JPH08316548A - Magnetoresistive element - Google Patents

Magnetoresistive element

Info

Publication number
JPH08316548A
JPH08316548A JP7116948A JP11694895A JPH08316548A JP H08316548 A JPH08316548 A JP H08316548A JP 7116948 A JP7116948 A JP 7116948A JP 11694895 A JP11694895 A JP 11694895A JP H08316548 A JPH08316548 A JP H08316548A
Authority
JP
Japan
Prior art keywords
ferromagnetic thin
thin film
film
ferromagnetic
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7116948A
Other languages
Japanese (ja)
Other versions
JP3282444B2 (en
Inventor
Terunobu Miyazaki
照宣 宮崎
Masami Koshimura
正己 越村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11694895A priority Critical patent/JP3282444B2/en
Publication of JPH08316548A publication Critical patent/JPH08316548A/en
Application granted granted Critical
Publication of JP3282444B2 publication Critical patent/JP3282444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To enhance a magnetoresistive element in rate of resistance change at a room temperature by a method wherein a first and a second ferromagnetic thin film are both free from magnetic anisotropy through their surfaces, the first ferromagnetic thin film is larger than the second ferromagnetic thin film in coercive force, and both the thin films are possessed of a stepwise magnetization curve and an angular hysteresis curve respectively. CONSTITUTION: Electrodes 14 and 15 are provided to ferromagnetic thin films 11 and 12 ferromagnetic tunnel-coupled interposing a non-magnetic film 13 between them and formed on a board 16. When a current is made to flow between the electrodes 14 and 15, the ferromagnetic thin films 11 and 12 are changed in direction of magnetization, and a magnetoresistive effect is induced. The ferromagnetic thin films 11 and 12 are so structured as to be kept free from magnetic anisotropy through their surfaces. The first ferromagnetic thin film 11 is set larger than the second ferromagnetic thin film 12 in coercive force. Both the first ferromagnetic thin film 11 and the second ferromagnetic thin film 12 are possessed of a stepwise magnetization curve and an angular hysteresis curve respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気エンコーダ、磁気ヘ
ッド、磁気バブル検出器等の感磁部に適した磁気抵抗素
子に関する。更に詳しくは強磁性トンネル接合による磁
気抵抗効果を利用して磁気信号を検出する磁気抵抗素子
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element suitable for a magnetically sensitive portion such as a magnetic encoder, a magnetic head and a magnetic bubble detector. More specifically, the present invention relates to a magnetoresistive element that detects a magnetic signal by utilizing the magnetoresistive effect of a ferromagnetic tunnel junction.

【0002】[0002]

【従来の技術】図9に示すように、磁気抵抗素子として
実用的に用いられている素子の感磁部1は、単層の磁気
抵抗効果を有する強磁性薄膜を一定幅のストライプ状に
加工した後、その長手方向(y方向)の両端に電極2,
3を形成して作られる。これらの電極2,3に一定の電
流を流し、感磁部1の幅方向(x方向)に検出すべき磁
場を与えたときの電極2,3間の電圧に基づいて算出さ
れた抵抗値から磁場が検出される。図10に示すよう
に、従来の磁気抵抗素子は電流の流れる方向に直交する
磁場の大きさによって抵抗変化率(ΔR/R)が最大2
〜6%変化する特性を有する。上記磁気抵抗素子はこの
特性を利用してサーボモータなどの磁気式の回転センサ
であるFG(Frequency Generator)検出センサに用い
られる。この磁気抵抗素子を回転センサとして回転ドラ
ムの回転検出に用いた場合、図11〜図13に示すよう
に、回転軸4に永久磁石からなる回転ドラム5を取付
け、このドラム表面に多極着磁パターン5aを着磁ピッ
チMで設け、このドラム表面に近接して設けられる磁気
抵抗素子(磁気式回転センサ)6のセンサストライプ7
a,7b,7c,7d(抵抗値をそれぞれR1,R2,R
3,R4とする)はそれぞれ間隔P=M/2で配列され
る。8は基板、9は出力端子である。このように構成す
ると、ドラム5の回転に従ってセンサストライプ7a〜
7dの抵抗値R1〜R4が規則的に変化し、図14に示す
ように入力信号Aに対して出力端子9に交流信号Bが得
られる。
2. Description of the Related Art As shown in FIG. 9, a magnetically sensitive portion 1 of an element which is practically used as a magnetoresistive element is formed by processing a single-layered ferromagnetic thin film having a magnetoresistive effect into stripes having a constant width. After that, the electrodes 2 are provided on both ends in the longitudinal direction (y direction).
Made by forming 3. From the resistance value calculated based on the voltage between the electrodes 2 and 3 when a constant current is applied to these electrodes 2 and 3 and a magnetic field to be detected is applied in the width direction (x direction) of the magnetic sensing unit 1. The magnetic field is detected. As shown in FIG. 10, the conventional magnetoresistive element has a maximum resistance change rate (ΔR / R) of 2 depending on the magnitude of the magnetic field orthogonal to the direction of current flow.
It has the property of changing by ~ 6%. Utilizing this characteristic, the magnetoresistive element is used for an FG (Frequency Generator) detection sensor which is a magnetic rotation sensor such as a servomotor. When this magnetoresistive element is used as a rotation sensor to detect the rotation of the rotary drum, a rotary drum 5 made of a permanent magnet is attached to the rotary shaft 4 as shown in FIGS. The pattern 5a is provided at the magnetizing pitch M, and the sensor stripe 7 of the magnetoresistive element (magnetic rotation sensor) 6 is provided in the vicinity of the drum surface.
a, 7b, 7c, 7d (resistance values of R 1 , R 2 , R respectively
3 and R 4 ) are arranged at intervals P = M / 2. Reference numeral 8 is a substrate, and 9 is an output terminal. With this configuration, the sensor stripes 7a ...
The resistance values R 1 to R 4 of 7d change regularly, and the AC signal B is obtained at the output terminal 9 with respect to the input signal A as shown in FIG.

【0003】一方、2つの強磁性薄膜を薄い絶縁層を挟
んで接合した素子において、強磁性薄膜間に一定のトン
ネル電流を流し、この状態で強磁性薄膜の膜面に平行に
異なる磁場を与えたときの抵抗の変化により、この素子
に新しい磁気抵抗効果があることが報告されている(S.
Maekawa and U.Gafvert, IEEE Trans. Magn. MAG-18(19
82) 707)。本発明者らは、上記2つの強磁性薄膜を薄
い絶縁層を含む非磁性膜を挟んで接合し、これにより生
じる強磁性トンネル接合を利用し、2つの強磁性薄膜を
それぞれの磁化容易軸が互いに直交するように配置して
設け、一方の強磁性薄膜の磁化容易軸方向の保磁力がも
う一方の強磁性薄膜の磁化容易軸方向の保磁力より2倍
以上大きいことを特徴とする磁気抵抗素子を発明し、特
許出願した(特開平6−244477)。この強磁性ト
ンネル接合を利用した磁気抵抗素子は室温において抵抗
変化率(ΔR/R)が2%以上であって弱磁場における
感度が良好で、安定して使用可能な磁場範囲を有効磁場
範囲の2倍以上にすることができる特長を有する。
On the other hand, in an element in which two ferromagnetic thin films are joined with a thin insulating layer sandwiched therebetween, a constant tunnel current is caused to flow between the ferromagnetic thin films, and in this state, different magnetic fields are applied parallel to the film surface of the ferromagnetic thin films. It has been reported that this element has a new magnetoresistive effect due to the change in resistance when it is exposed (S.
Maekawa and U.Gafvert, IEEE Trans. Magn. MAG-18 (19
82) 707). The inventors have joined the two ferromagnetic thin films with a non-magnetic film including a thin insulating layer sandwiched therebetween, and utilize the resulting ferromagnetic tunnel junction to make the two ferromagnetic thin films have their respective easy magnetization axes. A magnetoresistive device, which is arranged so as to be orthogonal to each other, wherein the coercive force of one ferromagnetic thin film in the direction of easy axis of magnetization is twice or more the coercive force of the other ferromagnetic thin film in the direction of easy axis of magnetization. He invented the device and applied for a patent (JP-A-6-244477). A magnetoresistive element using this ferromagnetic tunnel junction has a resistance change rate (ΔR / R) of 2% or more at room temperature, has a good sensitivity in a weak magnetic field, and has a stable magnetic field range within an effective magnetic field range. It has the feature that it can be doubled or more.

【0004】[0004]

【発明が解決しようとする課題】しかし、図9に示した
従来の磁気抵抗素子の抵抗変化率(ΔR/R)は室温で
通常2〜3%であって、大きくても高々6%である。上
述した磁気抵抗素子(磁気式回転センサ)6の出力信号
は上述したように交流信号であるため、検出精度を高め
る上で、図15に示すように方形波信号に波形整形する
必要がある。しかも図14に示すようにゼロ磁場を中心
にして入力した場合には出力信号Bの振幅が小さいた
め、増幅回路を用いるか、或いは図16に示すように磁
気抵抗素子の近くにバイアス用の磁石を設けてバイアス
磁場HBをかけることにより、出力信号Bを増幅する必
要がある。また図11から明らかなようにセンサストラ
イプのピッチPを磁極のピッチMと整合する必要があ
る。これらのことから、従来の磁気抵抗素子から高い出
力特性を得ようとする場合、素子構造や回路構成が複雑
化する不具合があった。また特開平6−244477号
に開示される強磁性トンネル接合によるものは磁気によ
る抵抗変化率が室温が5%以下と低く、その応用につい
ては未だ考慮されていない。
However, the resistance change rate (ΔR / R) of the conventional magnetoresistive element shown in FIG. 9 is usually 2 to 3% at room temperature, and at most 6%. . Since the output signal of the magnetic resistance element (magnetic rotation sensor) 6 described above is an AC signal as described above, it is necessary to shape the waveform into a square wave signal as shown in FIG. 15 in order to improve the detection accuracy. Moreover, as shown in FIG. 14, the amplitude of the output signal B is small when inputting with the zero magnetic field at the center, so an amplifier circuit is used, or a bias magnet is provided near the magnetoresistive element as shown in FIG. It is necessary to amplify the output signal B by providing a bias magnetic field H B. Further, as apparent from FIG. 11, it is necessary to match the pitch P of the sensor stripes with the pitch M of the magnetic poles. For these reasons, in order to obtain high output characteristics from the conventional magnetoresistive element, there is a problem that the element structure and the circuit configuration become complicated. The ferromagnetic tunnel junction disclosed in JP-A-6-244477 has a low rate of change in resistance due to magnetism at room temperature of 5% or less, and its application has not been considered yet.

【0005】本発明の目的は、室温における抵抗変化率
(ΔR/R)が10%以上であって、弱磁場における感
度が良好で、出力波形を方形波に波形整形する必要のな
い、強磁性トンネル接合を利用した磁気抵抗素子を提供
することにある。また本発明の別の目的は、その動作点
をバイアス用磁石で偏倚させる必要がなく、構造及び回
路構成が簡単で小型化し得る磁気抵抗素子を提供するこ
とにある。
An object of the present invention is to obtain a ferromagnetic material which has a rate of change in resistance (ΔR / R) at room temperature of 10% or more, has good sensitivity in a weak magnetic field, and which does not need to shape the output waveform into a square wave. An object is to provide a magnetoresistive element using a tunnel junction. Another object of the present invention is to provide a magnetoresistive element that does not need to have its operating point biased by a bias magnet, has a simple structure and circuit configuration, and can be miniaturized.

【0006】[0006]

【課題を解決するための手段】本発明者らは、強磁性体
金属において伝導電子がスピン偏極を起こしているた
め、フェルミ面における上向きスピンと下向きスピンの
電子状態が異なっており、このような強磁性体金属を用
いて、強磁性体と絶縁体と強磁性体からなる強磁性トン
ネル接合を作ると、伝導電子はそのスピンを保ったまま
トンネルするため、両磁性層の磁化状態によってトンネ
ル確率が変化し、それがトンネル抵抗の変化となって現
れると考え、この点に着目して本発明に到達した。
The inventors of the present invention have found that the conduction electrons are spin-polarized in the ferromagnetic metal, and therefore the electronic states of the upward spin and the downward spin on the Fermi surface are different. When a ferromagnetic tunnel junction consisting of a ferromagnet, an insulator, and a ferromagnet is made by using a nonferromagnetic metal, conduction electrons tunnel while maintaining their spins. It was thought that the probability would change and that it would appear as a change in tunnel resistance, and the present invention was reached with this point in mind.

【0007】即ち、図1に示すように、本発明の第一の
磁気抵抗素子10は、第1強磁性薄膜11と第2強磁性
薄膜12とを薄い絶縁層を含む非磁性膜13を挟んで接
合し、これにより生じる強磁性トンネル接合を利用した
ものの改良であって、その特徴ある構成は、第1及び第
2強磁性薄膜11,12がともに膜面内に磁気異方性を
有さず、第1強磁性薄膜11の保磁力が第2強磁性薄膜
12の保磁力より大きく、図5に示すように第1強磁性
薄膜11及び第2強磁性薄膜12のそれぞれの磁化曲線
が角形状のヒステリシス曲線を有し、全体の磁化曲線が
階段状で角形状のヒステリシス曲線であることにある。
That is, as shown in FIG. 1, the first magnetoresistive element 10 of the present invention includes a first ferromagnetic thin film 11 and a second ferromagnetic thin film 12 sandwiching a nonmagnetic film 13 including a thin insulating layer. This is an improvement of the one using the ferromagnetic tunnel junction generated by the above, and the characteristic constitution is that both the first and second ferromagnetic thin films 11 and 12 have magnetic anisotropy in the film plane. However, the coercive force of the first ferromagnetic thin film 11 is larger than the coercive force of the second ferromagnetic thin film 12, and the magnetization curves of the first ferromagnetic thin film 11 and the second ferromagnetic thin film 12 are square as shown in FIG. It has a shape hysteresis curve, and the whole magnetization curve is a stepwise and angular hysteresis curve.

【0008】また図2に示すように、本発明の第二の磁
気抵抗素子30は、第3強磁性薄膜31と第4強磁性薄
膜32とを薄い絶縁層を含む非磁性膜33を挟んで接合
し、これにより生じる強磁性トンネル接合を利用したも
のの改良であって、その特徴ある構成は、第3強磁性薄
膜31が膜面内に磁気異方性を有し、第4強磁性薄膜3
2が膜面内に磁気異方性を有さず、第3強磁性薄膜31
の磁化容易軸方向に磁場を印加した場合に第3強磁性薄
膜31の磁化容易軸方向の保磁力が第4強磁性薄膜32
の保磁力より大きく、図5に示すように第3強磁性薄膜
31及び第4強磁性薄膜32のそれぞれの磁化曲線が角
形状のヒステリシス曲線を有し、全体の磁化曲線が階段
状で角形状のヒステリシス曲線であることにある。
As shown in FIG. 2, the second magnetoresistive element 30 of the present invention has a third ferromagnetic thin film 31 and a fourth ferromagnetic thin film 32 with a non-magnetic film 33 including a thin insulating layer interposed therebetween. The third ferromagnetic thin film 31 has a magnetic anisotropy in the film plane, which is an improvement of a structure utilizing a ferromagnetic tunnel junction generated by the junction.
2 has no magnetic anisotropy in the film plane, and the third ferromagnetic thin film 31
When a magnetic field is applied in the easy magnetization axis direction of the third ferromagnetic thin film 31, the coercive force of the third ferromagnetic thin film 31 in the easy magnetization axis direction is
5, the magnetization curves of the third ferromagnetic thin film 31 and the fourth ferromagnetic thin film 32 each have a square hysteresis curve, and the entire magnetization curve is stepwise and square. Is a hysteresis curve.

【0009】以下、本発明を詳述する。 (a) 強磁性トンネル接合による磁気抵抗効果 図1〜図3に示すように、基板16(又は36)上で薄
い絶縁層を含む非磁性膜13(又は33)を挟んで強磁
性トンネル接合した強磁性薄膜11及び12(又は31
及び32)に電極14及び15(又は34及び35)を
それぞれ設け、両電極14,15(又は34,35)間
に電流を流すと、両電極14,15(又は34,35)
間に流れるトンネル電流は2つの強磁性薄膜11,12
(又は31,32)の磁化の向きの相互関係によって異
なり、磁化の向きが変わると抵抗値が変化する磁気抵抗
効果が現れる。即ち、図3の実線矢印で示すように強磁
性薄膜11,12(又は31,32)の磁化の向き
1,M2(又はM3,M4)が直交するときの抵抗値をR
0とすると、強磁性薄膜11,12(又は31,32)
の磁化の向きがそれぞれ同一方向であるとき(M2を破
線矢印で示す)には抵抗値は[R0−ΔR/2]とな
り、強磁性薄膜11,12の磁化の向きが互いに反対方
向であるとき(M2を一点鎖線矢印で示す)には抵抗値
は[R0+ΔR/2]となる。
The present invention will be described in detail below. (a) Magnetoresistance Effect by Ferromagnetic Tunnel Junction As shown in FIGS. 1 to 3, a ferromagnetic tunnel junction is formed on a substrate 16 (or 36) with a non-magnetic film 13 (or 33) including a thin insulating layer interposed therebetween. Ferromagnetic thin films 11 and 12 (or 31)
And 32) are provided with electrodes 14 and 15 (or 34 and 35), respectively, and when a current is passed between the electrodes 14 and 15 (or 34 and 35), both electrodes 14 and 15 (or 34 and 35)
The tunnel current flowing between the two ferromagnetic thin films 11, 12
Depending on the mutual relationship of the magnetization directions of (or 31, 32), a magnetoresistive effect appears in which the resistance value changes when the magnetization direction changes. That is, the resistance value when the magnetization directions M 1 and M 2 (or M 3 and M 4 ) of the ferromagnetic thin films 11 and 12 (or 31 and 32) are orthogonal to each other as indicated by solid arrows in FIG.
When set to 0 , the ferromagnetic thin films 11, 12 (or 31, 32)
When the magnetization directions of are the same (M 2 is indicated by a dashed arrow), the resistance value is [R 0 −ΔR / 2], and the magnetization directions of the ferromagnetic thin films 11 and 12 are opposite to each other. At some time (M 2 is indicated by an alternate long and short dash line arrow), the resistance value is [R 0 + ΔR / 2].

【0010】(b) 本発明の第一の磁気抵抗素子10に固
有の特徴 図1に示すように、磁気抵抗素子10の第一の特徴ある
構成は2つの強磁性薄膜11,12がともに膜面内に磁
気異方性を有しない点にある。このように構成すること
により、最初に2つの強磁性薄膜11,12の保磁力よ
り大きな外部磁場Hを特定の方向にかけてから外部磁場
をゼロにすると、図3に示すように2つの強磁性薄膜1
1,12の磁化の向きM1,M2は図3の実線のM1と破
線のM2に示すように平行となり、両薄膜間の抵抗値は
[R0−ΔR/2]となる。次いで外部磁場の方向を今
までの方向(即ち、磁化の向きM1)と反対にとり、そ
の磁場を大きくしていくと、保磁力の小さな強磁性薄膜
12の磁化の向きM2は外部磁場がその保磁力を越えた
とき、図3の一点鎖線矢印に示すように外部磁場方向へ
反転し、その抵抗値は[R0+ΔR/2]となる。更に
外部磁場が大きくなり、保磁力の大きな強磁性薄膜11
の保磁力より大きくしていくと、強磁性薄膜11の磁化
の向きM1が反転し、抵抗値は[R0+ΔR/2]から
[R0−ΔR/2]になり、この状態は次に磁場を反転
させ、強磁性薄膜12の保磁力を越えるまで維持され
る。
(B) Characteristics peculiar to the first magnetoresistive element 10 of the present invention As shown in FIG. 1, the first characteristic constitution of the magnetoresistive element 10 is that two ferromagnetic thin films 11 and 12 are both films. The point is that there is no magnetic anisotropy in the plane. With such a configuration, when the external magnetic field H is first applied in a specific direction and is larger than the coercive force of the two ferromagnetic thin films 11 and 12 and then the external magnetic field is set to zero, the two ferromagnetic thin films as shown in FIG. 1
Orientation M 1, M 2 of the magnetization of the 1 and 12 becomes parallel as shown in M 1 and dashed M 2 in solid lines in FIG. 3, the resistance value between both film becomes [R 0 -ΔR / 2]. Next, when the direction of the external magnetic field is set to the opposite direction (that is, the direction of magnetization M 1 ) and the magnetic field is increased, the direction of magnetization M 2 of the ferromagnetic thin film 12 having a small coercive force is When the coercive force is exceeded, it is inverted in the direction of the external magnetic field as shown by the one-dot chain line arrow in FIG. 3, and the resistance value becomes [R 0 + ΔR / 2]. Further, the external magnetic field becomes large, and the ferromagnetic thin film 11 having a large coercive force is obtained.
As you greater than the coercive force, inverted orientation M 1 of the magnetization of the ferromagnetic film 11, the resistance value becomes [R 0 -ΔR / 2] from [R 0 + ΔR / 2] , this condition following The magnetic field is reversed and the magnetic field is maintained until the coercive force of the ferromagnetic thin film 12 is exceeded.

【0011】第1及び第2強磁性薄膜11,12をとも
に膜面内に磁気異方性を保有しないようにする方法は、
イオンビーム蒸着法、真空蒸着法、スパッタリング法等
により、強磁性薄膜11,12をストライプ状にする代
わりに、円形、正方形などの磁化異方性のない形状に
し、かつ着膜時に磁場をかけない方法が挙げられる。図
1では薄膜11及び12がそれぞれ正方形の場合を示し
ている。図1に示す薄膜11及び12を作る順序として
は、基板16上に第1強磁性薄膜12を磁化異方性のな
い正方形などの形状にし、着膜時に磁場をかけない。次
いで強磁性薄膜12の中央部に非磁性膜13を着膜し、
この非磁性膜の中央部に第1強磁性薄膜11をやはり磁
化異方性のない正方形などの形状にし、着膜時に磁場を
かけない。即ち、2つの薄膜11,12に関して、磁化
容易軸を特定の方向に配置しないようにする。特に、第
2強磁性薄膜12の上にスパッタリング法によりAl膜
を形成した後、このAl膜を酸化させてその表面にAl
23層を形成することにより上記非磁性膜13を作る
と、非磁性膜13を均一で緻密にすることができる。
A method for preventing both the first and second ferromagnetic thin films 11 and 12 from having magnetic anisotropy in the film plane is as follows.
Instead of forming the ferromagnetic thin films 11 and 12 into stripes by an ion beam evaporation method, a vacuum evaporation method, a sputtering method, or the like, the ferromagnetic thin films 11 and 12 are formed into a shape having no magnetic anisotropy, such as a circle or a square, and a magnetic field is not applied during film formation. There is a method. FIG. 1 shows a case where the thin films 11 and 12 are square. The order of forming the thin films 11 and 12 shown in FIG. 1 is that the first ferromagnetic thin film 12 is formed on the substrate 16 in a shape such as a square having no magnetization anisotropy, and no magnetic field is applied during the deposition. Next, a non-magnetic film 13 is deposited on the central portion of the ferromagnetic thin film 12,
The first ferromagnetic thin film 11 is also formed into a square shape having no magnetic anisotropy at the center of the non-magnetic film so that no magnetic field is applied during deposition. That is, the easy axes of magnetization of the two thin films 11 and 12 are not arranged in a specific direction. In particular, after forming an Al film on the second ferromagnetic thin film 12 by the sputtering method, the Al film is oxidized to form an Al film on its surface.
When the non-magnetic film 13 is formed by forming the 2 O 3 layer, the non-magnetic film 13 can be made uniform and dense.

【0012】また、図1に示すように、2つの強磁性薄
膜11,12間に生じる磁気抵抗効果のみを有効に検出
するために、第1強磁性薄膜11の一端と第2強磁性薄
膜12の一端に両薄膜に一定電流を流すための第1電極
14,15をそれぞれ設け、第1強磁性薄膜11の他端
と第2強磁性薄膜12の他端に両薄膜間に印加された電
圧を測定するための第2電極17,18をそれぞれ設け
ることが好ましい。
As shown in FIG. 1, one end of the first ferromagnetic thin film 11 and the second ferromagnetic thin film 12 are used to effectively detect only the magnetoresistive effect generated between the two ferromagnetic thin films 11 and 12. First electrodes 14 and 15 for supplying a constant current to both thin films are respectively provided at one end of the first thin film, and a voltage applied between the second thin films at the other end of the first ferromagnetic thin film 11 and the other end of the second ferromagnetic thin film 12. It is preferable to provide the second electrodes 17 and 18 for measuring respectively.

【0013】(c) 本発明の第二の磁気抵抗素子30に固
有の特徴 図2に示すように、磁気抵抗素子30の第一の特徴ある
構成は第3強磁性薄膜31が膜面内に磁気異方性を有
し、第4強磁性薄膜32が膜面内に磁気異方性を有しな
い点にある。このように構成することにより、最初に2
つの強磁性薄膜31,32の保磁力より大きな外部磁場
Hを強磁性薄膜31の磁化容易軸M3方向にかけてから
外部磁場をゼロにすると、図3に示すように2つの強磁
性薄膜31,32の磁化の向きM3,M4は図3の実線の
3と破線のM4に示すように平行となり、両薄膜間の抵
抗値は[R0−ΔR/2]となる。次いで外部磁場の方
向を今までの方向(即ち、磁化の向きM3)と反対にと
り、その磁場を大きくしていくと、保磁力の小さな強磁
性薄膜32の磁化の向きM4は外部磁場がその保磁力を
越えたとき、図3の一点鎖線矢印に示すように外部磁場
方向へ反転し、その抵抗値は[R0+ΔR/2]とな
る。更に外部磁場が大きくなり、保磁力の大きな強磁性
薄膜31の保磁力より大きくしていくと、強磁性薄膜3
1の磁化の向きM3が反転し、抵抗値は[R0+ΔR/
2]から[R0−ΔR/2]になり、この状態は次に磁
場を反転させ、強磁性薄膜32の保磁力を越えるまで維
持される。
(C) Features peculiar to the second magnetoresistive element 30 of the present invention As shown in FIG. 2, the first characteristic constitution of the magnetoresistive element 30 is that the third ferromagnetic thin film 31 is in the film plane. It has magnetic anisotropy, and the fourth ferromagnetic thin film 32 does not have magnetic anisotropy in the film plane. With this configuration, the first 2
When the external magnetic field H, which is larger than the coercive force of the two ferromagnetic thin films 31 and 32, is applied in the direction of the easy axis M 3 of the ferromagnetic thin film 31 and then the external magnetic field is set to zero, the two ferromagnetic thin films 31 and 32 are formed as shown in FIG. orientation M 3, M 4 of the magnetization of become parallel as shown in the solid line of M 3 and the broken line of M 4 in FIG. 3, the resistance value between both film becomes [R 0 -ΔR / 2]. Next, when the direction of the external magnetic field is set opposite to the direction (that is, the direction of magnetization M 3 ) up to now and the magnetic field is increased, the direction of magnetization M 4 of the ferromagnetic thin film 32 having a small coercive force is When the coercive force is exceeded, it is inverted in the direction of the external magnetic field as shown by the one-dot chain line arrow in FIG. 3, and the resistance value becomes [R 0 + ΔR / 2]. When the external magnetic field further increases and becomes larger than the coercive force of the ferromagnetic thin film 31 having a large coercive force, the ferromagnetic thin film 3
The magnetization direction M 3 of 1 is reversed, and the resistance value is [R 0 + ΔR /
2] to [R 0 −ΔR / 2], and this state is maintained until the magnetic field is reversed and the coercive force of the ferromagnetic thin film 32 is exceeded.

【0014】第3強磁性薄膜31を膜面内に磁気異方性
を保有させるための方法としては、図2に示すように強
磁性薄膜31をイオンビーム蒸着法、真空蒸着法、スパ
ッタリング法等によりストライプ状にして磁化容易軸M
3を得る方法、又は図示しないが円形、正方形などの磁
化異方性のない形状にしかつ着膜時に磁場をかける方
法、或いはこれらを組合せた方法が挙げられる。第4強
磁性薄膜32を膜面内に磁気異方性を保有しないように
する方法は、前述した第1及び第2強磁性薄膜の形成方
法と同じである。図2に示す薄膜31及び32を作る順
序としては、先ずガラス等の基板36上に第4強磁性薄
膜32を磁気異方性のない正方形などの形状にし、着膜
時に磁場をかけない。次いで強磁性薄膜32の中央部に
非磁性膜33を着膜し、この非磁性膜の中央部に第3強
磁性薄膜31をストライプ状にかつその長手方向が磁化
容易軸M3になるように形成し、着膜時に必要により磁
場をストライプの長手方向にかける。或いは第3強磁性
薄膜31を先に形成し、次いで非磁性膜33を形成し、
最後に第4強磁性薄膜32を形成してもよい。
As a method for maintaining the magnetic anisotropy in the film surface of the third ferromagnetic thin film 31, as shown in FIG. 2, the ferromagnetic thin film 31 is ion beam deposited, vacuum deposited, or sputtered. To form a stripe shape by the easy axis M
Although not shown, a method of obtaining 3 or a method of forming a shape having no magnetic anisotropy such as a circle or a square and applying a magnetic field at the time of film formation, or a method of combining these can be mentioned. The method for preventing the fourth ferromagnetic thin film 32 from having magnetic anisotropy in the film plane is the same as the method for forming the first and second ferromagnetic thin films described above. As the order of forming the thin films 31 and 32 shown in FIG. 2, first, the fourth ferromagnetic thin film 32 is formed into a square shape having no magnetic anisotropy on a substrate 36 such as glass, and a magnetic field is not applied at the time of film formation. Next, a non-magnetic film 33 is deposited on the central part of the ferromagnetic thin film 32, and the third ferromagnetic thin film 31 is formed in stripes on the central part of the non-magnetic film so that the longitudinal direction thereof is the easy axis of magnetization M 3. When formed, a magnetic field is applied in the longitudinal direction of the stripe as required during film formation. Alternatively, the third ferromagnetic thin film 31 is formed first, and then the nonmagnetic film 33 is formed,
Finally, the fourth ferromagnetic thin film 32 may be formed.

【0015】特に、第4強磁性薄膜32の上にスパッタ
リング法によりAl膜を形成した後、このAl膜を酸化
させてその表面にAl23層を形成することにより上記
非磁性膜33を作ると、非磁性膜33を均一で緻密にす
ることができる。また、図2に示すように、2つの強磁
性薄膜31,32間に生じる磁気抵抗効果のみを有効に
検出するために、第3強磁性薄膜31の一端と第4強磁
性薄膜32の一端に両薄膜に一定電流を流すための第3
電極34,35をそれぞれ設け、第3強磁性薄膜31の
他端と第4強磁性薄膜32の他端に両薄膜間に印加され
た電圧を測定するための第4電極37,38をそれぞれ
設けることが好ましい。
In particular, after forming an Al film on the fourth ferromagnetic thin film 32 by the sputtering method, the Al film is oxidized to form an Al 2 O 3 layer on the surface of the non-magnetic film 33. When made, the nonmagnetic film 33 can be made uniform and dense. Further, as shown in FIG. 2, in order to effectively detect only the magnetoresistive effect generated between the two ferromagnetic thin films 31 and 32, one end of the third ferromagnetic thin film 31 and one end of the fourth ferromagnetic thin film 32 are provided. Third for passing a constant current through both thin films
Electrodes 34 and 35 are provided respectively, and fourth electrodes 37 and 38 for measuring a voltage applied between both ends of the third ferromagnetic thin film 31 and the fourth ferromagnetic thin film 32 are provided respectively. It is preferable.

【0016】(d) 本発明の第一及び第二の磁気抵抗素子
10,30に共通する特徴 磁気抵抗素子10,30のそれぞれの第二の特徴ある構
成は、強磁性薄膜11の保磁力と強磁性薄膜12の保磁
力との間、又は磁化容易軸方向に磁場を印加した場合の
強磁性薄膜31の磁化容易軸方向の保磁力と強磁性薄膜
32の保磁力との間に差を設けた点である。これにより
磁気抵抗素子に図4に示すように磁場範囲Dを越える外
部磁場を与えれば、その特性は可逆的に変化し、図6に
示すように方形波出力が得られる。2つの強磁性薄膜の
保磁力差により図4に示される方形波出力の幅Wが決め
られる。
(D) Features common to the first and second magnetoresistive elements 10 and 30 of the present invention The second characteristic configuration of each of the magnetoresistive elements 10 and 30 is the coercive force of the ferromagnetic thin film 11 and A difference is provided between the coercive force of the ferromagnetic thin film 12 or the coercive force of the ferromagnetic thin film 31 when the magnetic field is applied in the easy axis direction and the coercive force of the ferromagnetic thin film 32. It is a point. Thus, when an external magnetic field exceeding the magnetic field range D is applied to the magnetoresistive element as shown in FIG. 4, its characteristics reversibly change and a square wave output is obtained as shown in FIG. The coercive force difference between the two ferromagnetic thin films determines the width W of the square wave output shown in FIG.

【0017】磁気抵抗素子10,30の第三の特徴ある
構成は、第1強磁性薄膜11及び第2強磁性薄膜12の
それぞれの磁化曲線、又は第3強磁性薄膜31及び第4
強磁性薄膜32のそれぞれの磁化曲線が、図5の符号a
及びbに示すように破線と一点鎖線の角形状のヒステリ
シス曲線を有し、全体の磁化曲線が符号cで示すように
実線の階段状で角形状のヒステリシス曲線である点にあ
る。この角形状のヒステリシス曲線を得るための具体的
な手段としては、強磁性薄膜内で磁化方向がばらつかな
いようにすることが望ましく、着膜時にその方向に磁場
を印加するか、或いは図2に示すようにストライプ形状
とし、その長手方向と磁化容易軸とを一致させる。特に
保磁力が小さいと角形性が出にくいことから、保磁力の
小さい強磁性薄膜12又は強磁性薄膜32は、強磁性薄
膜11又は強磁性薄膜31の大きな保磁力に近づけるこ
とが望ましい。また新規な磁気センサとして本発明の磁
気抵抗素子が方形波出力を得るためには、センサと使用
するときに磁場範囲Dを越える磁場を与える必要があ
る。このために弱磁場で方形波出力を得るためには強磁
性薄膜11又は強磁性薄膜31の保磁力を比較的小さく
しておく必要がある。そこで強磁性薄膜11又は強磁性
薄膜31の保磁力は強磁性薄膜12又は強磁性薄膜32
の保磁力より2倍を越えない程度に大きくすることが好
ましい。
The third characteristic structure of the magnetoresistive elements 10 and 30 is the respective magnetization curves of the first ferromagnetic thin film 11 and the second ferromagnetic thin film 12, or the third ferromagnetic thin film 31 and the fourth ferromagnetic thin film.
Each magnetization curve of the ferromagnetic thin film 32 is represented by the symbol a in FIG.
As shown by b and b, it has an angular hysteresis curve of a broken line and a dash-dotted line, and the entire magnetization curve is a stepwise and angular hysteresis curve of a solid line as indicated by reference sign c. As a concrete means for obtaining this angular hysteresis curve, it is desirable that the magnetization direction does not fluctuate in the ferromagnetic thin film, and a magnetic field is applied in that direction at the time of film formation, or As shown in FIG. 5, the stripe shape is formed, and the longitudinal direction of the stripe shape is aligned with the easy magnetization axis. Particularly, if the coercive force is small, the squareness is difficult to appear. Therefore, it is desirable that the ferromagnetic thin film 12 or the ferromagnetic thin film 32 having a small coercive force be close to the large coercive force of the ferromagnetic thin film 11 or the ferromagnetic thin film 31. Further, in order for the magnetoresistive element of the present invention as a novel magnetic sensor to obtain a square wave output, it is necessary to apply a magnetic field exceeding the magnetic field range D when used with the sensor. Therefore, in order to obtain a square wave output in a weak magnetic field, it is necessary to make the coercive force of the ferromagnetic thin film 11 or the ferromagnetic thin film 31 relatively small. Therefore, the coercive force of the ferromagnetic thin film 11 or the ferromagnetic thin film 31 is equal to the ferromagnetic thin film 12 or the ferromagnetic thin film 32.
It is preferable to increase the coercive force so as not to exceed twice.

【0018】本発明の磁気抵抗素子により強磁性トンネ
ル接合による磁気抵抗効果を高めるためには、保磁力
の大きい第1強磁性薄膜11又は第3強磁性薄膜31が
FeもしくはFeとCoを主成分とし、保磁力の小さい
第2強磁性薄膜12又は第4強磁性薄膜32がFeを主
成分とする手段か、或いは非磁性膜13又は33に含
まれる絶縁層を非磁性金属膜を酸化させた酸化層により
構成する手段を採ることが考えられる。上記及びの
両手段を組合せてもよい。双方の強磁性薄膜の主成分を
Feとする場合には、第1強磁性薄膜11又は第3強磁
性薄膜31の形成時の基板温度より第2強磁性薄膜12
又は第4強磁性薄膜32の形成時の基板温度を高くして
双方の強磁性薄膜11,12又は31,32をそれぞれ
形成することが好ましい。これにより2つの強磁性薄膜
が同じFe単層膜であっても保磁力差を付けることがで
きる。保磁力差を2倍を越えないようにするには、基板
温度差も100℃以下にすることが好ましい。第1強磁
性薄膜の保磁力を大きくする成分上の別の手段として、
第2強磁性薄膜12又は第4強磁性薄膜の主成分をFe
のみにし、第1強磁性薄膜又は第3強磁性薄膜の主成分
をFeとCoにする方法がある。Co成分が多くなると
異方性が出易く保磁力が大きくなる性質を利用したもの
である。この方法と前述した強磁性薄膜形成時の基板温
度を第2強磁性薄膜又は第4強磁性薄膜の方を第1強磁
性薄膜又は第3強磁性薄膜より高くする方法とを組合せ
てもよい。ここで主成分の割合は、第1強磁性薄膜又は
第3強磁性薄膜の場合に、FeとCoの合計が80at
%以上であって、第2強磁性薄膜又は第4強磁性薄膜の
場合に、Feが80at%以上であることが好ましい。
In order to enhance the magnetoresistive effect by the ferromagnetic tunnel junction by the magnetoresistive element of the present invention, the first ferromagnetic thin film 11 or the third ferromagnetic thin film 31 having a large coercive force contains Fe or Fe and Co as main components. Then, the second ferromagnetic thin film 12 or the fourth ferromagnetic thin film 32 having a small coercive force is made of Fe as a main component, or the insulating layer included in the nonmagnetic film 13 or 33 is oxidized by the nonmagnetic metal film. It is conceivable to adopt a means constituted by an oxide layer. You may combine both said means and. When the main component of both ferromagnetic thin films is Fe, the second ferromagnetic thin film 12 may be formed from the substrate temperature at the time of forming the first ferromagnetic thin film 11 or the third ferromagnetic thin film 31.
Alternatively, it is preferable to increase the substrate temperature at the time of forming the fourth ferromagnetic thin film 32 to form both ferromagnetic thin films 11, 12 or 31, 32, respectively. As a result, a coercive force difference can be provided even if the two ferromagnetic thin films are the same Fe single layer film. In order to prevent the coercive force difference from exceeding twice, the substrate temperature difference is preferably 100 ° C. or less. As another means for increasing the coercive force of the first ferromagnetic thin film,
Fe as the main component of the second ferromagnetic thin film 12 or the fourth ferromagnetic thin film
However, there is a method in which Fe and Co are the main components of the first ferromagnetic thin film or the third ferromagnetic thin film. This is a property that the anisotropy is likely to occur and the coercive force is increased when the Co component is increased. This method may be combined with the above-described method in which the substrate temperature at the time of forming the ferromagnetic thin film is set higher in the second ferromagnetic film or the fourth ferromagnetic thin film than in the first ferromagnetic film or the third ferromagnetic thin film. Here, the ratio of the main components is such that, in the case of the first ferromagnetic thin film or the third ferromagnetic thin film, the total of Fe and Co is 80 at.
%, And in the case of the second ferromagnetic thin film or the fourth ferromagnetic thin film, Fe is preferably 80 at% or more.

【0019】強磁性薄膜11,12又は31,32に挟
まれる絶縁層を含む非磁性膜13又は33が非磁性金属
膜を酸化させた酸化層を含むときには、この非磁性膜1
3又は33は数10オングストローム程度の均一な層で
ある。絶縁層としてはAl23層、NiO層等が挙げら
れる。Al23層が絶縁性が高く緻密であるため好まし
い。強磁性薄膜11,12又は31,32に挟まれる膜
は電子がスピンを保持してトンネルするために非磁性で
なければならない。非磁性膜の全部が絶縁層であって
も、その一部が絶縁層であってもよい。一部を絶縁層に
してその厚みを極小にすることにより、磁気抵抗効果を
更に高めることができる。非磁性金属膜を酸化させた酸
化層にする例としては、Al膜の一部を空気中で酸化さ
せてAl23層を形成する例が挙げられる。
When the nonmagnetic film 13 or 33 including an insulating layer sandwiched between the ferromagnetic thin films 11, 12 or 31, 32 includes an oxide layer obtained by oxidizing a nonmagnetic metal film, the nonmagnetic film 1
3 or 33 is a uniform layer of about several tens of angstroms. Examples of the insulating layer include an Al 2 O 3 layer and a NiO layer. The Al 2 O 3 layer is preferable because it has high insulation and is dense. The film sandwiched between the ferromagnetic thin films 11, 12 or 31, 32 must be non-magnetic in order for electrons to hold spins and tunnel. The entire nonmagnetic film may be an insulating layer, or a part thereof may be an insulating layer. The magnetoresistive effect can be further enhanced by forming a part of the insulating layer and minimizing its thickness. An example of forming the oxidized layer of the non-magnetic metal film is an example in which a part of the Al film is oxidized in air to form an Al 2 O 3 layer.

【0020】[0020]

【作用】本発明の第一及び第二の磁気抵抗素子は、第一
に2つの強磁性薄膜の主成分となる磁性材料として、フ
ェルミ面における上下スピンの偏極量が大きいFeを選
定し、Coを第2成分として選定し、第二に例えばAl
23層のような緻密で均一な薄い絶縁層をAl膜のよう
な非磁性金属膜を酸化させることにより形成して、磁化
状態によって変化するトンネル電流による抵抗値の差を
大きくし、かつ磁化状態によらず絶縁層を通して流れる
電流による抵抗値を小さくすることにより、伝導電子の
スピンを保持して絶縁層をトンネルすることにより生じ
る強磁性トンネル効果が顕著に現れ、図4の磁気抵抗曲
線に示すように抵抗変化率(ΔR/R)は10%を越え
るようになる。
In the first and second magnetoresistive elements of the present invention, first, Fe having a large amount of vertical spin polarization on the Fermi surface is selected as the magnetic material that is the main component of the two ferromagnetic thin films. Co is selected as the second component, and secondly, for example, Al
A dense and uniform thin insulating layer such as a 2 O 3 layer is formed by oxidizing a non-magnetic metal film such as an Al film to increase the difference in resistance value due to the tunnel current that changes depending on the magnetization state, and By decreasing the resistance value due to the current flowing through the insulating layer regardless of the magnetization state, the ferromagnetic tunnel effect caused by holding the spin of conduction electrons and tunneling through the insulating layer remarkably appears, and the magnetoresistance curve of FIG. As shown in, the rate of change in resistance (ΔR / R) exceeds 10%.

【0021】また本発明の第一及び第二の磁気抵抗素子
は、それぞれの2つの強磁性薄膜の保磁力に差を設ける
ことにより、好ましくは2倍を越えない程度の差を設け
ることにより、図4に示すように磁気抵抗曲線はゼロ磁
場を中心としたほぼ対称な2つの方形波状の波形を有す
る曲線となり、例えば保磁力及びその差を任意に設定す
れば、この曲線に見られる閾値Hc1及びHc2及び方形幅
(Hc1−Hc2)を任意に設定することができる。各磁気
抵抗素子の入力磁界の磁力をHc1以上とすれば、図6に
示すように出力波形自身が方形波に近い出力となる。更
にその出力値を微分すれば、高い検出感度が得られる。
In the first and second magnetoresistive elements of the present invention, by providing a difference in coercive force between the two ferromagnetic thin films, preferably by providing a difference not exceeding twice, As shown in FIG. 4, the reluctance curve is a curve having two substantially symmetrical square waveforms centered on the zero magnetic field. For example, if the coercive force and the difference between them are set arbitrarily, the threshold value Hc seen in this curve is obtained. 1 and Hc 2 and the rectangular width (Hc 1 −Hc 2 ) can be set arbitrarily. If the magnetic force of the input magnetic field of each magnetoresistive element is Hc 1 or more, the output waveform itself becomes an output close to a square wave as shown in FIG. Further, if the output value is differentiated, high detection sensitivity can be obtained.

【0022】また本発明の第一の磁気抵抗素子10を回
転センサに応用する場合には、図11に示した従来の素
子に代えて、図7(a)及び(b)に示すように本発明
の磁気抵抗素子10を抵抗体R11と組合せればよい。図
7(a)は図1に対応する。更に高精度化するために温
度変化の影響を取り除くには、図8(a)及び(b)に
示すように作動出力をとればよい。このために、図8
(a)に示すように基板16上に2つの磁気抵抗素子1
0及び20を設ける。基板16上に正方形の第2強磁性
薄膜12及び薄膜12と同形同大の強磁性薄膜22を間
隔をあけて設けた後で薄膜12と22を結線する。次い
で薄膜12及び22の上に非磁性膜13及び23をそれ
ぞれ介して正方形の第1強磁性薄膜11及び21を設け
る。磁気抵抗素子20も磁気抵抗素子10と同様に強磁
性トンネル効果を有する。ここで検出側でない磁気抵抗
素子20には、例えば磁気シールド膜として絶縁膜を素
子との間に挟んでパーマロイ(FeNi合金)などの金
属薄膜24で素子全体を覆うか、或いは素子20の第1
強磁性薄膜21をAlなどの非磁性膜で形成するなどし
て、磁気シールドすればよい。図7及び図8において符
号RM及びRM’は磁気抵抗素子素子10及び20の各抵
抗値である。なお、図示しないが、本発明の第二の磁気
抵抗素子30についても図7及び図8と同様に構成する
ことができる。
When the first magnetoresistive element 10 according to the present invention is applied to a rotation sensor, the conventional element shown in FIG. 11 is replaced with a main element as shown in FIGS. 7 (a) and 7 (b). The magnetoresistive element 10 of the invention may be combined with the resistor R 11 . FIG. 7A corresponds to FIG. In order to remove the influence of the temperature change for higher accuracy, the operation output may be taken as shown in FIGS. 8 (a) and 8 (b). To this end, FIG.
As shown in (a), two magnetoresistive elements 1 are formed on the substrate 16.
0 and 20 are provided. After the square second ferromagnetic thin film 12 and the ferromagnetic thin film 22 having the same shape and size as the thin film 12 are provided on the substrate 16 at intervals, the thin films 12 and 22 are connected. Next, square first ferromagnetic thin films 11 and 21 are provided on the thin films 12 and 22 via the non-magnetic films 13 and 23, respectively. The magnetoresistive element 20 also has a ferromagnetic tunnel effect like the magnetoresistive element 10. Here, in the magnetoresistive element 20 not on the detection side, the entire element is covered with a metal thin film 24 such as permalloy (FeNi alloy) with an insulating film sandwiched between the element and the first element of the element 20.
The ferromagnetic thin film 21 may be magnetically shielded by forming it with a non-magnetic film such as Al. In FIGS. 7 and 8, reference characters R M and R M ′ are resistance values of the magnetoresistive element elements 10 and 20, respectively. Although not shown, the second magnetoresistive element 30 of the present invention can also be configured in the same manner as in FIGS. 7 and 8.

【0023】[0023]

【発明の効果】以上述べたように、強磁性トンネル接合
を利用した従来の磁気抵抗素子の抵抗変化率(ΔR/
R)が室温で高々3%程度であり、また実用化されてい
る強磁性体磁気抵抗素子で高々6%程度であったもの
が、本発明の磁気抵抗素子によれば室温でも10%以上
の抵抗変化率が得られ、しかも2つの強磁性薄膜により
得られる磁化曲線を角形状のヒステリシス曲線になるよ
うにし、2つの強磁性薄膜の保磁力に差を設けることに
より、方形波出力を有する磁気抵抗曲線が得られる。
As described above, the rate of change in resistance (ΔR /
R) was about 3% at room temperature and about 6% for a practically used ferromagnetic magnetoresistive element, but according to the magnetoresistive element of the present invention, it was 10% or more at room temperature. A magnetic wave having a square wave output can be obtained by obtaining a rate of change in resistance and by making the magnetization curve obtained by the two ferromagnetic thin films into a square hysteresis curve so as to provide a difference in coercive force between the two ferromagnetic thin films. A resistance curve is obtained.

【0024】また、本発明の磁気抵抗素子は弱磁場にお
ける抵抗変化率の変化が大きいため磁場の変化を感度よ
く検出することができ、従来の磁気抵抗素子と異なり、
(a)高感度な増幅回路を必要とせず、(b)出力波形を方形
波形に変更する必要がなく、(c)動作点を偏倚させるた
めに磁石を用いてバイアス磁場を与える必要がなく、
(d)素子ピッチを磁極のピッチと整合する必要がない
等、構造や回路構成を簡単で小型化し得る利点がある。
これにより、回転センサの磁気エンコーダ、磁気センサ
などの磁気を検出する素子として好適に利用することが
できる。特に、第一の磁気抵抗素子のように2つの強磁
性薄膜の両方に磁気異方性がない場合には、外部磁場方
向が平面内のどの方向でも大きな抵抗変化率が得られ
る。この磁気抵抗素子を回転センサに利用する場合、磁
気異方性の磁化容易軸方向と外部磁場方向をあわせる必
要がないため、センサ取付け時の調整が容易である。ま
た第二の磁気抵抗素子のように片方の強磁性薄膜にのみ
磁気異方性を持つ場合には、この膜の磁化容易軸方向と
外部磁場方向を一致させる必要があるものの、両方に磁
気異方性がある場合に比べて両者の磁化容易軸を正確に
揃える必要がないため磁気抵抗素子の製造が容易であ
る。
Further, since the magnetoresistive element of the present invention has a large change in resistance change rate in a weak magnetic field, the change in magnetic field can be detected with high sensitivity, which is different from the conventional magnetoresistive element.
(a) No need for a highly sensitive amplifier circuit, (b) No need to change the output waveform to a square waveform, (c) No need to apply a bias magnetic field using a magnet to bias the operating point,
(d) It is not necessary to match the element pitch with the pitch of the magnetic poles, which is advantageous in that the structure and circuit configuration can be simplified and downsized.
Accordingly, it can be suitably used as an element for detecting magnetism such as a magnetic encoder of a rotation sensor or a magnetic sensor. In particular, when both the two ferromagnetic thin films have no magnetic anisotropy like the first magnetoresistive element, a large resistance change rate can be obtained in any direction of the external magnetic field in the plane. When this magnetoresistive element is used in a rotation sensor, it is not necessary to match the direction of the axis of easy magnetization of the magnetic anisotropy with the direction of the external magnetic field, and therefore, adjustment when mounting the sensor is easy. When only one ferromagnetic thin film has magnetic anisotropy like the second magnetoresistive element, it is necessary to match the direction of the easy axis of this film with the direction of the external magnetic field, but the magnetic anisotropy of both is different. Since it is not necessary to accurately align the axes of easy magnetization of both as compared with the case of being anisotropic, the manufacture of the magnetoresistive element is easy.

【0025】[0025]

【実施例】次に本発明の実施例を説明する。 <実施例1>図1に示すように、真空蒸着によりガラス
基板16の上にマスクを用いて10mm×10mmの正
方形状で厚さ100nmのFe薄膜12を作製した。そ
の際磁場を与えず、かつ膜の保磁力を小さくするために
基板温度を100℃とした。またこのときの蒸着速度は
0.3〜0.6nm/秒で真空度は約10-6Torrで
あった。次いでこのFe薄膜12の中心部にマスクを用
いて厚さ5nmで9mm×9mmの正方形状のAl膜1
3を高周波スパッタリングにより着膜させた。その際の
アルゴン圧は1.5mTorr、投入電力は4.4W/
cm2、スパッタリング速度は0.56nm/秒であっ
た。このAl膜13を空気中に24時間放置して表面を
酸化させ、薄いAl23からなる絶縁層を形成した。更
にAl膜13の中心部にマスクを用いて上記のFe薄膜
12より小さい正方形状の8mm×8mmのFe薄膜1
1を作製した。この成膜方法はFe薄膜11の保磁力を
大きくするために基板温度を室温にした以外は、Fe薄
膜12と同一条件で作製した。即ちFe薄膜12及び1
1はともに膜面内に磁気異方性を有しないようにした。
EXAMPLES Examples of the present invention will be described below. Example 1 As shown in FIG. 1, a Fe thin film 12 having a square shape of 10 mm × 10 mm and a thickness of 100 nm was formed on a glass substrate 16 by vacuum evaporation using a mask. At this time, the substrate temperature was set to 100 ° C. in order to reduce the coercive force of the film without applying a magnetic field. At this time, the vapor deposition rate was 0.3 to 0.6 nm / sec, and the degree of vacuum was about 10 -6 Torr. Next, using a mask in the center of the Fe thin film 12, a square Al film 1 having a thickness of 5 nm and a size of 9 mm × 9 mm is formed.
3 was deposited by high frequency sputtering. At that time, the argon pressure was 1.5 mTorr and the input power was 4.4 W /
cm 2 , and the sputtering rate was 0.56 nm / sec. The Al film 13 was left in the air for 24 hours to oxidize the surface, thereby forming an insulating layer made of thin Al 2 O 3 . Further, using a mask at the center of the Al film 13, a square Fe film 1 of 8 mm × 8 mm smaller than the Fe thin film 12 is used.
1 was produced. This film forming method was prepared under the same conditions as the Fe thin film 12 except that the substrate temperature was set to room temperature in order to increase the coercive force of the Fe thin film 11. That is, Fe thin films 12 and 1
No. 1 has no magnetic anisotropy in the film plane.

【0026】Fe薄膜11及び12の各一端に電極14
及び15を設け、それぞれの他端に電極17及び18を
設けて磁気抵抗素子10を得た。温度25℃において、
基板16の表面に平行にかつ図の矢印方向に磁場Hを磁
気抵抗素子10に与え、電極14及び15に一定電流を
流し、電極17及び18によりFe薄膜11と12との
間の電圧を測定した。この電流値と電圧値より素子10
の抵抗を算出した。
An electrode 14 is provided at each end of the Fe thin films 11 and 12.
And 15 are provided, and electrodes 17 and 18 are provided at the other end of each to obtain the magnetoresistive element 10. At a temperature of 25 ° C,
A magnetic field H is applied to the magnetoresistive element 10 parallel to the surface of the substrate 16 and in the direction of the arrow in the figure, a constant current is applied to the electrodes 14 and 15, and the voltage between the Fe thin films 11 and 12 is measured by the electrodes 17 and 18. did. From the current value and the voltage value, the element 10
Was calculated.

【0027】図4の磁気抵抗曲線に示すように、磁場H
の強さを変えたときの抵抗変化率(ΔR/R)は最大で
18%の極めて高い値であった。この磁気抵抗曲線はゼ
ロ磁場を中心とした対称な2つのほぼ方形波状の波形を
有する曲線である。これは図5に示すように、2つの強
磁性薄膜がいずれも角形状のヒステリシス曲線を持つ磁
化曲線を有するためである。磁気抵抗曲線の方形波の閾
値及びその幅は、基板温度を変えて強磁性薄膜を作製す
れば、任意に設定することができる。本実施例の磁気抵
抗素子10を用いて図7(a)に示す構成の回転センサ
を試作したところ、図6に示すような特別に波形整形す
ることなく方形波の出力特性が得られた。
As shown in the magnetic resistance curve of FIG. 4, the magnetic field H
The rate of change in resistance (ΔR / R) when the strength of was changed was an extremely high value of 18% at maximum. This magnetoresistive curve is a curve having two substantially square wave-like waveforms symmetrical about the zero magnetic field. This is because, as shown in FIG. 5, each of the two ferromagnetic thin films has a magnetization curve having a square hysteresis curve. The threshold of the square wave of the magnetoresistance curve and its width can be arbitrarily set by changing the substrate temperature to produce a ferromagnetic thin film. When a rotation sensor having the structure shown in FIG. 7A was prototyped using the magnetoresistive element 10 of this example, a square wave output characteristic as shown in FIG. 6 was obtained without special waveform shaping.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気異方性を有しない2つの強磁性薄
膜により強磁性トンネル接合を構成した磁気抵抗素子の
斜視図。
FIG. 1 is a perspective view of a magnetoresistive element in which a ferromagnetic tunnel junction is composed of two ferromagnetic thin films having no magnetic anisotropy according to the present invention.

【図2】本発明の一方の強磁性薄膜が磁気異方性を有し
ない2つの強磁性薄膜により強磁性トンネル接合を構成
した磁気抵抗素子の斜視図。
FIG. 2 is a perspective view of a magnetoresistive element in which one ferromagnetic thin film of the present invention constitutes a ferromagnetic tunnel junction by two ferromagnetic thin films having no magnetic anisotropy.

【図3】本発明の強磁性トンネル接合を利用した磁気抵
抗素子の原理を示す斜視図。
FIG. 3 is a perspective view showing the principle of a magnetoresistive element using the ferromagnetic tunnel junction of the present invention.

【図4】図1及び図2に示した磁気抵抗素子の磁気抵抗
曲線図。
FIG. 4 is a magnetoresistive curve diagram of the magnetoresistive element shown in FIGS. 1 and 2.

【図5】その磁化曲線図。FIG. 5 is a magnetization curve diagram thereof.

【図6】その入力磁界に対する出力特性を示す図。FIG. 6 is a diagram showing output characteristics with respect to the input magnetic field.

【図7】(a)図1に示した磁気抵抗素子を用いた回転
センサの構成図。 (b)その等価回路図。
FIG. 7A is a configuration diagram of a rotation sensor using the magnetoresistive element shown in FIG. (B) The equivalent circuit diagram.

【図8】(a)図7(a)の回転センサを更に高感度化
した場合の構成図。 (b)その等価回路図。
FIG. 8A is a configuration diagram when the rotation sensor of FIG. 7A is further highly sensitive. (B) The equivalent circuit diagram.

【図9】従来例の強磁性磁気抵抗効果を利用した磁気抵
抗素子の斜視図。
FIG. 9 is a perspective view of a magnetoresistive element utilizing a ferromagnetic magnetoresistive effect of a conventional example.

【図10】その磁気抵抗曲線。FIG. 10 shows its magnetoresistance curve.

【図11】従来例の磁気抵抗素子を用いた回転センサの
原理を示す図。
FIG. 11 is a diagram showing the principle of a rotation sensor using a conventional magnetoresistive element.

【図12】その回転センサの構成を示す斜視図。FIG. 12 is a perspective view showing the configuration of the rotation sensor.

【図13】図11の等価回路図。FIG. 13 is an equivalent circuit diagram of FIG. 11.

【図14】従来例の磁気抵抗素子を用いてバイアス磁場
のない場合の入力磁界に対する出力特性を示す図。
FIG. 14 is a diagram showing output characteristics with respect to an input magnetic field in the case where there is no bias magnetic field using the magnetoresistive element of the conventional example.

【図15】その出力波形と整形後の波形を示す図。FIG. 15 is a diagram showing the output waveform and the waveform after shaping.

【図16】従来例の磁気抵抗素子を用いてバイアス磁場
のある場合の入力磁界に対する出力特性を示す図。
FIG. 16 is a diagram showing output characteristics with respect to an input magnetic field when a bias magnetic field is used using the magnetoresistive element of the conventional example.

【符号の説明】[Explanation of symbols]

10,20 第一の磁気抵抗素子 30 第二の磁気抵抗素子 11,21 第1強磁性薄膜 12,22 第2強磁性薄膜 13,23 非磁性膜 14,15 第1電極 16 基板 17,18 第2電極 31 第3強磁性薄膜 32 第4強磁性薄膜 33 非磁性膜 34,35 第3電極 36 基板 37,38 第4電極 10 and 20 1st magnetoresistive element 30 2nd magnetoresistive element 11 and 21 1st ferromagnetic thin film 12 and 22 2nd ferromagnetic thin film 13 and 23 non-magnetic film 14 and 15 1st electrode 16 substrate 17 and 18th 2 electrodes 31 third ferromagnetic thin film 32 fourth ferromagnetic thin film 33 non-magnetic film 34,35 third electrode 36 substrate 37,38 fourth electrode

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 第1強磁性薄膜(11)と第2強磁性薄膜(1
2)とを薄い絶縁層を含む非磁性膜(13)を挟んで接合し、
これにより生じる強磁性トンネル接合を利用した磁気抵
抗素子(10)において、 前記第1及び第2強磁性薄膜(11,12)はともに膜面内に
磁気異方性を有さず、 前記第1強磁性薄膜(11)の保磁力が前記第2強磁性薄膜
(12)の保磁力より大きく、 前記第1強磁性薄膜(11)及び前記第2強磁性薄膜(12)の
それぞれの磁化曲線が角形状のヒステリシス曲線を有
し、全体の磁化曲線が階段状で角形状のヒステリシス曲
線であることを特徴とする磁気抵抗素子。
1. A first ferromagnetic thin film (11) and a second ferromagnetic thin film (1)
2) and are joined by sandwiching a non-magnetic film (13) including a thin insulating layer,
In the magnetoresistive element (10) using the ferromagnetic tunnel junction generated by this, both the first and second ferromagnetic thin films (11, 12) have no magnetic anisotropy in the film plane, and The coercive force of the ferromagnetic thin film (11) is the second ferromagnetic thin film.
The magnetization curves of the first ferromagnetic thin film (11) and the second ferromagnetic thin film (12) each have a square hysteresis curve, and the entire magnetization curve is stepwise. A magnetoresistive element having a square hysteresis curve.
【請求項2】 第1強磁性薄膜(11)の保磁力が前記第2
強磁性薄膜(12)の保磁力より2倍を越えない程度に大き
い請求項1記載の磁気抵抗素子。
2. The coercive force of the first ferromagnetic thin film (11) is the second coercive force.
2. The magnetoresistive element according to claim 1, which is larger than the coercive force of the ferromagnetic thin film (12) by no more than twice.
【請求項3】 基板(16)上に第1及び第2強磁性薄膜(1
1,12)を形成するときに前記第1強磁性薄膜(11)の形成
時の基板温度と第2強磁性薄膜(12)の形成時の基板温度
を異ならせて前記第1及び第2強磁性薄膜(11,12)がそ
れぞれ形成された請求項1記載の磁気抵抗素子。
3. A first and a second ferromagnetic thin film (1) on a substrate (16).
When forming the first and the second ferromagnetic thin films 12, the substrate temperature at the time of forming the first ferromagnetic thin film 11 is made different from that at the time of forming the first and second strong thin films 12. The magnetoresistive element according to claim 1, wherein magnetic thin films (11, 12) are respectively formed.
【請求項4】 第3強磁性薄膜(31)と第4強磁性薄膜(3
2)とを薄い絶縁層を含む非磁性膜(33)を挟んで接合し、
これにより生じる強磁性トンネル接合を利用した磁気抵
抗素子(30)において、 前記第3強磁性薄膜(31)が膜面内に磁気異方性を有し、
前記第4強磁性薄膜(32)が膜面内に磁気異方性を有さ
ず、 前記第3強磁性薄膜(31)の磁化容易軸方向に磁場を印加
した場合に前記第3強磁性薄膜(31)の磁化容易軸方向の
保磁力が前記第4強磁性薄膜(32)の保磁力より大きく、 前記第3強磁性薄膜(31)及び前記第4強磁性薄膜(32)の
それぞれの磁化曲線が角形状のヒステリシス曲線を有
し、全体の磁化曲線が階段状で角形状のヒステリシス曲
線であることを特徴とする磁気抵抗素子。
4. A third ferromagnetic thin film (31) and a fourth ferromagnetic thin film (3
2) and are joined by sandwiching a non-magnetic film (33) including a thin insulating layer,
In the magnetoresistive element (30) using the ferromagnetic tunnel junction generated by this, the third ferromagnetic thin film (31) has magnetic anisotropy in the film plane,
When the fourth ferromagnetic thin film (32) does not have magnetic anisotropy in the film plane and a magnetic field is applied in the easy axis direction of the third ferromagnetic thin film (31), the third ferromagnetic thin film The coercive force of the easy magnetization axis direction of (31) is larger than the coercive force of the fourth ferromagnetic thin film (32), and the respective magnetizations of the third ferromagnetic thin film (31) and the fourth ferromagnetic thin film (32) A magnetoresistive element, wherein the curve has a square hysteresis curve, and the entire magnetization curve is a stepwise square hysteresis curve.
【請求項5】 第3強磁性薄膜(31)の磁化容易軸方向の
保磁力が前記第4強磁性薄膜(32)の保磁力より2倍を越
えない程度に大きい請求項4記載の磁気抵抗素子。
5. The magnetic resistance according to claim 4, wherein the coercive force of the third ferromagnetic thin film (31) in the direction of the easy axis of magnetization is not larger than twice the coercive force of the fourth ferromagnetic thin film (32). element.
【請求項6】 基板(36)上に第3及び第4強磁性薄膜(3
1,32)を形成するときに前記第3強磁性薄膜(31)の形成
時の基板温度と第4強磁性薄膜(32)の形成時の基板温度
を異ならせて前記第3及び第4強磁性薄膜(31,32)がそ
れぞれ形成された請求項4記載の磁気抵抗素子。
6. The third and fourth ferromagnetic thin films (3) on the substrate (36).
1, 32) is formed, the substrate temperature at the time of forming the third ferromagnetic thin film (31) and the substrate temperature at the time of forming the fourth ferromagnetic thin film (32) are made different so that the third and fourth strong films are formed. The magnetoresistive element according to claim 4, wherein each of the magnetic thin films (31, 32) is formed.
【請求項7】 第1強磁性薄膜(11)又は第3強磁性薄膜
(31)がFeもしくはFeとCoを主成分とし、第2強磁
性薄膜(12)又は第4強磁性薄膜(32)がFeを主成分とす
る請求項1又は4記載の磁気抵抗素子。
7. A first ferromagnetic thin film (11) or a third ferromagnetic thin film
The magnetoresistive element according to claim 1 or 4, wherein (31) has Fe or Fe and Co as main components, and the second ferromagnetic thin film (12) or fourth ferromagnetic thin film (32) has Fe as main components.
【請求項8】 第1強磁性薄膜(11)又は第3強磁性薄膜
(31)と第2強磁性薄膜(12)又は第4強磁性薄膜(32)とが
いずれもFe単層膜である請求項7記載の磁気抵抗素
子。
8. A first ferromagnetic thin film (11) or a third ferromagnetic thin film
8. The magnetoresistive element according to claim 7, wherein each of the (31) and the second ferromagnetic thin film (12) or the fourth ferromagnetic thin film (32) is a Fe single layer film.
【請求項9】 絶縁層を含む非磁性膜(13,33)が非磁性
金属膜を酸化させた酸化層を含む請求項1又は4記載の
磁気抵抗素子。
9. The magnetoresistive element according to claim 1, wherein the nonmagnetic film (13, 33) including an insulating layer includes an oxide layer obtained by oxidizing a nonmagnetic metal film.
【請求項10】 非磁性金属膜がAlであり、その酸化
層がAl23である請求項9記載の磁気抵抗素子。
10. The magnetoresistive element according to claim 9, wherein the non-magnetic metal film is Al and the oxide layer thereof is Al 2 O 3 .
【請求項11】 非磁性金属膜がスパッタリング法によ
り作製された請求項9又は10記載の磁気抵抗素子。
11. The magnetoresistive element according to claim 9, wherein the nonmagnetic metal film is formed by a sputtering method.
JP11694895A 1995-05-16 1995-05-16 Magnetoresistive element Expired - Lifetime JP3282444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11694895A JP3282444B2 (en) 1995-05-16 1995-05-16 Magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11694895A JP3282444B2 (en) 1995-05-16 1995-05-16 Magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH08316548A true JPH08316548A (en) 1996-11-29
JP3282444B2 JP3282444B2 (en) 2002-05-13

Family

ID=14699703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11694895A Expired - Lifetime JP3282444B2 (en) 1995-05-16 1995-05-16 Magnetoresistive element

Country Status (1)

Country Link
JP (1) JP3282444B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174736B1 (en) 1997-12-12 2001-01-16 Nec Corporation Method of fabricating ferromagnetic tunnel junction device
JP2001345498A (en) * 2000-06-02 2001-12-14 Yamaha Corp Magnetic sensor and manufacturing method thereof
US6341053B1 (en) 1997-10-30 2002-01-22 Nec Corporation Magnetic tunnel junction elements and their fabrication method
US6639766B2 (en) 1997-12-05 2003-10-28 Nec Corporation Magneto-resistance effect type composite head and production method thereof
KR100467463B1 (en) * 1999-05-28 2005-01-24 마쯔시다덴기산교 가부시키가이샤 Magnetoresistant device, method for manufacturing the same, and magnetic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341053B1 (en) 1997-10-30 2002-01-22 Nec Corporation Magnetic tunnel junction elements and their fabrication method
US6639766B2 (en) 1997-12-05 2003-10-28 Nec Corporation Magneto-resistance effect type composite head and production method thereof
US6174736B1 (en) 1997-12-12 2001-01-16 Nec Corporation Method of fabricating ferromagnetic tunnel junction device
KR100467463B1 (en) * 1999-05-28 2005-01-24 마쯔시다덴기산교 가부시키가이샤 Magnetoresistant device, method for manufacturing the same, and magnetic component
JP2001345498A (en) * 2000-06-02 2001-12-14 Yamaha Corp Magnetic sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP3282444B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
US7924534B2 (en) Magnetic sensor
JP2002357489A (en) Stress sensor
US20030070497A1 (en) Rotation angle sensor capable of accurately detecting rotation angle
JP2002522792A (en) Magnetic field sensor with giant magnetoresistive material or spin tunnel junction and sensitivity perpendicular to the layer
KR100492040B1 (en) Magnetic detector
JPH0870148A (en) Magnetoresistance element
JP3089828B2 (en) Ferromagnetic magnetoresistive element
RU2436200C1 (en) Magnetoresistive sensor
JPH0870149A (en) Magnetoresistance element
JP3562993B2 (en) Magnetic detector
CN110612582B (en) Magnetic device
JP3282444B2 (en) Magnetoresistive element
EP4022327A1 (en) Tmr sensor with magnetic tunnel junctions with a free layer having an intrinsic anisotropy
JP2000180524A (en) Magnetic field sensor
JP3035836B2 (en) Magnetoresistive element
JP2000193407A (en) Magnetic positioning device
JP3035838B2 (en) Magnetoresistance composite element
JP2004340953A (en) Magnetic field sensing element, manufacturing method therefor, and device using them
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
KR20010033533A (en) Magnetoresistant device and a magnetic sensor comprising the same
JP2002357488A (en) Stress sensor
JPH0266479A (en) Magnetoresistance effect element
JP3013031B2 (en) Magnetoresistance effect element and magnetoresistance sensor
JP2000091664A (en) Magnetic device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

EXPY Cancellation because of completion of term