JPH07297464A - Differential magnetoresistive effect element - Google Patents

Differential magnetoresistive effect element

Info

Publication number
JPH07297464A
JPH07297464A JP6091943A JP9194394A JPH07297464A JP H07297464 A JPH07297464 A JP H07297464A JP 6091943 A JP6091943 A JP 6091943A JP 9194394 A JP9194394 A JP 9194394A JP H07297464 A JPH07297464 A JP H07297464A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive effect
magnetic field
films
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6091943A
Other languages
Japanese (ja)
Inventor
Masaaki Kaneshige
昌明 金栄
Takuji Nakagawa
卓二 中川
Keizo Inoue
敬三 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6091943A priority Critical patent/JPH07297464A/en
Publication of JPH07297464A publication Critical patent/JPH07297464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To eliminate the characteristic variation of a magnetoresistive effect element caused by the variation of the magnetized direction of a hard film by impressing magnetic fields leaking out from a single hard film upon a pair of magnetoresistive effect films as opposite bias magnetic fields by using a high permeability magnetic film which is magnetically coupled with the hard film. CONSTITUTION:Bias magnetic field guiding films 6a, 6b, and 6c are formed of high permeability magnetic materials and magnetic fields leaking out from a hard film 2 are impressed upon a magnetoresistive effect film 1a by means of the film 6a. The film 6b impresses a bias magnetic field upon a magnetoresistive effect film 1b by changing the direction of the magnetic field and the film 6c acts to return the magnetic field to the hard film 2. Since such a magnetic circuit is formed, bias magnetic fields which are opposite to each other in direction and have the same magnitude are impressed upon the films 1a and 1b from a direction perphendicular to the elongated direction of the magnetic fields.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】バイアス磁界を印加する差動型磁
気抵抗効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential magnetoresistive effect element for applying a bias magnetic field.

【0002】[0002]

【従来の技術】従来から磁気抵抗効果素子は低磁場を高
感度で検出する手段として広く用いられている。この磁
気抵抗効果素子は、出力電圧を増幅するとともにその出
力電圧の温度依存性を改善するために信号磁界に対して
互いに逆相の抵抗変化をさせ差動増幅した出力が得られ
る二素子三端子型構造を採用する事が公知である。そし
てこのような磁気抵抗効果素子は永久磁石によりバイア
ス磁界が印加されることがある。
2. Description of the Related Art Conventionally, a magnetoresistive effect element has been widely used as a means for detecting a low magnetic field with high sensitivity. This magnetoresistive effect element is a two-element three-terminal device that obtains differentially amplified output by amplifying the output voltage and improving the temperature dependence of the output voltage by making resistance changes in opposite phases to the signal magnetic field. It is known to employ a mold structure. A bias magnetic field may be applied to such a magnetoresistive element by a permanent magnet.

【0003】例えば特開昭61−92414号公報に記
載の磁気抵抗効果素子は図7に示すように磁気抵抗効果
膜1a、1bに隣接し互いにその着磁方向が逆方向であ
るバイアス磁界を印加するための磁石11、11、磁気
抵抗効果膜の抵抗変化を取り出すための接続電極3、3
と引出電極4とが絶縁基板5の上に形成された、磁気抵
抗効果素子パタ−ン6からなる。
For example, as shown in FIG. 7, the magnetoresistive effect element disclosed in Japanese Patent Laid-Open No. 61-92414 applies a bias magnetic field which is adjacent to the magnetoresistive effect films 1a and 1b and whose magnetization directions are opposite to each other. Magnets 11 and 11 for connection, connection electrodes 3 and 3 for extracting resistance change of the magnetoresistive film
And the extraction electrode 4 are formed of a magnetoresistive effect element pattern 6 formed on the insulating substrate 5.

【0004】上記のように構成される磁気抵抗効果素子
にあっては、第一の磁気抵抗効果膜1aおよび第二の磁
気抵抗効果膜1bに対して、それぞれ逆の状態の磁界が
印加されるため、この様な第一および第二の磁気抵抗効
果膜に対して、共通の信号磁界が作用すると、その各磁
気抵抗効果膜において、逆の位相状態で抵抗値が変化す
る。したがって上記第一および第二の磁気抵抗効果膜の
接続点にあっては、上記磁気抵抗効果膜それぞれの抵抗
変化が加算された状態で検出されるようになり、十分に
大きな出力信号が検出される。同時に、温度変化が存在
するような場合であっても、この温度変化に伴う出力変
動は相殺されるので、温度変化に対して安定した信号検
出特性が設定される。
In the magnetoresistive effect element configured as described above, magnetic fields in opposite states are applied to the first magnetoresistive effect film 1a and the second magnetoresistive effect film 1b. Therefore, when a common signal magnetic field acts on such first and second magnetoresistive films, the resistance value changes in the opposite phase state in each of the magnetoresistive films. Therefore, at the connection point of the first and second magnetoresistive effect films, the resistance changes of the magnetoresistive effect films are detected in a summed state, and a sufficiently large output signal is detected. It At the same time, even if there is a temperature change, output fluctuations due to this temperature change are canceled out, so that a stable signal detection characteristic with respect to temperature change is set.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の構
造の磁気抵抗効果素子では各々の磁気抵抗効果膜に対し
てそれぞれ独立した磁石でバイアス磁界を印加している
ため、磁石の形状や着磁方向にばらつきが生じると、そ
のバイアス点が変動する。このバイアス点の変動が磁気
抵抗効果素子間の特性ばらつきの原因となっていた。
However, in the magnetoresistive effect element having the conventional structure, since the bias magnetic field is applied to each magnetoresistive effect film by an independent magnet, the magnet shape and the magnetizing direction are different. When the variation occurs, the bias point changes. This fluctuation of the bias point has been a cause of characteristic variations among the magnetoresistive effect elements.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1にかか
る差動型磁気抵抗効果素子は、絶縁基板に構成された一
対の磁気抵抗効果膜と、前記一対の磁気抵抗効果膜にバ
イアス磁界を印加するためのハ−ド膜と、前記一対の磁
気抵抗効果膜およびハ−ド膜に磁気的連続性を持って配
置されたバイアス磁界誘導膜と、前記一対の磁気抵抗効
果膜の一端同士を接続する引出部と、前記一対の磁気抵
抗効果膜の他端に接続する接続電極とをそなえたことを
特徴とする。
A differential magnetoresistive effect element according to claim 1 of the present invention comprises a pair of magnetoresistive effect films formed on an insulating substrate, and a bias magnetic field applied to the pair of magnetoresistive effect films. For applying a magnetic field, a pair of magnetoresistive films and a bias magnetic field guiding film disposed with magnetic continuity on the hard films, and one end of the pair of magnetoresistive films. And a connection electrode connected to the other ends of the pair of magnetoresistive effect films.

【0007】[0007]

【作用】単一のハ−ド膜から漏洩する磁界を、ハ−ド膜
に磁気的に結合している高透磁率磁性膜を用いて、一対
の磁気抵抗効果膜に互いに方向が逆のバイアス磁界を印
加するような構造とした。
The magnetic field leaking from a single hard film is biased to a pair of magnetoresistive films by using a high permeability magnetic film magnetically coupled to the hard film. The structure was such that a magnetic field was applied.

【0008】[0008]

【実施例】【Example】

(実施例1)本発明にかかる一実施例差動型磁気抵抗効
果素子10の構造を図1、2、3を用いて説明する。な
お従来例と同じ部分については同一の符号を付ける。図
1は差動型磁気抵抗効果素子の外観斜視図、図2は差動
型磁気抵抗効果素子を構成する磁気抵抗効果素子パタ−
ン9の平面図で磁気抵抗効果膜1a、1b、ハ−ド膜
2、接続電極3、3、引出電極4、バイアス磁界誘導膜
6a、6b、6c、引出部7とが絶縁基板5に形成され
た構造となっている。磁気抵抗効果膜1a、1bは引出
部7の一端を介して接続されており、引出部7の他端は
ハ−ド膜2に接続されている。ハ−ド膜2の反対側には
引出電極4が接続されている。図3に示すようにハ−ド
膜2は矢印方向に着磁されている。ハ−ド膜2から漏洩
する磁力線はバイアス磁界誘導膜6aにより磁気抵抗効
果膜1aに効率良く誘導される。バイアス磁界誘導膜6
bはその中央部分に狭幅部が設けられた構造を有してお
り、磁気抵抗効果膜1a、1bを挟んでハ−ド膜2と反
対側に位置している。前記バイアス磁界誘導膜6bはバ
イアス磁界の方向を変え、磁気抵抗効果膜1bに逆方向
にバイアス磁界を印加するように働く。さらに磁気抵抗
効果膜1bに印加されたバイアス磁界は磁気誘導膜6c
を介してハ−ド膜2にもどる。以上のような磁気回路が
形成されているため、一対の磁気抵抗効果膜1a、1b
には互いに方向が逆で大きさが等しいバイアス磁界がそ
の伸張方向に対して垂直に印加されている。
(Embodiment 1) The structure of a differential magnetoresistive effect element 10 according to an embodiment of the present invention will be described with reference to FIGS. The same parts as those in the conventional example are designated by the same reference numerals. FIG. 1 is an external perspective view of the differential magnetoresistive effect element, and FIG. 2 is a magnetoresistive effect element pattern forming the differential magnetoresistive effect element.
The magnetoresistive film 1a, 1b, the hard film 2, the connection electrodes 3, 3, the extraction electrode 4, the bias magnetic field induction films 6a, 6b, 6c, and the extraction portion 7 are formed on the insulating substrate 5 in the plan view of FIG. It has a structured structure. The magnetoresistive films 1 a and 1 b are connected to each other through one end of the lead-out portion 7, and the other end of the lead-out portion 7 is connected to the hard film 2. The extraction electrode 4 is connected to the opposite side of the hard film 2. As shown in FIG. 3, the hard film 2 is magnetized in the arrow direction. The magnetic field lines leaking from the hard film 2 are efficiently guided to the magnetoresistive film 1a by the bias magnetic field guiding film 6a. Bias magnetic field induction film 6
b has a structure in which a narrow portion is provided in the central portion thereof, and is located on the opposite side of the hard film 2 with the magnetoresistive effect films 1a and 1b sandwiched therebetween. The bias magnetic field inducing film 6b functions to change the direction of the bias magnetic field and apply the bias magnetic field to the magnetoresistive effect film 1b in the opposite direction. Further, the bias magnetic field applied to the magnetoresistive effect film 1b is applied to the magnetic induction film 6c.
Return to the hard film 2 via. Since the magnetic circuit as described above is formed, the pair of magnetoresistive effect films 1a and 1b are formed.
A bias magnetic field whose directions are opposite to each other and whose magnitudes are equal to each other is applied perpendicularly to the extension direction.

【0009】本発明の差動型磁気抵抗効果素子10はつ
ぎのような製法により作られる。
The differential magnetoresistive effect element 10 of the present invention is manufactured by the following manufacturing method.

【0010】まずガラスなどの絶縁基板5に真空蒸着法
により膜厚30nmのNi−Fe合金薄膜が成膜され、フ
ォトリソグラフィ−により磁気抵抗効果膜1a、1bと
バイアス磁界誘導膜6a、6b、6cとにパタ−ン形成
される。続いて、磁気抵抗効果膜1a、1bとバイアス
磁界誘導膜6a、6b、6cの上にリフトオフ法により
接着層として働くTi層が形成され、続いてハ−ド材料
であるCo−Ni層が形成される事により二層構造をも
つハ−ド膜2が形成される。さらにAuとTiからなる
二層構造を持つ接続電極3、3、引出電極4および引出
部7がリフトオフ法により形成される。次に前記磁気抵
抗効果素子パタ−ン9を保護するためにSi−Nからな
る保護膜8が接続電極3、3と引出電極4の一部を残し
てほぼ全面に形成される。そしてハ−ド膜2が磁気抵抗
効果膜1a、1bの伸張方向に磁化される。この磁化に
より磁気抵抗効果膜1a、1bに垂直で互いにその方向
が逆のバイアス磁界が印加される。
First, a Ni-Fe alloy thin film having a film thickness of 30 nm is formed on an insulating substrate 5 such as glass by a vacuum evaporation method, and the magnetoresistive effect films 1a and 1b and bias magnetic field induction films 6a, 6b and 6c are formed by photolithography. The pattern is formed in and. Subsequently, a Ti layer serving as an adhesive layer is formed by a lift-off method on the magnetoresistive effect films 1a and 1b and the bias magnetic field induction films 6a, 6b and 6c, and subsequently a Co-Ni layer which is a hard material is formed. By doing so, the hard film 2 having a two-layer structure is formed. Further, the connection electrodes 3 and 3, the lead-out electrode 4 and the lead-out portion 7 having a two-layer structure made of Au and Ti are formed by the lift-off method. Next, a protective film 8 made of Si--N for protecting the magnetoresistive effect element pattern 9 is formed on almost the entire surface except a part of the connection electrodes 3 and 3 and the extraction electrode 4. Then, the hard film 2 is magnetized in the extending direction of the magnetoresistive effect films 1a and 1b. Due to this magnetization, a bias magnetic field perpendicular to the magnetoresistive films 1a and 1b and opposite to each other is applied.

【0011】前記差動型磁気抵抗効果素子10の動作特
性を図4、5を用いて説明する。図4は差動型磁気抵抗
効果素子10の特性変化を示す図で、磁気抵抗効果膜1
a、1bは互いに逆方向のバイアス磁界により動作点を
ずらせているので、左右対称の形状を示す。そしてこの
ような差動型磁気抵抗効果素子10は図5に示すように
入力電圧に対して大きな出力電圧を示す。
The operation characteristics of the differential magnetoresistive effect element 10 will be described with reference to FIGS. FIG. 4 is a diagram showing changes in the characteristics of the differential magnetoresistive effect element 10.
Since a and 1b have their operating points shifted by the bias magnetic fields in the opposite directions, they show symmetrical shapes. The differential magnetoresistive effect element 10 as described above exhibits a large output voltage with respect to the input voltage as shown in FIG.

【0012】(実施例2)次に本発明にかかる別の実施
例差動型磁気抵抗効果素子10の構造を図6に基づいて
説明する。図6は差動型磁気抵抗効果素子10を構成す
る磁気抵抗効果素子パタ−ン9の平面図で磁気抵抗効果
膜1a、1b、ハ−ド膜2、接続電極3、3、引出電極
4、バイアス磁界誘導膜6a、6b、6cとが絶縁基板
5に形成された構造となっている。磁気抵抗効果膜1
a、1bは後述する引出電極4により互いに接続されて
おり、両端には抵抗値の変化を取り出すための接続電極
3、3が接続されている。バイアス磁界誘導膜6a、6
b、6cは高透磁率を有する磁性材料で形成されてお
り、ハ−ド膜2から漏洩した磁束を効率良く磁気抵抗効
果膜1a、1bに印加するように磁気的結合状態を保っ
て磁気抵抗効果膜1a、1bに配置されている。バイア
ス磁界誘導膜6bはその中央部に狭幅部を有している。
磁気抵抗効果膜1a、1bは相互にそれぞれの端部が、
引出電極4を介して接続されている。引出電極4はたと
えばAuとTiからなる二層構造を有する非磁性体から
なり、バイアス磁界誘導膜6bとは絶縁層(図示せず)
により電気的に絶縁されている。前記磁気抵抗効果膜1
a、1bの他端部には、たとえばAuとTiで構成され
る二層構造を持つ接続電極3、3がリフトオフ法により
形成される。さらに前記磁気抵抗効果素子パタ−ン9を
保護するためにSi−Nでできた保護膜8が形成され
る。つぎにハ−ド膜2が磁気抵抗効果膜1a、1bの伸
張方向に磁化され、差動型磁気抵抗効果素子が形成され
る。 実施例1の場合と同様にハ−ド膜2から漏洩した
磁界はバイアス磁界誘導膜6aにより磁気抵抗効果膜1
aに印加される。そしてバイアス磁界誘導膜6bにより
バイアス磁界の方向が変えられ、磁気抵抗効果膜1bに
バイアス磁界が印加される。さらにバイアス磁界誘導膜
6cによりハ−ド膜2に戻るように働く。以上のような
磁気回路が形成されているため一対の磁気抵抗効果膜1
a、1bには互いに方向が逆で大きさが等しいバイアス
磁界がその伸張方向に対して垂直に印加されている。
(Embodiment 2) Next, the structure of a differential magnetoresistive effect element 10 according to another embodiment of the present invention will be described with reference to FIG. FIG. 6 is a plan view of a magnetoresistive effect element pattern 9 which constitutes the differential magnetoresistive effect element 10. The magnetoresistive effect films 1a and 1b, the hard film 2, the connection electrodes 3 and 3, the extraction electrode 4, The bias magnetic field induction films 6a, 6b and 6c are formed on the insulating substrate 5. Magnetoresistive film 1
The electrodes a and 1b are connected to each other by an extraction electrode 4 which will be described later, and the connection electrodes 3 and 3 for extracting a change in resistance value are connected to both ends. Bias magnetic field induction films 6a, 6
b and 6c are made of a magnetic material having a high magnetic permeability, and the magnetic resistance is maintained by maintaining the magnetic coupling state so that the magnetic flux leaked from the hard film 2 is efficiently applied to the magnetoresistive effect films 1a and 1b. It is arranged on the effect films 1a and 1b. The bias magnetic field inducing film 6b has a narrow portion in its central portion.
The magnetoresistive films 1a and 1b have their end portions mutually
It is connected via the extraction electrode 4. The extraction electrode 4 is made of, for example, a non-magnetic material having a two-layer structure made of Au and Ti, and is insulated from the bias magnetic field induction film 6b by an insulating layer (not shown).
It is electrically insulated by. The magnetoresistive film 1
At the other ends of a and 1b, connection electrodes 3 and 3 having a two-layer structure composed of Au and Ti, for example, are formed by a lift-off method. Further, a protective film 8 made of Si-N is formed to protect the magnetoresistive element pattern 9. Next, the hard film 2 is magnetized in the extending direction of the magnetoresistive effect films 1a and 1b to form a differential type magnetoresistive effect element. As in the case of the first embodiment, the magnetic field leaked from the hard film 2 is applied to the magnetoresistive film 1 by the bias magnetic field induction film 6a.
applied to a. The bias magnetic field inducing film 6b changes the direction of the bias magnetic field, and the bias magnetic field is applied to the magnetoresistive effect film 1b. Further, the bias magnetic field inducing film 6c works so as to return to the hard film 2. Since the magnetic circuit as described above is formed, the pair of magnetoresistive films 1
Bias magnetic fields whose directions are opposite to each other and have the same magnitude are applied to a and 1b perpendicularly to the extending direction.

【0013】本実施例においても実施例1の場合と同様
に、出力が大きくしかも外部の温度などの変化に影響を
受けにくい特性を持つ差動型磁気抵抗効果素子10が得
られる。
Also in this embodiment, as in the case of the first embodiment, the differential type magnetoresistive effect element 10 having a large output and being hardly influenced by a change in external temperature can be obtained.

【0014】[0014]

【発明の効果】本発明の差動型磁気抵抗効果素子は、引
出部の一端を介して接続される一対の磁気抵抗効果膜
に、閉磁路を形成するように構成されたハ−ド膜とバイ
アス磁界誘導膜により、互いにその値が等しく方向が逆
のバイアス磁界が印加されることを特徴とする。したが
って外部磁界の変化に対して磁気抵抗効果膜がそれぞれ
逆相の抵抗変化を示すため接続電極間に現れる電圧変化
は二倍になりその感度が向上する。それと同時に同一材
質、同一構造の二素子から形成された構造であるため、
温度などの外部環境の変化に対してその磁気抵抗特性が
互いに変動を相殺するように働く。さらに一対の磁気抵
抗効果膜に単一のハ−ド膜から漏洩するバイアス磁界を
印加するようにしたのでハ−ド膜の着磁方向のバラツキ
による磁気抵抗効果素子の特性バラツキがなくせる。
The differential magnetoresistive effect element of the present invention comprises a pair of magnetoresistive effect films connected through one end of a lead-out portion, and a hard film configured to form a closed magnetic path. The bias magnetic field inducing film applies a bias magnetic field having the same value and opposite direction to each other. Therefore, since the magnetoresistive films exhibit resistance changes in opposite phases with respect to changes in the external magnetic field, the voltage change appearing between the connection electrodes is doubled and the sensitivity is improved. At the same time, because it is a structure formed from two elements of the same material and the same structure,
With respect to changes in the external environment such as temperature, the magnetoresistive characteristics work so as to cancel the variations. Further, since the bias magnetic field leaking from the single hard film is applied to the pair of magnetoresistive films, the characteristic variation of the magnetoresistive element due to the variation in the magnetization direction of the hard films can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる一実施例差動型磁気抵抗効果素
子の外観斜視図である。
FIG. 1 is an external perspective view of a differential magnetoresistive effect element according to an embodiment of the present invention.

【図2】本発明にかかる一実施例差動型磁気抵抗効果素
子を構成する磁気抵抗効果素子パタ−ンの平面図であ
る。
FIG. 2 is a plan view of a magnetoresistive effect element pattern forming a differential magnetoresistive effect element according to an embodiment of the present invention.

【図3】本発明にかかる一実施例差動型磁気抵抗効果素
子の磁気抵抗効果膜に印加されるバイアス磁界を示す図
である。
FIG. 3 is a diagram showing a bias magnetic field applied to a magnetoresistive effect film of a differential magnetoresistive effect element according to an example of the present invention.

【図4】本発明にかかる一実施例差動型磁気抵抗効果素
子の特性を示す図である。
FIG. 4 is a diagram showing characteristics of a differential magnetoresistive effect element according to an example of the present invention.

【図5】本発明にかかる一実施例差動型磁気抵抗効果素
子の出力電圧を示す図である。
FIG. 5 is a diagram showing an output voltage of a differential magnetoresistive effect element according to an example of the present invention.

【図6】本発明にかかる別の実施例差動型磁気抵抗効果
素子を構成するパタ−ンの平面図である。
FIG. 6 is a plan view of a pattern which constitutes a differential magnetoresistive effect element according to another embodiment of the present invention.

【図7】従来の差動型磁気抵抗効果素子のパタ−ンを示
す図である。
FIG. 7 is a diagram showing a pattern of a conventional differential type magnetoresistive effect element.

【符号の説明】[Explanation of symbols]

1a、1b 磁気抵抗効果膜 2 ハ−ド膜 3 接続電極 4 引出電極 5 絶縁基板 6a、6b、6c バイアス磁界誘導膜 7 引出部 8 保護膜 9 磁気抵抗効果素子パタ−ン 10 磁気抵抗効果素子 11 磁石 1a, 1b Magnetoresistance effect film 2 Hard film 3 Connection electrode 4 Extraction electrode 5 Insulating substrate 6a, 6b, 6c Bias magnetic field induction film 7 Extraction part 8 Protective film 9 Magnetoresistive effect element pattern 10 Magnetoresistive effect element 11 magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板に構成された一対の磁気抵抗効果
膜と、前記一対の磁気抵抗効果膜にバイアス磁界を印加
するためのハ−ド膜と、前記一対の磁気抵抗効果膜およ
びハ−ド膜に磁気的連続性を持って配置されたバイアス
磁界誘導膜と、前記一対の磁気抵抗効果膜の一端同士を
接続する引出部と、前記一対の磁気抵抗効果膜の他端に
接続する接続電極とをそなえたことを特徴とする差動型
磁気抵抗効果素子。
1. A pair of magnetoresistive films formed on an insulating substrate, a hard film for applying a bias magnetic field to the pair of magnetoresistive films, the pair of magnetoresistive films and a hard film. Bias magnetic field induction film disposed with magnetic continuity on the magnetic film, a lead-out portion connecting one end of the pair of magnetoresistive effect films, and a connection connecting the other end of the pair of magnetoresistive effect films. A differential type magnetoresistive effect element having an electrode.
JP6091943A 1994-04-28 1994-04-28 Differential magnetoresistive effect element Pending JPH07297464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6091943A JPH07297464A (en) 1994-04-28 1994-04-28 Differential magnetoresistive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6091943A JPH07297464A (en) 1994-04-28 1994-04-28 Differential magnetoresistive effect element

Publications (1)

Publication Number Publication Date
JPH07297464A true JPH07297464A (en) 1995-11-10

Family

ID=14040681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6091943A Pending JPH07297464A (en) 1994-04-28 1994-04-28 Differential magnetoresistive effect element

Country Status (1)

Country Link
JP (1) JPH07297464A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157905B1 (en) 2004-02-27 2007-01-02 Murata Manufacturing Co., Ltd. Long magnetic sensor
WO2011074488A1 (en) * 2009-12-15 2011-06-23 アルプス電気株式会社 Magnetic sensor
JP2012122792A (en) * 2010-12-07 2012-06-28 Alps Electric Co Ltd Magnetic sensor
WO2012172946A1 (en) * 2011-06-13 2012-12-20 アルプス・グリーンデバイス株式会社 Electric current sensor
JP2013238434A (en) * 2012-05-11 2013-11-28 Osaka City Univ Power factor measurement device
CN109328307A (en) * 2016-07-06 2019-02-12 株式会社村田制作所 Magnetic Sensor and the current sensor for having the Magnetic Sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157905B1 (en) 2004-02-27 2007-01-02 Murata Manufacturing Co., Ltd. Long magnetic sensor
WO2011074488A1 (en) * 2009-12-15 2011-06-23 アルプス電気株式会社 Magnetic sensor
JP2012122792A (en) * 2010-12-07 2012-06-28 Alps Electric Co Ltd Magnetic sensor
WO2012172946A1 (en) * 2011-06-13 2012-12-20 アルプス・グリーンデバイス株式会社 Electric current sensor
JP2013238434A (en) * 2012-05-11 2013-11-28 Osaka City Univ Power factor measurement device
CN109328307A (en) * 2016-07-06 2019-02-12 株式会社村田制作所 Magnetic Sensor and the current sensor for having the Magnetic Sensor

Similar Documents

Publication Publication Date Title
US6069476A (en) Magnetic field sensor having a magnetoresistance bridge with a pair of magnetoresistive elements featuring a plateau effect in their resistance-magnetic field response
US5084794A (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
US4686472A (en) Magnetic sensor having closely spaced and electrically parallel magnetoresistive layers of different widths
JP3596600B2 (en) Magnetic sensor and method of manufacturing the same
KR20070087628A (en) Bridge type sensor with tunable characteristic
JPH08178937A (en) Magnetism detecting device
JPH06148301A (en) Magnetic sensor
JPH07297464A (en) Differential magnetoresistive effect element
JP3089828B2 (en) Ferromagnetic magnetoresistive element
JPH05281319A (en) Magnetic sensor
JPH0870149A (en) Magnetoresistance element
EP0738896A2 (en) Exchange coupled barber pole magnetoresistive sensor
JPH09231517A (en) Magnetic reluctance sensor
JPS5931771B2 (en) thin film magnetoresistive head
EP0113980B1 (en) Magnetic transducer heads utilising magnetoresistance effect
JPH0217476A (en) Differential type magnetoresistance effect element
JPH0266479A (en) Magnetoresistance effect element
US7227726B1 (en) Method and system for providing a dual-stripe magnetoresistive element having periodic structure stabilization
JP3182858B2 (en) Ferromagnetic magnetoresistive element
JPH08316548A (en) Magnetoresistive element
JPH09260742A (en) Magnetoresistance effect device
JPH0414735B2 (en)
JPH08297814A (en) Magneto-resistance effect element
JPH11298063A (en) Magnetoresistive effect element
KR100462792B1 (en) The fabrication method of magnetic sensor using exchange-biased spin valves