction is the side surface (33) of the conductor (30) in the lateral direction. Conductor (30) in a specified plane defined by the height direction and the transverse direction orthogonal to the flow direction and the height direction, which is shorter than the distance between the magnetic body (40) and the inner surface of the magnetic body (40). Has a planar shape with a nonuniform distance from its geometric center (GC) to the surface, and one surface (31) of the conductor (30) is a surface (31a) facing the sensor substrate (10). And a connecting surface (31b) positioned between the opposing surface (31a) and the side surface (33), and the distance between the connecting surface (31b) and the geometric center (GC) is the opposing surface ( It is characterized by being longer than the distance between 31a) and the geometric center (GC).

このように、本発明によれば、導体(30)の裏面(32)と側面(33)とが、磁性体(40)の内面と対向し、高さ方向における、裏面(32)と磁性体(40)の内面との間の距離が、横方向における、側面(33)と磁性体(40)の内面との間の距離よりも短くなっている。これによれば、磁性体(40)に生じる渦電流のために、対向面(31a)の電流密度が裏面(32)や側面(33)と比べて高くなる。   Thus, according to the present invention, the back surface (32) and the side surface (33) of the conductor (30) face the inner surface of the magnetic body (40), and the back surface (32) and the magnetic body in the height direction. The distance between the inner surface of (40) is shorter than the distance between the side surface (33) and the inner surface of the magnetic body (40) in the lateral direction. According to this, due to the eddy current generated in the magnetic body (40), the current density of the opposing surface (31a) is higher than that of the back surface (32) and the side surface (33).

また、本発明では、導体(30)の一面(31)は、センサ基板(10)との対向面(31a)と、該対向面(31a)と側面(33)との間に位置する連結面(31b)と、から成り、連結面(31b)と幾何学的中心(GC)との距離が、対向面(31a)と幾何学的中心(GC)との距離よりも長くなっている。これによれば、表皮効果のために、連結面(31b)の電流密度が、対向面(31a)の電流密度よりも高くなる。   In the present invention, the one surface (31) of the conductor (30) is a surface (31a) facing the sensor substrate (10) and a connecting surface located between the surface (31a) and the side surface (33). (31b), and the distance between the connecting surface (31b) and the geometric center (GC) is longer than the distance between the opposing surface (31a) and the geometric center (GC). According to this, because of the skin effect, the current density of the coupling surface (31b) is higher than the current density of the opposing surface (31a).

以上、示したように、渦電流のために対向面(31a)の電流密度が高くなり、表皮効果のために連結面(31b)の電流密度が高くなる。この結果、磁電変換素子(20)に印加される磁界を主として生じる、導体(30)の一面(31)の電流密度が高まり、電流密度分布が均一化される。これにより、電流の検出精度の低下が抑制される。   As described above, the current density of the facing surface (31a) is increased due to the eddy current, and the current density of the connecting surface (31b) is increased due to the skin effect. As a result, the current density on one surface (31) of the conductor (30), which mainly generates a magnetic field applied to the magnetoelectric conversion element (20), is increased, and the current density distribution is made uniform. Thereby, the fall of the detection accuracy of an electric current is suppressed.

請求項2に記載のように、横方向における、対向面(31a)の長さは、裏面(32)の長さよりも短い構成が好ましい。これによれば、交流電流の周波数に応じて、対向面(31a)(一面(31))、及び、裏面(32)それぞれの長さを調整することで、一面(31)の電流密度分布を調整することができる。また、一面(31)の電流密度が高まるので、電流の検出精度の低下が抑制される。   As described in claim 2, it is preferable that the length of the facing surface (31a) in the lateral direction is shorter than the length of the back surface (32). According to this, by adjusting the length of each of the opposing surface (31a) (one surface (31)) and the back surface (32) according to the frequency of the alternating current, the current density distribution on the one surface (31) is adjusted. Can be adjusted. Moreover, since the current density of one surface (31) increases, the fall of the detection accuracy of an electric current is suppressed.

請求項2に記載の具体的な構成としては、請求項3に記載のように、規定平面における、導体(30)の断面形状が、台形を成した構成や、請求項4に記載のように、規定平面における、導体(30)の断面形状が、センサ基板(10)側に凸となる凸形状を成した構成を採用することができる。   As a specific configuration described in claim 2, as described in claim 3, a configuration in which the cross-sectional shape of the conductor (30) in the prescribed plane forms a trapezoid, or as described in claim 4 It is possible to employ a configuration in which the cross-sectional shape of the conductor (30) in the defined plane is convex toward the sensor substrate (10) side.

請求項5に記載のように、磁性体(40)における、導体(30)の裏面(32)との対向部位には、導体(30)側に局所的に突起した突起部(44)が形成された構成が良い。これによれば、交流電流の周波数に応じて、突起部(44)の高さ方向の長さを調整することで、一面(31)の電流密度分布を調整することができる。   As described in claim 5, a protrusion (44) that locally protrudes toward the conductor (30) is formed at a portion of the magnetic body (40) facing the back surface (32) of the conductor (30). The configuration made is good. According to this, the current density distribution of the one surface (31) can be adjusted by adjusting the length in the height direction of the protrusion (44) according to the frequency of the alternating current.

請求項6に記載のように、磁性体(40)における、導体(30)の裏面(32)との対向部位と、導体(30)の側面(33)との対向部位との間には、両者を連結する、高さ方向に対して傾斜した傾斜面を有する傾斜部(45)が形成された構成が良い。これによれば、交流電流の周波数に応じて、傾斜部(45)の傾斜を調整することで、一面(31)の電流密度分布を調整することができる。   As described in claim 6, in the magnetic body (40), between a portion facing the back surface (32) of the conductor (30) and a portion facing the side surface (33) of the conductor (30), The structure in which the inclination part (45) which has an inclined surface which inclined both with respect to the height direction which connects both was formed is good. According to this, the current density distribution of the one surface (31) can be adjusted by adjusting the inclination of the inclined portion (45) according to the frequency of the alternating current.

請求項7に記載のように、磁電変換素子(20)は、磁化方向が固定されたピン層と、印加磁界に応じて磁化方向が変化する自由層と、該自由層とピン層との間に設けられた非磁性の中間層と、を有する磁気抵抗効果素子であり、磁性体(40)内に、自由層にバイアス磁界を印加するバイアス磁石が設けられた構成が良い。これによれば、自由層の磁化方向の初期値(ゼロ点)がバイアス磁界によって定まる。   As described in claim 7, the magnetoelectric conversion element (20) includes a pinned layer having a fixed magnetization direction, a free layer whose magnetization direction changes according to an applied magnetic field, and between the free layer and the pinned layer. And a non-magnetic intermediate layer provided on the magnetic layer, and a configuration in which a bias magnet for applying a bias magnetic field to the free layer is provided in the magnetic body (40) is preferable. According to this, the initial value (zero point) of the magnetization direction of the free layer is determined by the bias magnetic field.

請求項8に記載のように、複数の磁電変換素子(20)を有し、2つの磁電変換素子(20)によって、ハーフブリッジ回路が構成された構成が良い。これによれば、ハーフブリッジ回路の中点電位を測定することで、被測定電流を測定することができる。   As described in claim 8, it is preferable to have a plurality of magnetoelectric conversion elements (20) and a half bridge circuit constituted by two magnetoelectric conversion elements (20). According to this, the measured current can be measured by measuring the midpoint potential of the half-bridge circuit.

請求項9に記載のように、2つのハーフブリッジ回路によって、フルブリッジ回路が構成された構成が良い。これによれば、2つの中点電位の変化量に基づいて、被測定電流を測定することができるので、ハーフブリッジ回路と比べて、電流の検出精度が向上される。   A configuration in which a full bridge circuit is configured by two half bridge circuits is preferable. According to this, since the current to be measured can be measured based on the amount of change in the two midpoint potentials, the current detection accuracy is improved as compared with the half-bridge circuit.

請求項10に記載のように、磁性体(40)は、磁気シールド機能を有する構成が良い。これによれば、磁電変換素子(20)への外部磁界の印加が抑制され、電流の検出精度の低下が抑制される。   As described in claim 10, the magnetic body (40) preferably has a magnetic shield function. According to this, application of an external magnetic field to the magnetoelectric conversion element (20) is suppressed, and a decrease in current detection accuracy is suppressed.

請求項11に記載のように、高さ方向における、導体(30)の裏面(32)と磁性体(40)の内面との間の距離が、高さ方向における、導体(30)の厚さよりも短い構成を採用することもできる。   As described in claim 11, in the height direction, the distance between the back surface (32) of the conductor (30) and the inner surface of the magnetic body (40) is greater than the thickness of the conductor (30) in the height direction. Also, a short configuration can be adopted.

第1実施形態に係る電流センサ機構の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the current sensor mechanism which concerns on 1st Embodiment. 第2実施形態に係る電流センサ機構の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the current sensor mechanism which concerns on 2nd Embodiment. 電流センサ機構の変形例を示す断面図である。It is sectional drawing which shows the modification of a current sensor mechanism. 電流センサ機構の変形例を示す断面図である。It is sectional drawing which shows the modification of a current sensor mechanism. 電流センサ機構の変形例を示す断面図である。It is sectional drawing which shows the modification of a current sensor mechanism. 電流センサ機構の変形例を示す断面図である。It is sectional drawing which shows the modification of a current sensor mechanism.

以下、本発明の実施の形態を図に基づいて説明する。なお、図1〜図6では、後述する形成面10a側の電流密度分布をハッチングで示し、導体30を白抜きで示している。
(第1実施形態)
図1は、第1実施形態に係る電流センサ機構の概略構成を示す断面図である。以下においては、後述する形成面10aに沿い、互いに直交する方向をx方向、y方向と示し、形成面10aに直交する方向をz方向と示す。なお、x方向、y方向、z方向が、特許請求の範囲に記載の横方向、流れ方向、高さ方向に相当する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 6, a current density distribution on the formation surface 10 a side described later is indicated by hatching, and the conductor 30 is indicated by white.
(First embodiment)
FIG. 1 is a cross-sectional view illustrating a schematic configuration of the current sensor mechanism according to the first embodiment. In the following, along the formation surface 10a described later, the directions orthogonal to each other are indicated as x direction and y direction, and the direction orthogonal to the formation surface 10a is indicated as z direction. The x direction, the y direction, and the z direction correspond to the lateral direction, the flow direction, and the height direction described in the claims.

図1に示すように、電流センサ機構100は、要部として、センサ基板10と、該センサ基板10に形成された磁電変換素子20と、被測定電流が流れる導体30と、センサ基板10及び導体30それぞれの周囲を囲む磁性体40と、を有する。電流センサ機構100は、被測定電流から生じる磁界(以下、被測定磁界と示す)による磁電変換素子20の電気信号の変動に基づいて、被測定電流を測定するものである。   As shown in FIG. 1, the current sensor mechanism 100 includes, as main parts, a sensor substrate 10, a magnetoelectric conversion element 20 formed on the sensor substrate 10, a conductor 30 through which a current to be measured flows, the sensor substrate 10 and the conductor. 30 and a magnetic body 40 surrounding each periphery. The current sensor mechanism 100 measures the current to be measured based on fluctuations in the electrical signal of the magnetoelectric transducer 20 due to a magnetic field generated from the current to be measured (hereinafter referred to as a magnetic field to be measured).

センサ基板10は、半導体基板であり、その一面10aに、磁電変換素子20が形成されている(以下、一面10aを形成面10aと示す)。図示しないが、センサ基板10は、形成面10aの裏面を搭載面として支持基板に搭載されている。   The sensor substrate 10 is a semiconductor substrate, and a magnetoelectric conversion element 20 is formed on one surface 10a thereof (hereinafter, the one surface 10a is referred to as a formation surface 10a). Although not shown, the sensor substrate 10 is mounted on the support substrate with the back surface of the formation surface 10a as the mounting surface.

センサ基板10に形成された磁電変換素子20は、図示しないが、形成面10aに沿う印加磁界に応じて磁化方向が変化する自由層と、非磁性の中間層と、磁化方向が固定されたピン層と、ピン層の磁化方向を固定する磁石層と、が順次積層されて成る。本実施形態に係る中間層は、絶縁性を有しており、磁電変換素子20は、トンネル磁気抵抗効果素子である。自由層と固定層との間に電圧が印加されると、トンネル効果によって、自由層と固定層との間の中間層に電流(トンネル電流)が流れる。トンネル電流の流れ易さは、自由層と固定層の磁化方向に依存しており、自由層と固定層それぞれの磁化方向が平行の場合に最も流れ易く、反平行の場合に最も流れ難い。したがって、自由層と固定層それぞれの磁化方向が平行の場合に磁電変換素子20の抵抗値が最も小さく変化し、反平行の場合に抵抗値が最も大きく変化する。   Although not shown, the magnetoelectric conversion element 20 formed on the sensor substrate 10 includes a free layer whose magnetization direction changes according to the applied magnetic field along the formation surface 10a, a nonmagnetic intermediate layer, and a pin whose magnetization direction is fixed. A layer and a magnet layer that fixes the magnetization direction of the pinned layer are sequentially stacked. The intermediate layer according to the present embodiment has an insulating property, and the magnetoelectric conversion element 20 is a tunnel magnetoresistive effect element. When a voltage is applied between the free layer and the fixed layer, a current (tunnel current) flows through an intermediate layer between the free layer and the fixed layer due to the tunnel effect. The ease of flow of the tunnel current depends on the magnetization directions of the free layer and the fixed layer, and flows most easily when the magnetization directions of the free layer and the fixed layer are parallel to each other, and hardly flows when the magnetization directions are antiparallel. Therefore, the resistance value of the magnetoelectric conversion element 20 changes the smallest when the magnetization directions of the free layer and the fixed layer are parallel, and the resistance value changes the most when the magnetization direction is antiparallel.

本実施形態では、2つの磁電変換素子20によって、ハーフブリッジ回路が構成され、2つのハーフブリッジ回路によって、フルブリッジ回路が構成されている。ハーフブリッジ回路を構成する2つの磁電変換素子20の固定層の磁化方向が反平行となり、2つの磁電変換素子20の抵抗値の変化が、反対方向となっている。すなわち、2つの磁電変換素子20の内の一方の抵抗値が小さくなる場合、他方の抵抗値が大きくなるようになっている。フルブリッジ回路を構成する、2つのハーフブリッジ回路の中点電位の差分が図示しない回路基板に出力される。なお、自由層の磁化方向の初期値(ゼロ点)は、図示しないバイアス磁石によって定められている。   In the present embodiment, a half bridge circuit is configured by the two magnetoelectric conversion elements 20, and a full bridge circuit is configured by the two half bridge circuits. The magnetization directions of the fixed layers of the two magnetoelectric conversion elements 20 constituting the half-bridge circuit are antiparallel, and the resistance values of the two magnetoelectric conversion elements 20 change in opposite directions. That is, when the resistance value of one of the two magnetoelectric transducers 20 is reduced, the resistance value of the other is increased. The difference between the midpoint potentials of the two half bridge circuits constituting the full bridge circuit is output to a circuit board (not shown). Note that the initial value (zero point) of the magnetization direction of the free layer is determined by a bias magnet (not shown).

導体30は、被測定電流(交流電流)がy方向に流れるものである。導体30は、z方向とx方向とによって規定されるz−x平面において、自身の幾何学的中心GCから、表面までの距離が不均一な平面形状を成し、y方向に延びた形状を成している。本実施形態に係る導体30は、z−x平面での断面形状が矩形を成しており、一面31にて、センサ基板10の裏面と対向し、その反対側の裏面32にて、磁性体40の内底面と対向し、一面31と裏面32との間の側面33にて、磁性体40の内側面と対向している。   The conductor 30 has a current to be measured (alternating current) flowing in the y direction. The conductor 30 forms a planar shape in which the distance from its geometric center GC to the surface is nonuniform in the zx plane defined by the z direction and the x direction, and extends in the y direction. It is made. The conductor 30 according to the present embodiment has a rectangular cross-sectional shape in the zx plane, and is opposed to the back surface of the sensor substrate 10 on one surface 31 and on the back surface 32 on the opposite side. It faces the inner bottom surface of 40 and faces the inner surface of the magnetic body 40 at the side surface 33 between the one surface 31 and the back surface 32.

磁性体40は、透磁率の高い材料から成り、筒状を成し、磁気シールド機能を有する。磁性体40は、z−x平面の断面形状が凹形状を成す、上磁性体41、及び、下磁性体42を有し、内部空間を構成するように、磁性体41,42それぞれの端部が対向している。内部空間に、電流センサ機構100の構成要素10〜30が配置され、内部と外部とが磁気的に遮蔽されている。図1に示すように、上磁性体41の端部と下磁性体42との間には、磁性体40内の磁気飽和を抑制するための空隙43が形成されており、磁性体40内を流れる磁束は空隙43にて放出される。本実施形態では、2つの空隙43が磁性体40に形成されている。   The magnetic body 40 is made of a material having high magnetic permeability, has a cylindrical shape, and has a magnetic shield function. The magnetic body 40 includes an upper magnetic body 41 and a lower magnetic body 42 having a concave cross-sectional shape in the zx plane, and ends of each of the magnetic bodies 41 and 42 so as to constitute an internal space. Are facing each other. The components 10 to 30 of the current sensor mechanism 100 are arranged in the internal space, and the inside and the outside are magnetically shielded. As shown in FIG. 1, a gap 43 for suppressing magnetic saturation in the magnetic body 40 is formed between the end of the upper magnetic body 41 and the lower magnetic body 42. The flowing magnetic flux is released in the gap 43. In the present embodiment, two gaps 43 are formed in the magnetic body 40.

次に、本実施形態に係る電流センサ機構100の特徴点を説明する。図1に示すように、導体30の一面31は、センサ基板10の裏面とz方向にて対向する対向面31aと、該対向面31aと側面33との間に位置する連結面31bと、から成る。そして、連結面31bと幾何学的中心GCとの距離が、対向面31aと幾何学的中心GCとの距離よりも長くなっている。また、z方向における、導体30の裏面32と下磁性体42の内底面との間の距離が、x方向における、導体30の側面33と下磁性体42の内側面との間の距離よりも短くなっている。なお、本実施形態では、x方向における、対向面31a(一面31)の中心と下磁性体42の内側面との間の距離が、対向面31aと下磁性体42の内底面との間の距離よりも短くなっている。更に、z方向における、導体30の裏面32と下磁性体42の内底面との間の距離が、z方向における、導体30の厚さよりも短くなっている。   Next, features of the current sensor mechanism 100 according to the present embodiment will be described. As shown in FIG. 1, the one surface 31 of the conductor 30 includes an opposing surface 31 a that opposes the back surface of the sensor substrate 10 in the z direction, and a connecting surface 31 b that is positioned between the opposing surface 31 a and the side surface 33. Become. The distance between the connecting surface 31b and the geometric center GC is longer than the distance between the facing surface 31a and the geometric center GC. Further, the distance between the back surface 32 of the conductor 30 and the inner bottom surface of the lower magnetic body 42 in the z direction is larger than the distance between the side surface 33 of the conductor 30 and the inner side surface of the lower magnetic body 42 in the x direction. It is getting shorter. In the present embodiment, the distance between the center of the facing surface 31a (one surface 31) and the inner surface of the lower magnetic body 42 in the x direction is the distance between the facing surface 31a and the inner bottom surface of the lower magnetic body 42. It is shorter than the distance. Furthermore, the distance between the back surface 32 of the conductor 30 and the inner bottom surface of the lower magnetic body 42 in the z direction is shorter than the thickness of the conductor 30 in the z direction.

次に、本実施形態に係る電流センサ機構100の作用効果を説明する。上記したように、導体30の裏面32と側面33とが、磁性体40の内面と対向し、z方向における、導体30の裏面32と下磁性体42の内底面との間の距離が、x方向における、導体30の側面33と下磁性体42の内側面との間の距離よりも短くなっている。これによれば、磁性体40に生じる渦電流のために、対向面31aの電流密度が、裏面32や側面33と比べて高くなる。   Next, the effect of the current sensor mechanism 100 according to the present embodiment will be described. As described above, the back surface 32 and the side surface 33 of the conductor 30 face the inner surface of the magnetic body 40, and the distance between the back surface 32 of the conductor 30 and the inner bottom surface of the lower magnetic body 42 in the z direction is x In the direction, the distance is shorter than the distance between the side surface 33 of the conductor 30 and the inner side surface of the lower magnetic body 42. According to this, due to the eddy current generated in the magnetic body 40, the current density of the facing surface 31 a is higher than that of the back surface 32 and the side surface 33.

また、本実施形態では、連結面31bと幾何学的中心GCとの距離が、対向面31aと幾何学的中心GCとの距離よりも長くなっている。これによれば、表皮効果のために、連結面31bの電流密度が、対向面31aの電流密度よりも高くなる。   In the present embodiment, the distance between the coupling surface 31b and the geometric center GC is longer than the distance between the facing surface 31a and the geometric center GC. According to this, due to the skin effect, the current density of the connecting surface 31b is higher than the current density of the facing surface 31a.

以上、示したように、渦電流のために対向面31aの電流密度が高くなり、表皮効果のために連結面31bの電流密度が高くなる。この結果、図1にてドットハッチングで示すように、磁電変換素子20に印加される磁界を主として生じる、一面31の電流密度が高まり、電流密度分布が均一化される。これにより、電流の検出精度の低下が抑制される。   As described above, the current density of the facing surface 31a is increased due to the eddy current, and the current density of the coupling surface 31b is increased due to the skin effect. As a result, as indicated by dot hatching in FIG. 1, the current density of the surface 31 that mainly generates the magnetic field applied to the magnetoelectric transducer 20 is increased, and the current density distribution is made uniform. Thereby, the fall of the detection accuracy of an electric current is suppressed.

2つの磁電変換素子20によって、ハーフブリッジ回路が構成され、2つのハーフブリッジ回路によって、フルブリッジ回路が構成されている。そして、フルブリッジ回路を構成する、2つのハーフブリッジ回路の中点電位の差分が、図示しない回路基板に出力される。これによれば、1つのハーフブリッジ回路の中点電位に基づいて電流を検出する構成と比べて、電流の検出精度が向上される。   The two magnetoelectric conversion elements 20 constitute a half bridge circuit, and the two half bridge circuits constitute a full bridge circuit. Then, the difference between the midpoint potentials of the two half bridge circuits constituting the full bridge circuit is output to a circuit board (not shown). According to this, compared with the structure which detects an electric current based on the midpoint potential of one half bridge circuit, the electric current detection accuracy is improved.

(第2実施形態)
次に、本発明の第2実施形態を、図2に基づいて説明する。第2実施形態に係る電流センサ機構100は、第1実施形態によるものと共通するところが多いので、以下、共通部分については詳しい説明を省略し、異なる部分を重点的に説明する。なお、第1実施形態で示した要素と同一の要素には、同一の符号を付与している。
(Second Embodiment)
Next, a second embodiment of the present invention will be described based on FIG. Since the current sensor mechanism 100 according to the second embodiment is often in common with that according to the first embodiment, hereinafter, detailed description of the common parts will be omitted, and different parts will be mainly described. In addition, the same code | symbol is provided to the element same as the element shown in 1st Embodiment.

第1実施形態では、z−x平面における導体30の断面形状が矩形である例を示した。これに対し、本実施形態では、z−x平面における導体30の断面形状が、x方向における、対向面31aの長さが、裏面32の長さよりも短い形状となっている点を特徴とする。より具体的に言えば、z−x平面における導体30の断面形状が、台形形状を成している点を特徴とする。   In 1st Embodiment, the cross-sectional shape of the conductor 30 in zx plane showed the example which is a rectangle. On the other hand, in this embodiment, the cross-sectional shape of the conductor 30 in the zx plane is characterized in that the length of the facing surface 31a in the x direction is shorter than the length of the back surface 32. . More specifically, it is characterized in that the cross-sectional shape of the conductor 30 in the zx plane has a trapezoidal shape.

これによれば、交流電流の周波数に応じて、対向面31a(一面31)、及び、裏面32それぞれの長さを調整することで、一面31の電流密度分布を調整することができる。また、一面31の電流密度が高まるので、電流の検出精度の低下が抑制される。   According to this, the current density distribution of the one surface 31 can be adjusted by adjusting the lengths of the opposing surface 31a (one surface 31) and the back surface 32 in accordance with the frequency of the alternating current. Moreover, since the current density of the surface 31 is increased, a decrease in current detection accuracy is suppressed.

なお、本実施形態に係る電流センサ機構100と同一の作用効果を奏する構成としては、上記例に限定されない。例えば、図3に示すように、z−x平面における、導体30の断面形状が、センサ基板10側に凸となる凸形状を成した構成を採用することができる。   In addition, as a structure which shows the same effect as the current sensor mechanism 100 which concerns on this embodiment, it is not limited to the said example. For example, as shown in FIG. 3, it is possible to adopt a configuration in which the cross-sectional shape of the conductor 30 in the zx plane has a convex shape that is convex toward the sensor substrate 10 side.

以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

各実施形態では、下磁性体42の内底面が、x方向に一様に沿う例を示した。しかしながら、例えば図4に示すように、下磁性体42における、導体30の裏面32との対向部位に、導体30側に局所的に突起した突起部44が形成され、下磁性体42の内底面が、z方向にて段差的に別れた構成を採用することもできる。又は、図5に示すように、下磁性体42における、導体30の裏面32との対向部位と、導体30の側面33との対向部位との間に、両者を連結する、z方向に対して傾斜した傾斜面を有する傾斜部45が形成され、下磁性体42の内底面が、短くなった構成を採用することができる。更に言えば、図6に示すように、傾斜部45が曲線形状を有する構成も採用することができる。これらによれば、交流電流の周波数に応じて、突起部44のz方向の長さや、傾斜部45の傾斜及び曲率を調整することで、一面31の電流密度分布を調整することができる。   In each embodiment, the example in which the inner bottom surface of the lower magnetic body 42 is uniformly along the x direction is shown. However, as shown in FIG. 4, for example, a protrusion 44 that locally protrudes toward the conductor 30 is formed at a portion of the lower magnetic body 42 that faces the back surface 32 of the conductor 30, and the inner bottom surface of the lower magnetic body 42. However, it is also possible to adopt a configuration that is stepwise separated in the z direction. Alternatively, as shown in FIG. 5, the lower magnetic body 42 is connected to a portion facing the back surface 32 of the conductor 30 and a portion facing the side surface 33 of the conductor 30. A configuration in which the inclined portion 45 having the inclined surface is formed and the inner bottom surface of the lower magnetic body 42 is shortened can be adopted. Furthermore, as shown in FIG. 6, a configuration in which the inclined portion 45 has a curved shape can also be adopted. According to these, the current density distribution of the one surface 31 can be adjusted by adjusting the length in the z direction of the protrusion 44 and the inclination and curvature of the inclined portion 45 according to the frequency of the alternating current.

本実施形態では、中間層が絶縁性を有し、磁電変換素子20はトンネル磁気抵抗効果素子である例を示した。しかしながら、中間層が導電性を有し、磁電変換素子20は巨大磁気抵抗効果素子(GMR)でも良い。また、磁電変換素子20としては、AMRやホール素子を採用することもできる。   In the present embodiment, an example in which the intermediate layer has an insulating property and the magnetoelectric conversion element 20 is a tunnel magnetoresistive effect element is shown. However, the intermediate layer has conductivity, and the magnetoelectric transducer 20 may be a giant magnetoresistive element (GMR). In addition, as the magnetoelectric conversion element 20, an AMR or a Hall element can be adopted.

本実施形態では、磁電変換素子20によって、フルブリッジ回路が構成された例を示した。しかしながら、磁電変換素子20によって、ハーフブリッジ回路が構成された構成を採用することもできる。   In this embodiment, the example in which the full bridge circuit was comprised by the magnetoelectric conversion element 20 was shown. However, a configuration in which a half-bridge circuit is configured by the magnetoelectric conversion element 20 may be employed.

本実施形態では、2つの空隙43が磁性体40に形成された例を示した。しかしながら、1つ、若しくは、3つ以上の空隙43が磁性体40に形成された構成を採用することもできる。   In the present embodiment, an example in which two voids 43 are formed in the magnetic body 40 has been shown. However, a configuration in which one or three or more gaps 43 are formed in the magnetic body 40 may be employed.

10・・・センサ基板
20・・・磁電変換素子
30・・・導体
40・・・磁性体
41・・・上磁性体
42・・・下磁性体
100・・・電流センサ機構
DESCRIPTION OF SYMBOLS 10 ... Sensor substrate 20 ... Magnetoelectric conversion element 30 ... Conductor 40 ... Magnetic body 41 ... Upper magnetic body 42 ... Lower magnetic body 100 ... Current sensor mechanism

Claims (11)

センサ基板(10)と、
該センサ基板(10)に形成された、印加磁界を電気信号に変換する磁電変換素子(20)と、
被測定対象である交流電流の流れる導体(30)と、
前記センサ基板(10)への外部磁界の印加を抑制する磁性体(40)と、を有し、
前記交流電流から生じる磁界による前記磁電変換素子(20)の電気信号の変動に基づいて、前記交流電流を測定する電流センサ機構であって、
前記交流電流の流れ方向と直交する高さ方向にて、前記センサ基板(10)、前記導体(30)、及び、前記磁性体(40)の一部が並び、
前記導体(30)における、前記センサ基板(10)と一部が対向する一面(31)の裏面(32)、及び、前記裏面(32)と前記一面(31)との間の側面(33)それぞれが、前記磁性体(40)の内面と対向し、
前記高さ方向における、前記導体(30)の裏面(32)と前記磁性体(40)の内面との間の距離が、前記横方向における、前記導体(30)の側面(33)と前記磁性体(40)の内面との間の距離よりも短くなっており、
前記高さ方向、及び、前記流れ方向と前記高さ方向とに直交する横方向によって規定される規定平面において、前記導体(30)は、自身の幾何学的中心(GC)から、表面までの距離が不均一な平面形状を成し、
前記導体(30)の一面(31)は、前記センサ基板(10)との対向面(31a)と、該対向面(31a)と前記側面(33)との間に位置する連結面(31b)と、から成り、
前記連結面(31b)と前記幾何学的中心(GC)との距離は、前記対向面(31a)と前記幾何学的中心(GC)との距離よりも長いことを特徴とする電流センサ機構。
A sensor substrate (10);
A magnetoelectric transducer (20) formed on the sensor substrate (10) for converting an applied magnetic field into an electrical signal;
A conductor (30) through which an alternating current is to be measured;
A magnetic body (40) for suppressing application of an external magnetic field to the sensor substrate (10),
A current sensor mechanism for measuring the alternating current based on a change in an electric signal of the magnetoelectric transducer (20) due to a magnetic field generated from the alternating current,
A part of the sensor substrate (10), the conductor (30), and the magnetic body (40) are arranged in a height direction orthogonal to the flow direction of the alternating current,
In the conductor (30), the back surface (32) of one surface (31) partially facing the sensor substrate (10), and the side surface (33) between the back surface (32) and the one surface (31). Each facing the inner surface of the magnetic body (40),
The distance between the back surface (32) of the conductor (30) and the inner surface of the magnetic body (40) in the height direction is such that the side surface (33) of the conductor (30) and the magnetic material in the lateral direction. Shorter than the distance between the inner surface of the body (40),
In the defined plane defined by the height direction and the transverse direction perpendicular to the flow direction and the height direction, the conductor (30) is from its geometric center (GC) to the surface. A flat surface with a non-uniform distance
One surface (31) of the conductor (30) is a surface (31a) facing the sensor substrate (10) and a connecting surface (31b) positioned between the surface (31a) and the side surface (33). And consists of
A current sensor mechanism, wherein a distance between the connection surface (31b) and the geometric center (GC) is longer than a distance between the opposing surface (31a) and the geometric center (GC).
前記横方向における、前記対向面(31a)の長さは、前記裏面(32)の長さよりも短いことを特徴とする請求項1に記載の電流センサ機構。   The current sensor mechanism according to claim 1, wherein a length of the facing surface (31a) in the lateral direction is shorter than a length of the back surface (32). 前記規定平面における、前記導体(30)の断面形状が、台形を成していることを特徴とする請求項2に記載の電流センサ機構。   The current sensor mechanism according to claim 2, wherein a cross-sectional shape of the conductor (30) in the defined plane is a trapezoid. 前記規定平面における、前記導体(30)の断面形状が、前記センサ基板(10)側に凸となる凸形状を成していることを特徴とする請求項2に記載の電流センサ機構。   3. The current sensor mechanism according to claim 2, wherein a cross-sectional shape of the conductor (30) in the defined plane is a convex shape that is convex toward the sensor substrate (10). 前記磁性体(40)における、前記導体(30)の裏面(32)との対向部位には、前記導体(30)側に局所的に突起した突起部(44)が形成されていることを特徴とする請求項1〜4いずれか1項に記載の電流センサ機構。   In the magnetic body (40), a protruding portion (44) that locally protrudes toward the conductor (30) is formed at a portion facing the back surface (32) of the conductor (30). The current sensor mechanism according to any one of claims 1 to 4. 前記磁性体(40)における、前記導体(30)の裏面(32)との対向部位と、前記導体(30)の側面(33)との対向部位との間には、両者を連結する、前記高さ方向に対して傾斜した傾斜面を有する傾斜部(45)が形成されていることを特徴とする請求項1〜5いずれか1項に記載の電流センサ機構。   In the magnetic body (40), between the portion facing the back surface (32) of the conductor (30) and the portion facing the side surface (33) of the conductor (30), both are connected, The current sensor mechanism according to any one of claims 1 to 5, wherein an inclined portion (45) having an inclined surface inclined with respect to the height direction is formed. 前記磁電変換素子(20)は、磁化方向が固定されたピン層と、印加磁界に応じて磁化方向が変化する自由層と、該自由層と前記ピン層との間に設けられた非磁性の中間層と、を有する磁気抵抗効果素子であり、
前記磁性体(40)内に、前記自由層にバイアス磁界を印加するバイアス磁石が設けられていることを特徴とする請求項1〜6いずれか1項に記載の電流センサ機構。
The magnetoelectric conversion element (20) includes a pinned layer whose magnetization direction is fixed, a free layer whose magnetization direction changes according to an applied magnetic field, and a nonmagnetic layer provided between the free layer and the pinned layer. And a magnetoresistive effect element having an intermediate layer,
The current sensor mechanism according to any one of claims 1 to 6, wherein a bias magnet for applying a bias magnetic field to the free layer is provided in the magnetic body (40).
複数の前記磁電変換素子(20)を有し、
2つの前記磁電変換素子(20)によって、ハーフブリッジ回路が構成されていることを特徴とする請求項7に記載の電流センサ機構。
A plurality of the magnetoelectric transducers (20),
The current sensor mechanism according to claim 7, wherein a half bridge circuit is configured by the two magnetoelectric conversion elements (20).
2つの前記ハーフブリッジ回路によって、フルブリッジ回路が構成されていることを特徴とする請求項8に記載の電流センサ機構。   The current sensor mechanism according to claim 8, wherein a full bridge circuit is configured by the two half bridge circuits. 前記磁性体(40)は、磁気シールド機能を有することを特徴とする請求項1〜9いずれか1項に記載の電流センサ機構。   The current sensor mechanism according to claim 1, wherein the magnetic body has a magnetic shield function. 前記高さ方向における、前記導体(30)の裏面(32)と前記磁性体(40)の内面との間の距離が、前記高さ方向における、前記導体(30)の厚さよりも短いことを特徴とする請求項1〜10いずれか1項に記載の電流センサ機構。   The distance between the back surface (32) of the conductor (30) and the inner surface of the magnetic body (40) in the height direction is shorter than the thickness of the conductor (30) in the height direction. The current sensor mechanism according to any one of claims 1 to 10, characterized in that
JP2012005388A 2012-01-13 2012-01-13 Current sensor mechanism Pending JP2013145165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012005388A JP2013145165A (en) 2012-01-13 2012-01-13 Current sensor mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012005388A JP2013145165A (en) 2012-01-13 2012-01-13 Current sensor mechanism

Publications (1)

Publication Number Publication Date
JP2013145165A true JP2013145165A (en) 2013-07-25

Family

ID=49041024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012005388A Pending JP2013145165A (en) 2012-01-13 2012-01-13 Current sensor mechanism

Country Status (1)

Country Link
JP (1) JP2013145165A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049184A (en) * 2013-09-03 2015-03-16 Tdk株式会社 Inverter device
WO2015174247A1 (en) * 2014-05-14 2015-11-19 株式会社村田製作所 Electric current sensor
WO2016076114A1 (en) * 2014-11-14 2016-05-19 株式会社村田製作所 Current sensor
JP2018081024A (en) * 2016-11-17 2018-05-24 アルプス電気株式会社 Current sensor
US11255884B2 (en) 2018-03-20 2022-02-22 Denso Corporation Current sensor
US11397196B2 (en) 2018-03-20 2022-07-26 Denso Corporation Current sensor
US11422165B2 (en) 2018-03-20 2022-08-23 Denso Corporation Current sensor
US11656249B2 (en) 2018-03-20 2023-05-23 Denso Corporation Current sensor with shielding for noise suppression

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150654A (en) * 2007-12-18 2009-07-09 Yazaki Corp Current sensor
JP2010002277A (en) * 2008-06-19 2010-01-07 Tdk Corp Current sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150654A (en) * 2007-12-18 2009-07-09 Yazaki Corp Current sensor
JP2010002277A (en) * 2008-06-19 2010-01-07 Tdk Corp Current sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049184A (en) * 2013-09-03 2015-03-16 Tdk株式会社 Inverter device
WO2015174247A1 (en) * 2014-05-14 2015-11-19 株式会社村田製作所 Electric current sensor
WO2016076114A1 (en) * 2014-11-14 2016-05-19 株式会社村田製作所 Current sensor
JPWO2016076114A1 (en) * 2014-11-14 2017-04-27 株式会社村田製作所 Current sensor
JP2018081024A (en) * 2016-11-17 2018-05-24 アルプス電気株式会社 Current sensor
US11255884B2 (en) 2018-03-20 2022-02-22 Denso Corporation Current sensor
US11397196B2 (en) 2018-03-20 2022-07-26 Denso Corporation Current sensor
US11422165B2 (en) 2018-03-20 2022-08-23 Denso Corporation Current sensor
US11656249B2 (en) 2018-03-20 2023-05-23 Denso Corporation Current sensor with shielding for noise suppression
US11953526B2 (en) 2018-03-20 2024-04-09 Denso Corporation Current sensor

Similar Documents

Publication Publication Date Title
JP5482736B2 (en) Current sensor
JP2013145165A (en) Current sensor mechanism
US9086444B2 (en) Magnetic field detection device and current sensor
JP5967423B2 (en) A device for measuring the current flowing through a wire
JP2013117447A (en) Current sensor
JP6597370B2 (en) Magnetic sensor
JP2015194472A (en) current detection system
JP5899012B2 (en) Magnetic sensor
JPWO2011043193A1 (en) Magnetic balanced current sensor
JP6658676B2 (en) Current sensor
JP6897063B2 (en) Current sensor
JP2013053903A (en) Current sensor
JP5234459B2 (en) Current sensor
JP6503802B2 (en) Magnetic sensor
JP2016148620A (en) Current sensor
JP2015179042A (en) current sensor
JP6228663B2 (en) Current detector
JP2018128390A (en) Magnetic sensor and manufacturing method thereof
JP5505817B2 (en) Magnetic balanced current sensor
JP2019174140A (en) Magnetic sensor
JP2009271044A (en) Current sensor
WO2023087740A1 (en) Magnetic sensor and electronic device
JP5678285B2 (en) Current sensor
JP5458319B2 (en) Current sensor
JP5556603B2 (en) Magnetic isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124