JP2002357489A - Stress sensor - Google Patents

Stress sensor

Info

Publication number
JP2002357489A
JP2002357489A JP2001164586A JP2001164586A JP2002357489A JP 2002357489 A JP2002357489 A JP 2002357489A JP 2001164586 A JP2001164586 A JP 2001164586A JP 2001164586 A JP2001164586 A JP 2001164586A JP 2002357489 A JP2002357489 A JP 2002357489A
Authority
JP
Japan
Prior art keywords
magnetization
stress
free layer
layer
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001164586A
Other languages
Japanese (ja)
Inventor
Toshio Fukazawa
利雄 深澤
Satoru Mitani
覚 三谷
Tadashi Okamoto
匡史 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001164586A priority Critical patent/JP2002357489A/en
Publication of JP2002357489A publication Critical patent/JP2002357489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-output sensor as a stress sensor using a magnetoresistance effect element. SOLUTION: This stress sensor is provided with a magnetoresistance effect element constructed by sequentially layering a fixed magnetization layer magnetized in one fixed direction, an insulation layer, and a free magnetization layer having magnetostriction. In this way, a MR ratio can be increased, and consequently, the stress sensor with a high output can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、歪みにより生じた
応力を電気信号に変換して出力する応力検知センサーに
関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a stress detection sensor that converts stress generated by strain into an electric signal and outputs the signal.

【0002】[0002]

【従来の技術】従来から、応力検知センサーは、圧力セ
ンサー、および加速度センサー等に利用されており、応
力センサーとして、半導体センサー、および金属応力セ
ンサー等が利用されている。
2. Description of the Related Art Conventionally, stress detection sensors have been used for pressure sensors, acceleration sensors, and the like, and semiconductor sensors, metal stress sensors, and the like have been used as stress sensors.

【0003】この応力センサーの一つとして、特開平7
−209100号公報のように、磁気抵抗効果を用いた
応力センサーが提案されている。
One of such stress sensors is disclosed in
As in Japanese Patent Application Laid-Open No. 209100, a stress sensor using a magnetoresistance effect has been proposed.

【0004】この応力センサーは図13に示すように、
強磁性薄膜からなる略正方形形状をした磁気抵抗効果素
子131に、対角線方向に一軸異方性を設定し、電流に
対し、ほぼ45゜の角度に磁化することにより、歪みの
加わる方向が正方向に加えられたときと、負方向に加え
られたときとで異なる抵抗値を発生する。
[0004] As shown in FIG.
Uniaxial anisotropy is set in the diagonal direction on the magnetoresistive element 131 having a substantially square shape made of a ferromagnetic thin film, and the current is magnetized at an angle of approximately 45 ° so that the direction in which the strain is applied is positive. And a different resistance value when applied in the negative direction.

【0005】[0005]

【発明が解決しようとする課題】ところで、この従来の
磁気抵抗効果素子では異方性磁気抵抗効果を用いている
ため、抵抗変化量が3%程度と小さく、小さな歪み量で
は出力が小さく、また、歪み量が大きくなると出力の線
形性が悪くなるという問題点を有していた。
However, since the conventional magnetoresistive element uses the anisotropic magnetoresistive effect, the resistance change is as small as about 3%, and the output is small with a small amount of distortion. In addition, there is a problem that the output linearity deteriorates when the amount of distortion increases.

【0006】本発明はこのような課題を解決するために
なされたもので、出力が大きく、出力の線形性の大きい
応力センサーを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and has as its object to provide a stress sensor having a large output and a large output linearity.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、本発明の請求項1に記載の応力センサーは、磁化が
一方向に固着されている磁化固着層と、絶縁層と、磁歪
を有する磁化自由層とを順次積層してなる磁気抵抗効果
素子を備えた応力センサーであって、前記磁気抵抗効果
素子に応力が印加されたときに、前記磁気抵抗効果素子
の抵抗値変化から、印加された応力を検知する。磁気抵
抗効果素子は、いわゆるTMR(トンネル磁気抵抗効
果)素子を構成するため、MR比が大きく、出力が高い
応力センサーを得ることができる。
In order to achieve this object, a stress sensor according to a first aspect of the present invention has a magnetization fixed layer in which magnetization is fixed in one direction, an insulating layer, and magnetostriction. A stress sensor including a magnetoresistive element in which a magnetization free layer is sequentially stacked, wherein when a stress is applied to the magnetoresistive element, the stress is applied based on a change in the resistance value of the magnetoresistive element. Detected stress. Since the magnetoresistive element constitutes a so-called TMR (tunnel magnetoresistive effect) element, a stress sensor having a large MR ratio and a high output can be obtained.

【0008】本発明の請求項2に記載の発明は、請求項
1に記載の応力センサーにおいて、前記磁気抵抗効果素
子を円形状にパターニングしたものである。この構成に
より、磁気抵抗効果素子に、応力が印加されたとき、逆
磁歪効果により発生した異方性エネルギーにより、磁化
自由層の磁化が回転する際、形状が円形であるため、反
磁界係数は、磁化がどの方向であっても同じであるの
で、形状異方性による影響を受けることなく、抵抗変化
の線形性を向上させるという作用を有する。これによ
り、高出力で線形成の良い応力センサーを得ることがで
きる。
According to a second aspect of the present invention, in the stress sensor according to the first aspect, the magnetoresistance effect element is patterned in a circular shape. With this configuration, when a stress is applied to the magnetoresistive effect element, the anisotropic energy generated by the inverse magnetostriction effect causes the magnetization of the magnetization free layer to rotate. Since the magnetization is the same in any direction, it has the effect of improving the linearity of the resistance change without being affected by the shape anisotropy. As a result, a high-output stress sensor with good line formation can be obtained.

【0009】本発明の請求項3に記載の発明は、請求項
1、あるいは請求項2のいずれかに記載の応力センサー
において、前記磁気抵抗効果素子は、前記磁化自由層上
に、さらに導体層と磁化固着層とを順次積層してなるも
のとしたものである。この構成により、MR比を15%
程度にすることも可能で、応力に対する抵抗変化率をさ
らに上げることができる。これにより、高出力で線形成
の良い応力センサーを得ることができる。
According to a third aspect of the present invention, in the stress sensor according to any one of the first and second aspects, the magnetoresistive effect element further comprises a conductor layer on the magnetization free layer. And the magnetization fixed layer are sequentially laminated. With this configuration, the MR ratio is increased by 15%.
The resistance change rate with respect to stress can be further increased. As a result, a high-output stress sensor with good line formation can be obtained.

【0010】本発明の請求項4に記載の発明は、請求項
1ないし請求項3のいずれかに記載の応力センサーにお
いて、応力が印加されることにより、前記磁化固着層と
前記磁化自由層との間に、層間結合磁界が発生した場
合、前記磁化固着層の磁化方向と、前記磁化自由層の磁
化容易軸方向とを略直交させ、前記層間結合磁界を打ち
消すように、バイアス磁界を印加するものである。無応
力時において、磁化固着層の磁化と、磁化自由層の磁化
を略直交させることができ、磁気抵抗効果素子の抵抗変
化の線形性を向上させるという作用を有する。これによ
り、高出力で線形成の良い応力センサーを得ることがで
きる。
According to a fourth aspect of the present invention, in the stress sensor according to any one of the first to third aspects, when a stress is applied, the magnetization fixed layer and the magnetization free layer are separated from each other. When an interlayer coupling magnetic field is generated during this time, a bias magnetic field is applied so that the magnetization direction of the magnetization fixed layer and the easy axis direction of the magnetization free layer are substantially orthogonal to each other and the interlayer coupling magnetic field is canceled. Things. At the time of no stress, the magnetization of the magnetization fixed layer and the magnetization of the magnetization free layer can be made substantially orthogonal to each other, and has an effect of improving the linearity of the resistance change of the magnetoresistive element. As a result, a high-output stress sensor with good line formation can be obtained.

【0011】本発明の請求項5に記載の発明は、請求項
1ないし請求項3のいずれかに記載の応力センサーにお
いて、磁化自由層に対し、磁化容易軸方向にバイアス磁
界を印加するとともに、前記磁化自由層の磁化容易軸と
前記磁化固着層の磁化方向との角度αと、前記バイアス
磁界とが、Hk×cosα×sinα+Hbias×cosα+Hint
=0、かつ−Hk×cos(2α)+Hbias×sinα>0(Hk:
磁化自由層の異方性磁界、Hint:磁化固着層と磁化自
由層との層間結合磁界、Hbias:磁化自由層に対し、磁
化容易軸方向に印加するバイアス磁界)を略満たすもの
としたものである。この構成により、磁気抵抗素子が層
間結合磁界Hintを有する場合においても、応力印加が
ない状態の時の磁化自由層の磁化方向と、磁化固着層の
磁化方向を直交させることができるため、応力の印加に
応じて、磁気抵抗効果素子の抵抗値の変化量を大きくす
るという作用を有する。これにより、高出力で線形成の
良い応力センサーを得ることができる。
According to a fifth aspect of the present invention, in the stress sensor according to any one of the first to third aspects, a bias magnetic field is applied to the magnetization free layer in the direction of the easy axis of magnetization. The angle α between the easy axis of the magnetization free layer and the magnetization direction of the magnetization pinned layer and the bias magnetic field are Hk × cosα × sinα + Hbias × cosα + Hint
= 0 and −Hk × cos (2α) + Hbias × sinα> 0 (Hk:
An anisotropic magnetic field of the magnetization free layer, Hint: an interlayer coupling magnetic field between the magnetization fixed layer and the magnetization free layer, and Hbias: a bias magnetic field applied to the magnetization free layer in the easy axis direction. is there. With this configuration, even when the magnetoresistive element has the interlayer coupling magnetic field Hint, the magnetization direction of the magnetization free layer when no stress is applied and the magnetization direction of the magnetization fixed layer can be made orthogonal to each other. This has the effect of increasing the amount of change in the resistance value of the magnetoresistive element according to the application. As a result, a high-output stress sensor with good line formation can be obtained.

【0012】本発明の請求項6に記載の発明は、請求項
1ないし請求項5のいずれかに記載の応力センサーにお
いて、前記応力の印加方向が、前記磁化固着層の磁化方
向に対し+45゜あるいは−45゜のいずれかであるも
のとしたものである。この構成により、磁気抵抗効果素
子の抵抗変化は応力の正負に対して線形性が向上すると
いう作用を有する。これにより、高出力で線形成の良い
応力センサーを得ることができる。
According to a sixth aspect of the present invention, in the stress sensor according to any one of the first to fifth aspects, the direction in which the stress is applied is + 45 ° with respect to the magnetization direction of the magnetization fixed layer. Or -45 °. With this configuration, the resistance change of the magnetoresistive element has an effect that linearity is improved with respect to the positive or negative of the stress. As a result, a high-output stress sensor with good line formation can be obtained.

【0013】本発明の請求項7に記載の発明は、請求項
1ないし請求項5のいずれかに記載の応力センサーにお
いて、前記応力の印加方向が、無応力時の磁化自由層の
磁化方向に対し、+45゜あるいは−45゜のいずれか
であるものとしたものである。この構成により、磁気抵
抗効果素子の出力を増加させると共に、出力の線形性を
向上させるという作用を有する。これにより、高出力で
線形成の良い応力センサーを得ることができる。
According to a seventh aspect of the present invention, in the stress sensor according to any one of the first to fifth aspects, the direction in which the stress is applied is the same as the direction of magnetization of the magnetization free layer when there is no stress. On the other hand, the angle is either + 45 ° or −45 °. With this configuration, the output of the magnetoresistive effect element is increased, and the linearity of the output is improved. As a result, a high-output stress sensor with good line formation can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて説明する。 (実施の形態1)図1は本発明の実施の形態1における
応力センサーの斜視図である。図1に示すように、磁気
抵抗効果素子1は電極11a上に反強磁性層10、磁化
固着層2、絶縁層3、および磁化自由層4が順次積層さ
れ、その上に電極11bが積層されている。電極11
a、および11bにより、磁気抵抗効果素子1の膜厚方
向にセンス電流が印加される。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 is a perspective view of a stress sensor according to Embodiment 1 of the present invention. As shown in FIG. 1, in the magnetoresistive element 1, an antiferromagnetic layer 10, a magnetization fixed layer 2, an insulating layer 3, and a magnetization free layer 4 are sequentially stacked on an electrode 11a, and an electrode 11b is stacked thereon. ing. Electrode 11
By means of a and 11b, a sense current is applied in the thickness direction of the magnetoresistive effect element 1.

【0015】図2に磁化固着層3、絶縁層4、および磁
化自由層5を記載し、磁化状態について説明する。
FIG. 2 illustrates the magnetization fixed layer 3, the insulating layer 4, and the magnetization free layer 5, and the magnetization state will be described.

【0016】磁化固着層2の磁化Mpin5は一方向に固
着されている。これは、反強磁性層10により、磁化固
着層2の磁化Mpin5が一方向に固着するためである。
本実施の形態では反強磁性層を用いたが、硬質磁性層を
用いてもよい。
The magnetization Mpin 5 of the magnetization fixed layer 2 is fixed in one direction. This is because the magnetization Mpin 5 of the magnetization fixed layer 2 is fixed in one direction by the antiferromagnetic layer 10.
In the present embodiment, the antiferromagnetic layer is used, but a hard magnetic layer may be used.

【0017】磁化自由層4は、一軸異方性を有し、磁化
容易軸方向6を磁気抵抗効果素子1の長手方向に設定し
ている。磁化自由層4の磁化Mfree7は応力無印加時に
は容易軸方向6に平行である。磁化自由層4の磁歪定数
λは正である。なお、磁化固着層2の磁化Mpin5と磁
化自由層4の磁化容易軸6とは略直交しており、磁化M
free7は無応力時には磁化容易軸方向を向くため、磁化
Mpin5と磁化Mfree7との角度は、応力無印加時には
略直交している。
The magnetization free layer 4 has uniaxial anisotropy, and the easy axis direction 6 is set in the longitudinal direction of the magnetoresistive element 1. The magnetization Mfree7 of the magnetization free layer 4 is parallel to the easy axis direction 6 when no stress is applied. The magnetostriction constant λ of the magnetization free layer 4 is positive. Note that the magnetization Mpin 5 of the magnetization fixed layer 2 and the easy axis 6 of the magnetization free layer 4 are substantially orthogonal to each other.
Since free7 is oriented in the direction of the axis of easy magnetization when no stress is applied, the angle between the magnetization Mpin5 and the magnetization Mfree7 is substantially orthogonal when no stress is applied.

【0018】磁化固着層2の磁化を固着するための反強
磁性膜はPtMnで形成し、磁化固着層2はCoFeで形成し、
絶縁層3はAlを自然酸化したAl2O3で形成し、磁化自由
層4はCoFeで形成した。
The antiferromagnetic film for fixing the magnetization of the magnetization fixed layer 2 is formed of PtMn, and the magnetization fixed layer 2 is formed of CoFe.
The insulating layer 3 was formed of Al 2 O 3 obtained by naturally oxidizing Al, and the magnetization free layer 4 was formed of CoFe.

【0019】磁気抵抗効果素子1における磁化固着層2
の磁化方向と磁化自由層4の磁化容易軸とを設定するた
め、まず、磁化固着層2の磁化を固着させたい方向に磁
場を印加しながら300゜C程度の熱処理を所定の時間
行い、続いて温度250゜C程度に下げると共に、印加
磁場を、設定する磁化自由層4の磁化容易軸方向に向け
所定の時間、熱処理を行う。
Fixed magnetization layer 2 in magnetoresistance effect element 1
First, a heat treatment of about 300 ° C. is performed for a predetermined time while applying a magnetic field in a direction in which the magnetization of the magnetization fixed layer 2 is to be fixed, in order to set the magnetization direction of the magnetization free layer 4 and the easy axis of magnetization. The temperature is lowered to about 250 ° C., and the applied magnetic field is heat-treated for a predetermined time in the direction of the easy axis of magnetization of the magnetization free layer 4 to be set.

【0020】磁気抵抗効果素子1の抵抗値は、磁化固着
層2の磁化Mpin5と磁化自由層4の磁化Mfree7の角
度に依存し、角度が0°(平行)の時、抵抗値は最小と
なり、角度が180゜(反平行)の時、最大となる。
The resistance value of the magnetoresistive element 1 depends on the angle between the magnetization Mpin 5 of the magnetization pinned layer 2 and the magnetization Mfree 7 of the magnetization free layer 4, and when the angle is 0 ° (parallel), the resistance value becomes minimum, When the angle is 180 ° (anti-parallel), it becomes maximum.

【0021】図2中、矢印8、および9は応力の印加方
向であり、互いに直交しており、本実施の形態では矢印
8と磁化固着層Mpinとの角度は45゜とした。
In FIG. 2, arrows 8 and 9 indicate the directions in which the stress is applied, and are perpendicular to each other. In this embodiment, the angle between the arrow 8 and the magnetization fixed layer Mpin is 45 °.

【0022】次に、応力印加時の動作について説明す
る。
Next, the operation at the time of applying a stress will be described.

【0023】磁気抵抗効果素子1には電極11a、およ
び11bにより、磁気抵抗効果素子1の膜厚方向にセン
ス電流が印加されている。
A sense current is applied to the magnetoresistive element 1 in the thickness direction of the magnetoresistive element 1 by the electrodes 11a and 11b.

【0024】磁気抵抗効果素子1に矢印8の方向に引っ
張り応力σ(>0)が印加されると、磁歪の逆効果によ
り、応力印加方向8の方向に異方性エネルギーEσ(=
3λσ/2>0)が生じるため、磁化自由層4の磁化M
free7は、応力印加方向8の方向へ回転する(図2
(b))。従って、磁化自由層の磁化Mfree7と磁化固
着層5の磁化Mpin5との角度が90゜より小さくなる
ため、磁気抵抗効果素子1の抵抗値が減少する。
When a tensile stress σ (> 0) is applied to the magnetoresistive element 1 in the direction of arrow 8, the anisotropic energy Eσ (=
3λσ / 2> 0), the magnetization M of the magnetization free layer 4
free7 rotates in the direction of the stress application direction 8 (see FIG. 2).
(B)). Accordingly, since the angle between the magnetization Mfree7 of the magnetization free layer and the magnetization Mpin5 of the magnetization fixed layer 5 becomes smaller than 90 °, the resistance value of the magnetoresistive element 1 decreases.

【0025】磁気抵抗効果素子1に矢印8の方向に圧縮
応力σ(<0)が印加されると、上記の場合と同様に磁
歪の逆効果により、異方性エネルギーEσ(=−3λσ
/2<0)が生じるが、このときは、矢印9の方向に異
方性が生じることとなり、磁化自由層4の磁化Mfree7
は、矢印9の方向へ回転する(図2(c))。従って、
磁化自由層4の磁化Mfree7と磁化固着層5との角度が
90゜より大きくなるため、磁気抵抗効果素子1の抵抗
値が増加する。
When a compressive stress σ (<0) is applied to the magnetoresistive element 1 in the direction of arrow 8, the anisotropic energy Eσ (= −3λσ) is obtained due to the adverse effect of magnetostriction as in the above case.
/ 2 <0), but in this case, anisotropy occurs in the direction of arrow 9 and magnetization Mfree7 of magnetization free layer 4 is generated.
Rotates in the direction of arrow 9 (FIG. 2C). Therefore,
Since the angle between the magnetization Mfree 7 of the magnetization free layer 4 and the magnetization fixed layer 5 is larger than 90 °, the resistance value of the magnetoresistive element 1 increases.

【0026】また、引っ張り応力σが矢印9の方向に印
加されたときは、矢印9の方向に異方性が発生し、磁化
自由層の磁化Mfree7は、矢印9の方向へ回転(図2
(c))し、磁気抵抗効果素子1の抵抗値が増加し、圧
縮応力σが矢印9の方向に印加されたときは、矢印8の
方向に異方性が発生し、磁化自由層の磁化Mfree7は、
矢印8の方向へ回転(図2(b))し、磁気抵抗効果素
子1の抵抗値が減少する。
When a tensile stress σ is applied in the direction of arrow 9, anisotropy occurs in the direction of arrow 9, and the magnetization Mfree7 of the magnetization free layer rotates in the direction of arrow 9 (FIG. 2).
(C)) Then, when the resistance value of the magnetoresistive element 1 increases and a compressive stress σ is applied in the direction of arrow 9, anisotropy occurs in the direction of arrow 8 and the magnetization of the magnetization free layer Mfree7 is
Rotation in the direction of arrow 8 (FIG. 2B) causes the resistance of the magnetoresistive element 1 to decrease.

【0027】このように、印加する応力の方向を矢印8
または9の方向いずれかの方向に設定することにより、
応力が引っ張り応力であるか、圧縮応力であるかに応じ
て、抵抗値が変化する。
Thus, the direction of the applied stress is indicated by the arrow 8.
Or by setting one of the 9 directions,
The resistance value changes depending on whether the stress is a tensile stress or a compressive stress.

【0028】矢印8は磁化固着層5の磁化Mpin5に対
し、略45゜の角度を有しており、矢印9は矢印8に対
して直交している。
The arrow 8 has an angle of about 45 ° with respect to the magnetization Mpin 5 of the magnetization fixed layer 5, and the arrow 9 is orthogonal to the arrow 8.

【0029】磁気抵抗効果素子1の磁気抵抗変化率(M
R比)が15%、磁歪定数λが5×10-6の場合の応力に
対する抵抗変化率を図3に示す。応力は矢印9方向に印
加した。図3に、従来の磁気抵抗効果素子(磁気抵抗変
化率3%)を用いたときの抵抗変化率を示す。従来の磁
気抵抗効果素子の磁歪定数は5×10-6とした。
The rate of change in magnetoresistance of the magnetoresistance effect element 1 (M
FIG. 3 shows the rate of change in resistance with respect to stress when the R ratio is 15% and the magnetostriction constant λ is 5 × 10 −6 . Stress was applied in the direction of arrow 9. FIG. 3 shows a resistance change rate when a conventional magnetoresistance effect element (a magnetoresistance change rate of 3%) is used. The magnetostriction constant of the conventional magnetoresistance effect element was set to 5 × 10 −6 .

【0030】図3に示すように、本実施の形態の磁気抵
抗効果素子1では、MR比が大きいため、応力による抵
抗変化率も大きくなっていることがわかる。本実施の形
態の磁気抵抗効果素子では、絶縁層3の膜厚や磁化自由
層4の膜厚、および材料等を最適化することにより、M
R比をさらに増大することができる。
As shown in FIG. 3, in the magnetoresistive element 1 of the present embodiment, the MR ratio is large, so that the rate of change in resistance due to stress is also large. In the magnetoresistive effect element according to the present embodiment, by optimizing the thickness of the insulating layer 3, the thickness of the magnetization free layer 4, the material, and the like, the M
The R ratio can be further increased.

【0031】また、磁化自由層6の上に絶縁層、および
磁化固着層をさらに積層するいわゆるデュアル構造とす
ることにより、MR比を15%程度にすることも可能
で、応力に対する抵抗変化率をさらに上げることができ
る。
By forming a so-called dual structure in which an insulating layer and a magnetization fixed layer are further laminated on the magnetization free layer 6, the MR ratio can be made about 15%, and the resistance change rate with respect to stress can be reduced. Can be raised further.

【0032】また、従来の磁気抵抗効果素子のシート抵
抗は7Ω程度と小さく、小さい応力を検知する際、抵抗
変化量も小さいため、読みとり誤差が発生する。従来の
磁気抵抗効果素子の抵抗値を大きくするためには、磁気
抵抗効果素子のパターン形状をセンス電流の流れる方向
に長くすることが必要となるが、そうなると、磁気抵抗
効果素子の形状が大きくなり、応力センサーの小型化が
困難となる。
Further, the sheet resistance of the conventional magnetoresistance effect element is as small as about 7Ω, and when detecting a small stress, a reading error occurs due to a small resistance change amount. In order to increase the resistance value of the conventional magnetoresistive element, it is necessary to lengthen the pattern shape of the magnetoresistive element in the direction in which the sense current flows, but in such a case, the shape of the magnetoresistive element becomes large. This makes it difficult to reduce the size of the stress sensor.

【0033】一方、本発明の磁気抵抗効果素子によれ
ば、抵抗値は50Ω/μm2程度であるが、本発明の磁
気抵抗効果素子は、電流を膜厚方向に印加するため、電
流の流れる断面積がパターン形状となり、磁気抵抗効果
素子の形状を小さくすれば、抵抗値は増大するため、微
小な領域の微小な応力を検知できるというさらなる効果
を有する。
On the other hand, according to the magnetoresistive element of the present invention, the resistance is about 50 Ω / μm 2 , but the magnetoresistive element of the present invention applies a current in the film thickness direction, so that the current flows. If the cross-sectional area becomes a pattern shape and the shape of the magnetoresistive element is reduced, the resistance value increases, so that there is an additional effect that a minute stress in a minute region can be detected.

【0034】また、絶縁層の厚さを厚くすればさらに抵
抗値を増大させることができるばかりでなく、磁気抵抗
効果素子の形成を容易にするという利点もある。これ
は、本発明の磁気抵抗効果素子がトンネル効果を利用す
るためであり、絶縁層が薄い場合、下地の粗さ等の影響
を受け、良好なトンネル効果が得られない場合があるた
めであり、また、磁気抵抗効果素子をパターニングする
際、絶縁層が薄いと、絶縁層の上下の磁化固着層や磁化
自由層が、エッチング残り等の影響で電気的に短絡し、
トンネル効果を劣化させることになるためである。絶縁
層を厚くできれば、上記の劣化要因をさけることができ
るため、磁気抵抗効果素子の形成が容易になるというこ
とである。
When the thickness of the insulating layer is increased, not only the resistance can be further increased, but also there is an advantage that the formation of the magnetoresistive element is facilitated. This is because the magnetoresistance effect element of the present invention utilizes the tunnel effect, and when the insulating layer is thin, the tunnel effect may not be obtained due to the influence of the roughness of the base and the like. Also, when patterning the magnetoresistive element, if the insulating layer is thin, the magnetization fixed layer and the magnetization free layer above and below the insulating layer are electrically short-circuited due to the influence of the remaining etching, etc.
This is because the tunnel effect is deteriorated. If the thickness of the insulating layer can be increased, the above-mentioned deterioration factors can be avoided, and thus the formation of the magnetoresistive element can be facilitated.

【0035】なお、本実施の形態では磁気抵抗素子1の
磁歪定数を正としたが、負の場合であっても、応力印加
方向、および生ずる異方性エネルギーEσの正負によ
り、生じた異方性の方向が決定され、上記の場合と抵抗
変化において変わることはない。 (実施の形態2)図4に本発明の実施の形態2における
応力センサーの斜視図を示す。磁気抵抗効果素子41は
電極52a上に、反強磁性膜51、磁化固着層42、絶
縁層43、および磁化自由層44が順次積層され、その
上に電極52bが積層されている。電極51a、および
52bにより、センス電流が磁気抵抗効果素子41の膜
厚方向に印加される。
In this embodiment, the magnetostriction constant of the magnetoresistive element 1 is positive. However, even if the magnetoresistance element 1 is negative, the anisotropy generated due to the stress application direction and the sign of the generated anisotropic energy Eσ. The direction of sex is determined and does not change in the resistance change from the above case. (Embodiment 2) FIG. 4 is a perspective view of a stress sensor according to Embodiment 2 of the present invention. In the magnetoresistive element 41, an antiferromagnetic film 51, a magnetization fixed layer 42, an insulating layer 43, and a magnetization free layer 44 are sequentially stacked on an electrode 52a, and an electrode 52b is stacked thereon. A sense current is applied in the thickness direction of the magnetoresistive element 41 by the electrodes 51a and 52b.

【0036】磁気抵抗効果素子41は円形にパターニン
グされている。
The magneto-resistance effect element 41 is circularly patterned.

【0037】磁気抵抗効果素子41の磁化状態を図5を
用いて説明する。
The magnetization state of the magnetoresistive element 41 will be described with reference to FIG.

【0038】反強磁性層51は磁化固着層42の磁化M
pin45は一方向に固着する。
The antiferromagnetic layer 51 has a magnetization M
The pin 45 is fixed in one direction.

【0039】磁化自由層44は、磁化容易軸方向46の
方向に一軸異方性を有している。磁化自由層44の磁化
Mfree47は応力無印加時には容易軸方向46に平行で
ある。磁化自由層44の磁歪定数λは正である。なお、
磁化固着層42の磁化Mpin45と磁化自由層44の磁
化Mfree47との角度は、応力無印加時には略直交して
いることは実施の形態1と同様である。
The magnetization free layer 44 has uniaxial anisotropy in the direction of the easy axis 46. The magnetization Mfree 47 of the magnetization free layer 44 is parallel to the easy axis direction 46 when no stress is applied. The magnetostriction constant λ of the magnetization free layer 44 is positive. In addition,
As in the first embodiment, the angle between the magnetization Mpin 45 of the magnetization fixed layer 42 and the magnetization Mfree47 of the magnetization free layer 44 is substantially orthogonal when no stress is applied.

【0040】磁気抵抗効果素子44において磁化固着層
42の磁化Mpin45と磁化自由層44の磁化Mfree4
7との角度により抵抗変化を生ずること、また、応力印
加時の動作についても実施の形態1と同様であるので、
説明を省略する。
In the magneto-resistance effect element 44, the magnetization Mpin 45 of the magnetization fixed layer 42 and the magnetization Mfree4 of the magnetization free layer 44
7 and the operation at the time of applying the stress is the same as in the first embodiment.
Description is omitted.

【0041】本実施の形態2においては、磁気抵抗効果
素子44の形状を円形としているため、磁化自由層44
の磁化Mfree47が、印加された応力により回転する
際、どの方向を向いても反磁界係数が同じであるため、
磁化の回転が阻害されることがなくなり、磁気抵抗効果
素子41の抵抗変化の線形性を向上させることができ
る。
In the second embodiment, since the shape of the magnetoresistance effect element 44 is circular, the magnetization free layer 44
When the magnetization Mfree 47 of the above rotates due to the applied stress, the demagnetizing field coefficient is the same in any direction,
The rotation of the magnetization is not hindered, and the linearity of the resistance change of the magnetoresistive element 41 can be improved.

【0042】本実施の形態2磁気抵抗効果素子41で
は、抵抗変化は磁化固着層42の磁化Mpin45と磁化
自由層44の磁化Mfree47との角度にのみ依存し、磁
気抵抗効果素子41内の電流の方向には依存せず、か
つ、センス電流は磁気抵抗効果素子41の膜厚方向に印
加されていることは既に述べた。
In the second embodiment, the resistance change of the magneto-resistance effect element 41 depends only on the angle between the magnetization Mpin 45 of the magnetization pinned layer 42 and the magnetization Mfree 47 of the magnetization free layer 44. It has already been described that the sense current is applied in the thickness direction of the magnetoresistive element 41 regardless of the direction.

【0043】一方、従来例で説明した磁気抵抗効果素子
の場合、抵抗変化は、磁気抵抗効果素子の磁化と電流と
の角度に依存する。図6に示すように、従来の磁気抵抗
効果素子60に電極61a、および62bを形成した場
合、センス電流62aないし62gの角度は磁気抵抗効
果素子60内分布をもつ。磁気抵抗効果素子60の磁化
67が応力印加により、図6に示すような方向に向いた
場合、例えば磁化67と電流62eのなす角度と、磁化
67と電流62gのなす角度とは異なることになる。従
って、上記のように、従来例の磁気抵抗効果素子では、
本実施の形態2のように、磁気抵抗効果素子の形状を円
形とすると、磁気抵抗効果素子内での抵抗値は、磁化の
方向に依存するだけでなく、電流の方向にも依存するた
め、応力印加時の抵抗変化を正確に読みとることができ
ない。
On the other hand, in the case of the magnetoresistive element described in the conventional example, the resistance change depends on the angle between the magnetization of the magnetoresistive element and the current. As shown in FIG. 6, when electrodes 61a and 62b are formed on a conventional magnetoresistive element 60, the angles of the sense currents 62a to 62g have a distribution in the magnetoresistive element 60. When the magnetization 67 of the magnetoresistive effect element 60 is oriented in the direction shown in FIG. 6 due to the application of stress, for example, the angle formed by the magnetization 67 and the current 62e differs from the angle formed by the magnetization 67 and the current 62g. . Therefore, as described above, in the conventional magnetoresistance effect element,
When the shape of the magnetoresistive element is circular as in the second embodiment, the resistance value in the magnetoresistive element depends not only on the direction of magnetization but also on the direction of current. The resistance change at the time of applying the stress cannot be accurately read.

【0044】しかし、本実施の形態2における磁気抵抗
効果素子41は、上述のように、磁化固着層42の磁化
Mpin45と磁化自由層44の磁化Mfree47とのなす
角度により抵抗変化を生ずるのであって、電流方向には
依存しないため、応力による抵抗変化のみを出力するこ
とができるという効果を有する。
However, in the magnetoresistive element 41 according to the second embodiment, as described above, the resistance changes due to the angle between the magnetization Mpin 45 of the magnetization pinned layer 42 and the magnetization Mfree 47 of the magnetization free layer 44. In addition, since it does not depend on the current direction, there is an effect that only a resistance change due to stress can be output.

【0045】さらに、実施の形態1でも説明したよう
に、磁気抵抗効果素子の抵抗値を大きくしたい場合、磁
気抵抗効果素子が円形形状をしていれば、従来の磁気抵
抗効果素子では、その抵抗値を大きくすることが困難で
あるが、本実施の形態によれば、円形形状としてもその
直径を小さくするだけで、抵抗値を増大させることは容
易であり、また、絶縁層の厚さによる効果も実施の形態
1と同様である。 (実施の形態3)図7に本発明の実施の形態3における
応力センサーの磁気抵抗効果素子71を示す。
Further, as described in the first embodiment, when it is desired to increase the resistance value of the magnetoresistive effect element, if the magnetoresistive effect element has a circular shape, the resistance of the conventional magnetoresistive effect element is reduced. Although it is difficult to increase the value, according to the present embodiment, it is easy to increase the resistance value only by reducing the diameter of the circular shape, and it depends on the thickness of the insulating layer. The effect is the same as that of the first embodiment. (Embodiment 3) FIG. 7 shows a magnetoresistive element 71 of a stress sensor according to Embodiment 3 of the present invention.

【0046】磁気抵抗効果素子71は、実施の形態1と
同様、磁化固着層の磁化を固着する反強磁性層、磁化固
着層、絶縁層、および磁化自由層(図示せず)からなっ
ている。
As in the first embodiment, the magnetoresistance effect element 71 includes an antiferromagnetic layer for fixing the magnetization of the magnetization fixed layer, a magnetization fixed layer, an insulating layer, and a magnetization free layer (not shown). .

【0047】磁気抵抗効果素子71における磁化自由層
の磁化容易軸72は、磁気抵抗効果素子71の長手方向
に設定されており、磁化固着層の磁化(図示せず)は、
磁化容易軸方向72に直交している。
The easy axis 72 of the magnetization free layer of the magneto-resistance effect element 71 is set in the longitudinal direction of the magneto-resistance effect element 71, and the magnetization (not shown) of the magnetization fixed layer is
It is orthogonal to the easy axis direction 72.

【0048】本実施の形態における磁気抵抗効果素子7
1は、磁化固着層と磁化自由層との間の磁気的相互作用
により層間結合磁界Hint73が磁化自由層に印加され
ている。この層間結合磁界Hint73の大きさは磁化固
着層と磁化自由層との間に形成された絶縁層の膜厚に依
存し、その方向も絶縁層の膜厚に依存し、磁化Mpinと
平行な場合と反平行の場合とがある。絶縁層の厚みはM
R比や、磁化自由層のソフト性にも影響を与えるため、
0にできないことがある。
The magnetoresistance effect element 7 according to the present embodiment
In 1, an interlayer coupling magnetic field Hint 73 is applied to the magnetization free layer by a magnetic interaction between the magnetization fixed layer and the magnetization free layer. The magnitude of the interlayer coupling magnetic field Hint 73 depends on the thickness of the insulating layer formed between the pinned layer and the free layer, and its direction also depends on the thickness of the insulating layer. And anti-parallel. The thickness of the insulating layer is M
Since it also affects the R ratio and the softness of the magnetization free layer,
Sometimes it cannot be set to 0.

【0049】そこで、本実施の形態の磁気抵抗効果素子
においては、バイアス磁界Hbias74を印加しており、
バイアス磁界Hbias74の大きさを層間結合磁界Hint
73と略同一で、方向は層間結合磁界Hint73と逆方
向に設定している。
Therefore, in the magnetoresistive element of this embodiment, a bias magnetic field Hbias 74 is applied,
The magnitude of the bias magnetic field Hbias 74 is determined by the interlayer coupling magnetic field Hint.
The direction is substantially the same as 73 and the direction is set opposite to the direction of the interlayer coupling magnetic field Hint 73.

【0050】バイアス磁界Hbias74が印加されない場
合は、無応力時、磁化自由層の磁化Mfree75は、層間
結合磁界Hint73の影響により、磁化容易軸方向から
はずれた方向に向く。このため、無応力時には磁化固着
層の磁化Mpinと磁化自由層の磁化Mfree75は直交し
ない。このとき、応力を磁化固着層の磁化方向に対し、
+45゜(矢印76)または−45゜(矢印77)方向
に印加すると、磁気抵抗効果素子71の抵抗変化は応力
の正負に対して非対称となる。
When no bias magnetic field Hbias 74 is applied, when no stress is applied, the magnetization Mfree75 of the magnetization free layer is directed in a direction deviated from the easy axis direction due to the effect of the interlayer coupling magnetic field Hint73. Therefore, when there is no stress, the magnetization Mpin of the magnetization fixed layer and the magnetization Mfree75 of the magnetization free layer are not orthogonal. At this time, the stress is applied to the magnetization direction of the magnetization pinned layer.
When the voltage is applied in the + 45 ° (arrow 76) or −45 ° (arrow 77) direction, the resistance change of the magnetoresistive element 71 becomes asymmetric with respect to the positive or negative of the stress.

【0051】しかしながら、本実施の形態においては、
バイアス磁界Hbias74により、層間結合磁界Hint7
3が打ち消されているため、無応力時の磁化自由層の磁
化Mfree75は磁化容易軸方向に向き、磁化固着層の磁
化Mpinと磁化自由層の磁化Mfree75とは直交するた
め、応力を磁化固着層の磁化方向に対し、+45゜(矢
印76)または−45゜(矢印77)方向に印加した場
合、磁気抵抗効果素子71の抵抗変化は応力の正負に対
して対称性の良好なものとなる。 (実施の形態4)図8に本発明の実施の形態3における
応力センサーの磁気抵抗効果素子81を示す。
However, in the present embodiment,
The bias magnetic field Hbias 74 causes the interlayer coupling magnetic field Hint7.
3, the magnetization Mfree75 of the magnetization free layer at the time of no stress is oriented in the easy axis direction, and the magnetization Mpin of the magnetization fixed layer is orthogonal to the magnetization Mfree75 of the magnetization free layer. When applied in the + 45 ° (arrow 76) or −45 ° (arrow 77) direction with respect to the magnetization direction, the resistance change of the magnetoresistive effect element 71 has good symmetry with respect to the positive or negative of the stress. (Embodiment 4) FIG. 8 shows a magnetoresistive element 81 of a stress sensor according to Embodiment 3 of the present invention.

【0052】磁気抵抗効果素子81は、実施の形態1と
同様、磁化固着層の磁化を固着する反強磁性層、磁化固
着層、絶縁層、および磁化自由層(図示せず)からなっ
ている。センス電流については電極(図示せず)によ
り、磁気抵抗効果素子81の膜厚方向に印加されてい
る。
As in the first embodiment, the magnetoresistance effect element 81 includes an antiferromagnetic layer for fixing the magnetization of the magnetization fixed layer, a magnetization fixed layer, an insulating layer, and a magnetization free layer (not shown). . The sense current is applied in the thickness direction of the magnetoresistive element 81 by an electrode (not shown).

【0053】磁気抵抗効果素子81における磁化自由層
の磁化容易軸82は、磁気抵抗効果素子81の長手方向
に設定されており、磁化固着層の磁化(図示せず)は、
磁化自由層の容易軸に対してαの角度だけ傾いている。
このような構成を有する応力センサーにおいて本実施の
形態4でがバイアス磁界Hbias84を磁化容易軸82と
同方向に印加している。
The easy axis 82 of the magnetization free layer of the magnetoresistive element 81 is set in the longitudinal direction of the magnetoresistive element 81, and the magnetization (not shown) of the magnetization fixed layer is
It is inclined by an angle α with respect to the easy axis of the magnetization free layer.
In the stress sensor having such a configuration, in the fourth embodiment, the bias magnetic field Hbias 84 is applied in the same direction as the axis of easy magnetization 82.

【0054】磁気抵抗効果素子81は、磁化固着層と磁
化自由層との間で、磁気的相互作用を生じ、磁化自由層
に層間結合磁界Hint83を与える。層間結合磁界Hint
83は絶縁層の厚みに依存し、0である場合や、磁化固
着層の磁化方向に平行な場合、または反平行な場合があ
る。絶縁層の厚みはMR比や、磁化自由層のソフト性に
も影響を与えるため、0にできないことがある。
The magnetoresistance effect element 81 causes a magnetic interaction between the magnetization fixed layer and the magnetization free layer, and applies an interlayer coupling magnetic field Hint 83 to the magnetization free layer. Interlayer coupling magnetic field Hint
83 depends on the thickness of the insulating layer, and may be 0, parallel to the magnetization direction of the magnetization fixed layer, or antiparallel. Since the thickness of the insulating layer affects the MR ratio and the softness of the magnetization free layer, it may not be possible to set the thickness to zero.

【0055】応力の印加に対して、抵抗変化の線形性を
向上させるためには、磁化固着層の磁化と磁化自由層の
無応力時の磁化Mfree85方向とを直交させることが有
効である。
In order to improve the linearity of the resistance change with respect to the application of stress, it is effective to make the magnetization of the magnetization fixed layer perpendicular to the magnetization Mfree 85 direction of the magnetization free layer when no stress is applied.

【0056】そこで本実施の形態4では、磁化固着層の
磁化と磁化自由層の無応力時の磁化Mfree85とを直交
させるため、磁化自由層の異方性磁界をHkとし、容易
軸と層間結合磁界Hintとの角度をα(図8)とし、磁
化自由層の異方性磁界をHkとしたとき、
Therefore, in the fourth embodiment, in order to make the magnetization of the magnetization fixed layer orthogonal to the magnetization Mfree 85 of the magnetization free layer when no stress is applied, the anisotropic magnetic field of the magnetization free layer is set to Hk, and the easy axis and the interlayer coupling are set. When the angle to the magnetic field Hint is α (FIG. 8) and the anisotropic magnetic field of the magnetization free layer is Hk,

【0057】式1 Hkcosαsinα+Hbiascosα+Hint=0 を略満たすように、容易軸と層間結合磁界Hint83と
の角度αと、バイアス磁界Hbias84とを設定してい
る。これにより、無応力時の磁化自由層の磁化Mfree8
5を磁化固着層の磁化と直交させることができる。以下
にその理由を説明する。
Equation 1 The angle α between the easy axis and the interlayer coupling magnetic field Hint 83 and the bias magnetic field Hbias 84 are set so as to substantially satisfy Hkcosαsinα + Hbiascosα + Hint = 0. Thereby, the magnetization Mfree8 of the magnetization free layer at the time of no stress
5 can be made orthogonal to the magnetization of the magnetization fixed layer. The reason will be described below.

【0058】磁化自由層の磁化Mfree85の無応力時の
方向θは、磁化自由層の異方性エネルギー定数Kuと磁
化自由層に印加された磁界(層間結合磁界Hintとバイ
アス磁界Hbias)とに依存し、磁化自由層の磁気的エネ
ルギーEを考えることにより、その方向を求めることが
できる。磁化容易軸82と磁化Mfree85との角度をθ
(図8)、磁化自由層の飽和磁化をMsとすると、磁気
的エネルギーEは
The direction θ of the magnetization Mfree 85 of the magnetization free layer at the time of no stress depends on the anisotropic energy constant Ku of the magnetization free layer and the magnetic field (interlayer coupling magnetic field Hint and bias magnetic field Hbias) applied to the magnetization free layer. Then, by considering the magnetic energy E of the magnetization free layer, the direction can be obtained. The angle between the easy magnetization axis 82 and the magnetization Mfree 85 is θ
(FIG. 8), assuming that the saturation magnetization of the magnetization free layer is Ms, the magnetic energy E is

【0059】式2 E=Ku×sin2θ−Ms×Hint×cos(α−θ)−Ms×
Hbias×cosθ となる。磁化自由層の磁化Mfree85の方向θは、磁気
的エネルギーEが安定なときであるから、エネルギーE
をθについて微分したものが0となるときであり、エネ
ルギーEをθについて2階微分したものが正の時であ
る。即ち、
[0059] Formula 2 E = Ku × sin 2 θ -Ms × Hint × cos (α-θ) -Ms ×
Hbias × cosθ. The direction θ of the magnetization Mfree85 of the magnetization free layer is when the magnetic energy E is stable,
Is obtained when 0 is differentiated with respect to θ, and is obtained when the energy E is second-order differentiated with respect to θ. That is,

【0060】式3 E´=2Ku×sinθ×cosθ−Ms×Hint×sin(α−
θ)−Ms×Hbias×sinθ=0 異方性エネルギー定数Kuは(Hk×Ms/2)であるか
ら、上式は、
Equation 3 E '= 2 Ku × sin θ × cos θ−Ms × Hint × sin (α−
θ) −Ms × Hbias × sin θ = 0 Since the anisotropic energy constant Ku is (Hk × Ms / 2),

【0061】式4 Hk×sinθ×cosθ−Hint×sin(α−θ)−Hbias×s
inθ=0 である。
Equation 4 Hk × sin θ × cos θ−Hint × sin (α−θ) −Hbias × s
inθ = 0.

【0062】層間結合磁界Hint83と磁化固着層の磁
化とは平行あるいは反平行であるので、磁化固着層の磁
化と磁化自由層の磁化Mfree85とが直交するというこ
とは、
Since the interlayer coupling magnetic field Hint 83 and the magnetization of the magnetization fixed layer are parallel or antiparallel, the fact that the magnetization of the magnetization fixed layer and the magnetization Mfree85 of the magnetization free layer are orthogonal to each other means that

【0063】式5 α−θ=90゜ であるので、式4と式5より、式1が得られる。なお、
エネルギーのθに関する2階微分が正であることより、
Equation 5 Since α−θ = 90 °, Equation 1 is obtained from Equations 4 and 5. In addition,
Since the second derivative of energy with respect to θ is positive,

【0064】式6 −Hk×cos(2α)+Hbias×sinα>0を満たす。Equation 6 −Hk × cos (2α) + Hbias × sinα> 0 is satisfied.

【0065】従って、式1、式6を満たすように、磁化
容易軸82と層間結合磁界Hint83との角度αとバイ
アス磁界Hbias84を設定すれば、磁化固着層の磁化と
磁化自由層の磁化Mfreeが直交する。
Therefore, if the angle α between the easy axis 82 and the interlayer coupling magnetic field Hint 83 and the bias magnetic field Hbias 84 are set so as to satisfy the equations 1 and 6, the magnetization of the pinned layer and the magnetization Mfree of the magnetization free layer are set. Orthogonal.

【0066】次に動作について説明する応力は層間結合
磁界Hint(磁化固着層の磁化方向)に対して、+45
゜あるいは−45゜の方向(図8中、矢印86、および
87)に印加する。
The stress for explaining the operation is +45 with respect to the interlayer coupling magnetic field Hint (the magnetization direction of the magnetization fixed layer).
It is applied in the direction of {or −45} (arrows 86 and 87 in FIG. 8).

【0067】磁化自由層の磁歪定数が正で、引っ張り応
力が矢印86方向へ印加されると、磁歪の逆効果で矢印
86に異方性エネルギーEσが生じるため、磁化自由層
の磁化Mfree85は、図8中時計方向に回転する。従っ
て、磁化自由層の磁化Mfree85と磁化固着層の磁化と
の角度が90゜より大きくなるため、磁気抵抗効果素子
81の抵抗値が増加する。
When the magnetostriction constant of the magnetization free layer is positive and a tensile stress is applied in the direction of arrow 86, an anisotropic energy Eσ is generated in arrow 86 due to the opposite effect of magnetostriction. It rotates clockwise in FIG. Therefore, since the angle between the magnetization Mfree85 of the magnetization free layer and the magnetization of the magnetization fixed layer becomes larger than 90 °, the resistance value of the magnetoresistance effect element 81 increases.

【0068】圧縮応力が矢印86方向へ印加されると、
磁歪の逆効果で矢印87に異方性エネルギーEσが生じ
るため、磁化自由層の磁化Mfree85は、反時計方向に
回転する。従って、磁化自由層の磁化Mfree85と磁化
固着層の磁化との角度が90゜より小さくなるため、磁
気抵抗効果素子81の抵抗値が減少する。
When compressive stress is applied in the direction of arrow 86,
Since the anisotropic energy Eσ is generated at the arrow 87 due to the opposite effect of the magnetostriction, the magnetization Mfree85 of the magnetization free layer rotates in the counterclockwise direction. Therefore, the angle between the magnetization Mfree85 of the magnetization free layer and the magnetization of the magnetization fixed layer becomes smaller than 90 °, and the resistance value of the magnetoresistive element 81 decreases.

【0069】引っ張り応力が矢印87方向へ印加される
と、磁歪の逆効果で矢印87に異方性エネルギーEσが
生じるため、磁化自由層の磁化Mfree85は、図8中反
時計方向に回転する。従って、磁化自由層の磁化Mfree
85と磁化固着層の磁化との角度が90゜より小さくな
るため、磁気抵抗効果素子81の抵抗値が減少する。
When a tensile stress is applied in the direction of arrow 87, anisotropic energy Eσ is generated in arrow 87 due to the opposite effect of magnetostriction, so that magnetization Mfree85 of the magnetization free layer rotates counterclockwise in FIG. Therefore, the magnetization Mfree of the magnetization free layer
Since the angle between 85 and the magnetization of the magnetization fixed layer becomes smaller than 90 °, the resistance value of the magnetoresistive element 81 decreases.

【0070】圧縮応力が矢印87方向へ印加されると、
磁歪の逆効果で矢印86に異方性エネルギーEσが生じ
るため、磁化自由層の磁化Mfree85は、時計方向に回
転する。従って、磁化自由層の磁化Mfree85と磁化固
着層の磁化との角度が90゜より大きくなるため、磁気
抵抗効果素子81の抵抗値が増加する。
When compressive stress is applied in the direction of arrow 87,
Since the anisotropic energy Eσ is generated at the arrow 86 due to the opposite effect of the magnetostriction, the magnetization Mfree85 of the magnetization free layer rotates clockwise. Therefore, since the angle between the magnetization Mfree85 of the magnetization free layer and the magnetization of the magnetization fixed layer becomes larger than 90 °, the resistance value of the magnetoresistance effect element 81 increases.

【0071】層間結合磁界Hintが240A/m(=3O
e)、異方性磁界Hkが400A/m(=5Oe)である
とき、αを118゜、バイアス磁界Hbiasを160A/
m(=2Oe)とすると、式1、および式6を満足し、
このときの抵抗変化は図9になる。なお、応力は矢印8
6方向に印加した。
The interlayer coupling magnetic field Hint is 240 A / m (= 3O
e), when the anisotropic magnetic field Hk is 400 A / m (= 5 Oe), α is 118 ° and the bias magnetic field Hbias is 160 A / m.
m (= 2Oe), Equations 1 and 6 are satisfied,
FIG. 9 shows the resistance change at this time. The stress is indicated by arrow 8
The voltage was applied in six directions.

【0072】応力印加時の動作については第1の実施の
形態と同様であるので、説明を省略する。
The operation at the time of applying the stress is the same as that of the first embodiment, and the description is omitted.

【0073】バイアス磁界Hbias84の印加手段につい
て説明する。本実施の形態において、バイアス磁界は図
10に示すように、磁気抵抗効果素子81の両側に永久
磁石101a、および101bを配置し、バイアス磁界
を印加することができる(図10(a))。また、磁気
抵抗効果素子81の両側に、磁気抵抗効果素子81に接
して、硬質磁性膜102a、および102bを形成し、
バイアス磁界を印加することができる(図10
(b))。さらには、磁気抵抗効果素子81の磁化自由
層に接して、反響磁性膜103を磁気抵抗効果素子81
上に形成して、バイアス磁界を印加することができる
(図10(c))。なお、図10(a)の方法において
は、永久磁石の材料、および間隔を任意に設定できるの
で、バイアス磁界Hbias84の大きさを任意に設定する
ことができる。また、図10(b)、および図10
(c)の方法においても、硬質磁性膜、および反強磁性
膜の材料、および膜厚を変更することで、バイアス磁界
Hbias84の大きさを任意に設定することができる。
The means for applying the bias magnetic field Hbias 84 will be described. In this embodiment, as shown in FIG. 10, the bias magnetic field can be applied by disposing permanent magnets 101a and 101b on both sides of the magnetoresistive element 81 as shown in FIG. 10 (FIG. 10A). Hard magnetic films 102a and 102b are formed on both sides of the magnetoresistive element 81 in contact with the magnetoresistive element 81,
A bias magnetic field can be applied (FIG. 10).
(B)). Further, in contact with the magnetization free layer of the magneto-resistance effect element 81,
A bias magnetic field can be applied to the upper electrode (FIG. 10C). In the method of FIG. 10A, since the material and the interval of the permanent magnet can be arbitrarily set, the magnitude of the bias magnetic field Hbias 84 can be arbitrarily set. 10 (b) and FIG.
Also in the method (c), the magnitude of the bias magnetic field Hbias 84 can be arbitrarily set by changing the material and thickness of the hard magnetic film and the antiferromagnetic film.

【0074】また、このバイアス磁界により、磁化自由
層を単磁区構造とすることが可能であるため、磁壁の不
連続異動に起因するバルクハウゼンノイズを低減すると
いう効果も有する。
Further, since the magnetization free layer can have a single domain structure by the bias magnetic field, there is also an effect of reducing Barkhausen noise caused by discontinuous transfer of the domain wall.

【0075】従来例には、バイアス磁界を印加するもの
が記載されているが、従来例の場合、このバイアス磁界
により、磁気抵抗効果素子の磁化回転は阻害されるた
め、抵抗変化量が図7に示した場合よりもさらに小さく
なるため、バイアス磁界の印加した場合の抵抗変化につ
いては、本実施の形態の方が効果がある。
In the conventional example, a bias magnetic field is applied. However, in the conventional example, since the magnetization rotation of the magnetoresistive element is inhibited by the bias magnetic field, the resistance change amount is reduced as shown in FIG. Therefore, the present embodiment is more effective in changing the resistance when a bias magnetic field is applied.

【0076】なお、本実施の形態では、磁気抵抗効果素
子81の形状を長方形形状としたが、第2の実施の形態
に記載したように円形とした場合においても、実施の形
態2の効果が得られることは言うまでもない。
In the present embodiment, the shape of the magnetoresistive element 81 is rectangular, but the effect of the second embodiment can be obtained even when the magnetoresistive element 81 is circular as described in the second embodiment. It goes without saying that you can get it.

【0077】さらに、実施の形態1、実施の形態2、お
よび実施の形態3において磁化容易軸方向にバイアス磁
界を印加することにより、実施の形態4と同様にバルク
ハウゼンノイズを低減できる。
Further, by applying a bias magnetic field in the easy axis direction in the first, second, and third embodiments, Barkhausen noise can be reduced as in the fourth embodiment.

【0078】このバイアス磁界や、実施の形態3で説明
したバイアス磁界は、図10で説明したバイアス磁界印
加手段を用いることができるのは言うまでもない。 (実施の形態5)図11(a)に、本発明の実施の形態
5における応力センサーの磁気抵抗効果素子111を示
す。
It is needless to say that the bias magnetic field applying means described with reference to FIG. 10 can be used for this bias magnetic field and the bias magnetic field described in the third embodiment. Embodiment 5 FIG. 11A shows a magnetoresistive element 111 of a stress sensor according to Embodiment 5 of the present invention.

【0079】磁気抵抗効果素子111は、実施の形態1
と同様、磁化固着層の磁化を固着する反強磁性層、磁化
固着層、絶縁層、および磁化自由層(図示せず)からな
っている。
The magnetoresistive element 111 according to the first embodiment
Similarly to the above, it is composed of an antiferromagnetic layer for fixing the magnetization of the magnetization fixed layer, a magnetization fixed layer, an insulating layer, and a magnetization free layer (not shown).

【0080】磁気抵抗効果素子111の磁化自由層の磁
化容易軸112は、磁気抵抗効果素子111の長手方向
に設定されており、磁化固着層の磁化(図示せず)は、
磁化自由層の容易軸に対して略直交している。磁気抵抗
効果素子111にはバイアス磁界Hbias114が磁化容
易軸112と同方向に印加されている。
The easy axis 112 of the magnetization free layer of the magnetoresistance effect element 111 is set in the longitudinal direction of the magnetoresistance effect element 111, and the magnetization (not shown) of the magnetization fixed layer is
It is substantially perpendicular to the easy axis of the magnetization free layer. A bias magnetic field Hbias 114 is applied to the magnetoresistive element 111 in the same direction as the easy axis 112.

【0081】磁気抵抗効果素子111は、磁化固着層と
磁化自由層との間で、磁気的相互作用を生じ、磁化自由
層に層間結合磁界Hint113を与える。これは、実施
の形態3で説明したものと同様で、磁化固着層の磁化方
向に平行、あるいは反平行である。従って、層間結合磁
界Hint113は磁化自由層の磁化容易軸112に対し
て略直交している。
The magnetoresistance effect element 111 causes a magnetic interaction between the magnetization fixed layer and the magnetization free layer, and applies an interlayer coupling magnetic field Hint 113 to the magnetization free layer. This is similar to that described in the third embodiment, and is parallel or anti-parallel to the magnetization direction of the magnetization fixed layer. Therefore, the interlayer coupling magnetic field Hint 113 is substantially perpendicular to the easy axis 112 of the magnetization free layer.

【0082】応力の印加に対して、抵抗変化の線形性を
向上させるためには、無応力時における磁化自由層の磁
化方向に対し+45゜、あるいは−45゜の方向に応力
を、印加することが有効である。
In order to improve the linearity of the resistance change with respect to the application of the stress, it is necessary to apply the stress in the direction of + 45 ° or −45 ° with respect to the magnetization direction of the magnetization free layer at the time of no stress. Is valid.

【0083】図11(a)においては、応力印加方向1
16、および117は無応力時の磁化自由層の磁化Mfr
ee115の方向に対し、+45゜、あるいは−45゜の
角度を有している。
In FIG. 11A, the stress application direction 1
16 and 117 are the magnetization Mfr of the magnetization free layer under no stress
It has an angle of + 45 ° or −45 ° with respect to the direction of ee115.

【0084】このような方向に応力印加することで、抵
抗変化の線形性が向上する理由を説明する。
The reason why the linearity of the resistance change is improved by applying the stress in such a direction will be described.

【0085】実施の形態3のところで説明したように、
層間結合磁界Hintが存在するとき、これを打ち消すHb
ias磁界を与えないときは、磁化自由層の方向は磁化容
易軸からずれたところに向き、磁化固着層の磁化Mpin
と磁化自由層の磁化Mfree115とは直交しない。この
ときの磁化自由層の磁化Mfree115と磁化容易軸11
2との角度をθ(図11(b))とする。
As described in the third embodiment,
When there is an interlayer coupling magnetic field Hint, it is canceled by Hb.
When no ias magnetic field is applied, the direction of the magnetization free layer is shifted from the axis of easy magnetization, and the magnetization Mpin of the magnetization fixed layer is
Is not orthogonal to the magnetization Mfree 115 of the magnetization free layer. At this time, the magnetization Mfree 115 of the magnetization free layer and the easy axis 11
The angle with 2 is assumed to be θ (FIG. 11B).

【0086】この状態で、応力を磁化固着層の磁化Mpi
nの方向に対して、+45゜、あるいは−45゜の方向
に印加する(図11(b)応力印加方向118、および
119)。
In this state, the stress is applied to the magnetization Mpi of the magnetization fixed layer.
The voltage is applied in the direction of + 45 ° or −45 ° with respect to the direction of n (FIG. 11B, stress application directions 118 and 119).

【0087】応力の印加により、異方性エネルギーが応
力印加方向119に印加されたとき、磁化自由層の磁化
Mfree115は、最大(45゜−θ)回転し、異方性エ
ネルギーが応力印加方向118に印加されたとき、磁化
自由層の磁化Mfree115は最大(45°+θ)回転す
ることになる。応力による異方性エネルギーの出現する
方向が、応力印加方向118あるいは119になること
は、印加応力が正であるか、または負であるかに対応
し、磁化自由層の磁化Mfree115の回転角度が印加応
力の正負で異なることになる。
When the anisotropic energy is applied in the stress application direction 119 by the application of the stress, the magnetization Mfree 115 of the magnetization free layer is rotated by a maximum (45 ° −θ), and the anisotropic energy is changed in the stress application direction 118. , The magnetization Mfree 115 of the magnetization free layer is rotated by a maximum (45 ° + θ). The direction in which the anisotropic energy due to the stress appears in the stress application direction 118 or 119 corresponds to whether the applied stress is positive or negative, and the rotation angle of the magnetization Mfree 115 of the magnetization free layer is changed. It differs depending on whether the applied stress is positive or negative.

【0088】従って、抵抗変化の線形性を劣化させるこ
とになるが、図11(a)のように、印加応力を無応力
時の磁化自由層の磁化Mfree115方向に対して+45
゜あるいは、−45゜の方向に印加することにより、磁
化自由層の磁化Mfreeの回転量が、印加応力の正負で異
なることはない。よって、抵抗変化の線形性を向上させ
ることができる。
Therefore, although the linearity of the resistance change is degraded, as shown in FIG. 11A, the applied stress is increased by +45 with respect to the direction of the magnetization Mfree 115 of the magnetization free layer when no stress is applied.
By applying in the direction of {or −45}, the rotation amount of the magnetization Mfree of the magnetization free layer does not differ depending on whether the applied stress is positive or negative. Therefore, the linearity of the resistance change can be improved.

【0089】無応力時の磁化自由層の磁化Mfree115
の方向は、以下のようにして知ることができる。
The magnetization Mfree 115 of the magnetization free layer under no stress
Can be known as follows.

【0090】つまり、磁化自由層の異方性磁界をHkと
し、無応力時の磁化自由層の磁化Mfree115が磁化容
易軸112に対し角度θ(図11(a))であるとき、
角度θは
That is, when the anisotropic magnetic field of the magnetization free layer is Hk, and the magnetization Mfree 115 of the magnetization free layer under no stress is at an angle θ (FIG. 11A) with respect to the easy axis 112,
Angle θ

【0091】式7 Hk×cosθ×sinθ+Hbias×sinθ−Hint×cosθ=0 Hkcos(2θ)+Hbiascosθ+Hintsinθ>0 を満たす。Equation 7 Hk × cos θ × sin θ + Hbias × sin θ−Hint × cos θ = 0 Hkcos (2θ) + Hbiascos θ + Hintsin θ> 0.

【0092】この関係式は、実施の形態4で説明したよ
うに、磁気的なエネルギーを考慮することで得られる。
This relational expression is obtained by considering magnetic energy as described in the fourth embodiment.

【0093】従って、異方性磁界Hk、層間結合磁界Hin
tは磁気抵抗効果素子111の初期特性を測定すること
で知ることができ、バイアス磁界Hbiasも自由に設定で
きるため、既知となるので、式7から容易に角度θを求
めることができるため、応力印加方向をこのθに対して
+45゜、あるいは−45゜の方向に設定することは容
易である。
Therefore, the anisotropic magnetic field Hk and the interlayer coupling magnetic field Hin
t can be known by measuring the initial characteristics of the magnetoresistive effect element 111, and the bias magnetic field Hbias can be set freely. Therefore, the value of t is known. It is easy to set the application direction to + 45 ° or −45 ° with respect to θ.

【0094】次に動作について説明する。Next, the operation will be described.

【0095】本実施の形態における磁気抵抗効果素子1
11の層間結合磁界Hintが240A/m(=3Oe)、
異方性磁界Hkが400A/m(=5Oe)であると
き、バイアス磁界Hbiasを160A/m(=2Oe)と
すると、θは24.6゜となるので、応力印加方向を磁
化容易軸112に対して−20.4゜(=24.6゜−
45゜、図11中矢印116)とする。磁気抵抗効果素
子111の磁化自由層の磁歪定数が正であれば、引っ張
り応力が矢印116に印加されると、磁歪の逆効果によ
り、矢印116の方向に異方性エネルギーが発生し、磁
化自由層の磁化Mfree115は時計回りに回転する。磁
化固着層の磁化方向と、層間結合磁界Hintが平行であ
れば、上記の回転により、磁化固着層の磁化と磁化自由
層の磁化Mfree115との角度が大きくなるため、磁気
抵抗効果素子111の抵抗値は増加し、矢印116の方
向に圧縮応力が印加されると、矢印117の方向に異方
性エネルギーが発生するため、磁化自由層の磁化Mfree
115は反時計回りに回転し、磁化固着層の磁化と磁化
自由層の磁化Mfree115との角度が小さくなるため、
磁気抵抗効果素子111の抵抗値は減少する。
The magnetoresistance effect element 1 according to the present embodiment
11, the interlayer coupling magnetic field Hint is 240 A / m (= 3 Oe),
When the anisotropic magnetic field Hk is 400 A / m (= 5 Oe) and the bias magnetic field Hbias is 160 A / m (= 2 Oe), θ becomes 24.6 °. On the other hand, -20.4 ° (= 24.6 °-
45 °, and arrow 116 in FIG. 11). If the magnetostriction constant of the magnetization free layer of the magnetoresistance effect element 111 is positive, when a tensile stress is applied to the arrow 116, anisotropic energy is generated in the direction of the arrow 116 due to the opposite effect of magnetostriction, and The magnetization Mfree 115 of the layer rotates clockwise. If the magnetization direction of the magnetization fixed layer is parallel to the interlayer coupling magnetic field Hint, the angle described above increases the angle between the magnetization of the magnetization fixed layer and the magnetization Mfree 115 of the magnetization free layer. The value increases, and when a compressive stress is applied in the direction of arrow 116, anisotropic energy is generated in the direction of arrow 117, so that the magnetization Mfree of the magnetization free layer
115 rotates counterclockwise, and the angle between the magnetization of the magnetization fixed layer and the magnetization Mfree 115 of the magnetization free layer becomes small.
The resistance value of the magneto-resistance effect element 111 decreases.

【0096】引っ張り応力が上記θに対して−45゜
(矢印117)に印加されたときは、矢印117の方向
に異方性エネルギーが発生するため、磁化自由層の磁化
Mfree115は反時計回りに回転し、磁化固着層の磁化
と磁化自由層の磁化Mfree115との角度が小さくなる
ため、磁気抵抗効果素子111の抵抗値は減少し、圧縮
応力が矢印117に印加されたときは、矢印116の方
向に異方性エネルギーが発生し、磁化自由層の磁化Mfr
ee115は時計回りに回転し、磁化固着層の磁化と磁化
自由層の磁化M115との角度が大きくなるため、磁気
抵抗効果素子111の抵抗値は増加する。
When the tensile stress is applied at -45 ° to the above θ (arrow 117), anisotropic energy is generated in the direction of arrow 117, so that the magnetization Mfree 115 of the magnetization free layer rotates counterclockwise. Rotation causes the angle between the magnetization of the magnetization pinned layer and the magnetization Mfree 115 of the magnetization free layer to decrease, so that the resistance value of the magnetoresistive element 111 decreases. Energy is generated in the direction, and the magnetization Mfr of the magnetization free layer is generated.
Since ee 115 rotates clockwise and the angle between the magnetization of the magnetization fixed layer and the magnetization M 115 of the magnetization free layer increases, the resistance value of the magnetoresistive element 111 increases.

【0097】磁気抵抗効果素子111の磁化自由層の磁
歪定数を5×10-6としたときの応力に対する抵抗変化率
を図12に示す。なお、応力は矢印118方向に印加し
た。図12には従来の磁気抵抗効果素子の場合を合わせ
て示している。本実施の形態のほうが高い抵抗変化率を
示していることがわかる。
FIG. 12 shows the rate of change in resistance with respect to stress when the magnetostriction constant of the magnetization free layer of the magnetoresistance effect element 111 is 5 × 10 −6 . The stress was applied in the direction of arrow 118. FIG. 12 also shows the case of a conventional magnetoresistance effect element. It can be seen that the present embodiment shows a higher rate of resistance change.

【0098】なお、バイアス磁界を本実施の形態のよう
に、磁化容易軸方向に印加するのではなく、任意の方向
に印加する場合においても、任意の方向に印加するバイ
アス磁界を磁化容易軸方向の成分と、層間結合磁界Hin
tとに平行な成分に分離し、磁化容易軸方向の成分を新
たに式7のHbiasとし、層間結合磁界Hintに平行な成
分と層間結合磁界Hintとの合計を新たに式7のHintと
して、角度θを求めることができる。
In the case where the bias magnetic field is not applied in the direction of the easy axis as in this embodiment, but is applied in any direction, the bias magnetic field applied in the arbitrary direction may be applied in the direction of the easy axis. And the interlayer coupling magnetic field Hin
The component in the direction of the easy axis is newly defined as Hbias in Equation 7, and the sum of the component parallel to the interlayer coupling magnetic field Hint and the interlayer coupling magnetic field Hint is newly defined as Hint in Equation 7. Angle θ can be determined.

【0099】バイアス磁界の印加方法等については実施
の形態3と同様であるので、説明を省略する。また、バ
イアス磁界に印加によりバルクハウゼンノイズを低減で
きること、磁気抵抗効果素子111を円形形状にするこ
とについても実施の形態2と同様である。
The method of applying the bias magnetic field and the like are the same as those in the third embodiment, and a description thereof will not be repeated. In addition, the Barkhausen noise can be reduced by applying a bias magnetic field, and the magnetoresistive element 111 has a circular shape in the same manner as in the second embodiment.

【0100】[0100]

【発明の効果】以上のように本発明の応力センサーは、
磁化固着層と、絶縁層と、磁化自由層とを順次積層して
なる磁気抵抗効果素子、即ち、GMR素子を用いること
により、応力による抵抗変化率が高い応力センサーを得
ることができる。
As described above, the stress sensor of the present invention is
By using a magnetoresistive element in which a magnetization fixed layer, an insulating layer, and a magnetization free layer are sequentially stacked, that is, a GMR element, a stress sensor having a high rate of change in resistance due to stress can be obtained.

【0101】また、磁気抵抗効果素子の磁化固着層と磁
化自由層との間に層間結合磁界が発生する場合において
も、バイアス磁界の印加と、磁化固着層の磁化方向と磁
化自由層の磁化容易軸とを適切に設定することにより、
線形性の良い出力を得ることができる。
Further, even when an interlayer coupling magnetic field is generated between the magnetization fixed layer and the magnetization free layer of the magnetoresistive effect element, the application of the bias magnetic field, the magnetization direction of the magnetization fixed layer, and the easy magnetization of the magnetization free layer are performed. By setting the axis properly
An output with good linearity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における応力センサーの
平面図である。
FIG. 1 is a plan view of a stress sensor according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態1における磁気抵抗効果素
子の構成図である。
FIG. 2 is a configuration diagram of a magnetoresistive element according to Embodiment 1 of the present invention.

【図3】本発明の実施の形態1における磁気抵抗効果素
子の応力と抵抗変化率の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the stress and the rate of change in resistance of the magnetoresistance effect element according to the first embodiment of the present invention.

【図4】本発明の実施の形態2における応力センサーの
平面図である。
FIG. 4 is a plan view of a stress sensor according to Embodiment 2 of the present invention.

【図5】本発明の実施の形態2における磁気抵抗効果素
子の構成図である。
FIG. 5 is a configuration diagram of a magnetoresistive element according to a second embodiment of the present invention.

【図6】本発明の実施の形態2における応力センサーの
平面図である。
FIG. 6 is a plan view of a stress sensor according to Embodiment 2 of the present invention.

【図7】本発明の実施の形態3における応力センサーの
平面図である。
FIG. 7 is a plan view of a stress sensor according to Embodiment 3 of the present invention.

【図8】本発明の実施の形態4における応力センサーの
平面図である。
FIG. 8 is a plan view of a stress sensor according to Embodiment 4 of the present invention.

【図9】本発明の実施の形態4における磁気抵抗効果素
子の応力と抵抗変化率の関係を示す図である。
FIG. 9 is a diagram showing a relationship between a stress and a rate of change in resistance of a magnetoresistive element according to a fourth embodiment of the present invention.

【図10】本発明の実施の形態4におけるバイアス磁界
印加の構成の例である。
FIG. 10 is an example of a configuration for applying a bias magnetic field according to a fourth embodiment of the present invention.

【図11】本発明の実施の形態5における応力センサー
の平面図である。
FIG. 11 is a plan view of a stress sensor according to a fifth embodiment of the present invention.

【図12】本発明の実施の形態5における磁気抵抗効果
素子の応力と抵抗変化率の関係を示す図である。
FIG. 12 is a diagram showing a relationship between a stress and a rate of change in resistance of a magnetoresistive element according to a fifth embodiment of the present invention.

【図13】従来の応力センサーの平面図である。FIG. 13 is a plan view of a conventional stress sensor.

【符号の説明】[Explanation of symbols]

1、41、61、91、111 磁気抵抗効果素子 2、42 磁化固着層 3、43 絶縁層 4、44 磁化自由層 5,7、45、47、65,95 磁化 6、46、62、92 磁化容易軸 8、9、48、49、66、67、76、77、96,
97、118、119応力印加方向 10、51 電極 52 電流 63、93 層間結合磁界 64、94 バイアス磁界 81 永久磁石 82 硬質磁性膜 83 反強磁性膜
1, 41, 61, 91, 111 Magnetoresistive effect element 2, 42 Fixed magnetization layer 3, 43 Insulation layer 4, 44 Free magnetization layer 5, 7, 45, 47, 65, 95 Magnetization 6, 46, 62, 92 Magnetization Easy axis 8, 9, 48, 49, 66, 67, 76, 77, 96,
97, 118, 119 stress application direction 10, 51 electrode 52 current 63, 93 interlayer coupling magnetic field 64, 94 bias magnetic field 81 permanent magnet 82 hard magnetic film 83 antiferromagnetic film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 43/08 G01P 15/08 C (72)発明者 岡本 匡史 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2F055 AA40 BB20 CC60 DD20 EE27 FF11 GG11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 43/08 G01P 15/08 C (72) Inventor Masafumi Okamoto 1006 Kazuma Kazuma, Kadoma, Osaka Matsushita Electric Industrial F term (reference) 2F055 AA40 BB20 CC60 DD20 EE27 FF11 GG11

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 磁化が一方向に固着されている磁化固着
層と、 絶縁層と、 磁歪を有する磁化自由層とを順次積層してなる磁気抵抗
効果素子を備えた応力センサーであって、 前記磁気抵抗効果素子に応力が印加されたときに、前記
磁気抵抗効果素子の抵抗値変化から、印加された応力を
検知することを特徴とする応力センサー。
1. A stress sensor comprising a magnetoresistive element in which a magnetization fixed layer having magnetization fixed in one direction, an insulating layer, and a magnetization free layer having magnetostriction are sequentially stacked, A stress sensor, wherein when a stress is applied to the magnetoresistive element, the applied stress is detected from a change in the resistance value of the magnetoresistive element.
【請求項2】 請求項1に記載の応力センサーにおい
て、 前記磁気抵抗効果素子を円形状にパターニングしたこと
を特徴とする応力センサー。
2. The stress sensor according to claim 1, wherein the magnetoresistive element is patterned in a circular shape.
【請求項3】 請求項1、あるいは請求項2のいずれか
に記載の応力センサーにおいて、 前記磁気抵抗効果素子は、前記磁化自由層上に、さらに
絶縁層と磁化固着層とを順次積層してなることを特徴と
する応力センサー。
3. The stress sensor according to claim 1, wherein the magnetoresistive element is formed by sequentially laminating an insulating layer and a magnetization fixed layer on the magnetization free layer. A stress sensor characterized in that:
【請求項4】 請求項1ないし請求項3のいずれかに記
載の応力センサーにおいて、 応力が印加されることにより、前記磁化固着層と前記磁
化自由層との間に、層間結合磁界が発生した場合、 磁化固着層の磁化方向と、磁化自由層の磁化容易軸方向
とを略直交させ、 前記層間結合磁界を打ち消すように、バイアス磁界を印
加することを特徴とする応力センサー。
4. The stress sensor according to claim 1, wherein an interlayer coupling magnetic field is generated between the magnetization fixed layer and the magnetization free layer by applying a stress. In this case, the magnetization direction of the magnetization fixed layer and the direction of the easy axis of magnetization of the magnetization free layer are substantially orthogonal to each other, and a bias magnetic field is applied so as to cancel the interlayer coupling magnetic field.
【請求項5】 請求項1ないし請求項3のいずれかに記
載の応力センサーにおいて、 磁化自由層に対し、磁化容易軸方向にバイアス磁界を印
加するとともに、 磁化自由層の磁化容易軸と磁化固着層の磁化方向との角
度αと、前記バイアス磁界とが、 Hk×cosα×sinα+Hbias×cosα+Hint=0 かつ −Hk×cos(2α)+Hbias×sinα>0 Hk:磁化自由層の異方性磁界 Hint:磁化固着層と磁化自由層との層間結合磁界 Hbias:磁化自由層に対し、磁化容易軸方向に印加する
バイアス磁界を略満たすことを特徴とする応力センサ
ー。
5. The stress sensor according to claim 1, wherein a bias magnetic field is applied to the magnetization free layer in an easy axis direction, and the magnetization axis is fixed to the easy axis of the magnetization free layer. The angle α with the magnetization direction of the layer and the bias magnetic field are: Hk × cosα × sinα + Hbias × cosα + Hint = 0 and −Hk × cos (2α) + Hbias × sinα> 0 Hbias: A stress sensor characterized by substantially satisfying a bias magnetic field applied to the magnetization free layer in the direction of the easy axis of magnetization with respect to the magnetization free layer.
【請求項6】 請求項1ないし請求項5のいずれかに記
載の応力センサーにおいて、 前記応力の印加方向が、磁化固着層の磁化方向に対し、
+45゜あるいは−45゜であることを特徴とする応力
センサー。
6. The stress sensor according to claim 1, wherein a direction in which the stress is applied is different from a magnetization direction of the magnetization fixed layer.
A stress sensor characterized by being at + 45 ° or −45 °.
【請求項7】 請求項1ないし請求項5のいずれかに記
載の応力センサーにおいて、 前記応力の印加方向が、無応力時の磁化自由層の磁化方
向に対し、+45゜あるいは−45゜であることを特徴
とする応力センサー。
7. The stress sensor according to claim 1, wherein a direction in which the stress is applied is + 45 ° or −45 ° with respect to a magnetization direction of the magnetization free layer when no stress is applied. A stress sensor characterized in that:
JP2001164586A 2001-05-31 2001-05-31 Stress sensor Pending JP2002357489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001164586A JP2002357489A (en) 2001-05-31 2001-05-31 Stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001164586A JP2002357489A (en) 2001-05-31 2001-05-31 Stress sensor

Publications (1)

Publication Number Publication Date
JP2002357489A true JP2002357489A (en) 2002-12-13

Family

ID=19007394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001164586A Pending JP2002357489A (en) 2001-05-31 2001-05-31 Stress sensor

Country Status (1)

Country Link
JP (1) JP2002357489A (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021361A1 (en) * 2008-08-22 2010-02-25 キヤノンアネルバ株式会社 Negative resistance element using magnetoresistive effect
JP2011103336A (en) * 2009-11-10 2011-05-26 Denso Corp Magnetoresistive element and sensor using the same
JP2012078186A (en) * 2010-09-30 2012-04-19 Toshiba Corp Strain detecting element and blood pressure sensor
JP2012119518A (en) * 2010-12-01 2012-06-21 Denso Corp Rotation angle sensor
JP2012142589A (en) * 2003-08-19 2012-07-26 New York Univ High speed low power magnetic devices based on current induced spin-momentum transfer
JP2012176294A (en) * 2012-06-19 2012-09-13 Toshiba Corp Blood pressure sensor
US8755222B2 (en) 2003-08-19 2014-06-17 New York University Bipolar spin-transfer switching
US8760915B2 (en) 2003-08-19 2014-06-24 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
JP5532166B1 (en) * 2013-03-29 2014-06-25 Tdk株式会社 Magnetic sensor and magnetic sensor system
KR101494396B1 (en) 2012-12-07 2015-02-23 주식회사 아이엔지아이에스 A Magnetic Applied Management System
US8982613B2 (en) 2013-06-17 2015-03-17 New York University Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates
JP2015061070A (en) * 2013-09-20 2015-03-30 株式会社東芝 Strain detection element, pressure sensor, microphone, blood pressure sensor, and touch panel
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US9082950B2 (en) 2012-10-17 2015-07-14 New York University Increased magnetoresistance in an inverted orthogonal spin transfer layer stack
US9263667B1 (en) 2014-07-25 2016-02-16 Spin Transfer Technologies, Inc. Method for manufacturing MTJ memory device
US9337412B2 (en) 2014-09-22 2016-05-10 Spin Transfer Technologies, Inc. Magnetic tunnel junction structure for MRAM device
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US9812184B2 (en) 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
JP2018006769A (en) * 2017-09-14 2018-01-11 株式会社東芝 Sensor, microphone, blood pressure sensor, and touch panel
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
JP2018201023A (en) * 2018-07-10 2018-12-20 株式会社東芝 Sensor, microphone, blood pressure sensor, and touch panel
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10388861B1 (en) 2018-03-08 2019-08-20 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10529915B2 (en) 2018-03-23 2020-01-07 Spin Memory, Inc. Bit line structures for three-dimensional arrays with magnetic tunnel junction devices including an annular free magnetic layer and a planar reference magnetic layer
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10628316B2 (en) 2016-09-27 2020-04-21 Spin Memory, Inc. Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10679685B2 (en) 2017-12-27 2020-06-09 Spin Memory, Inc. Shared bit line array architecture for magnetoresistive memory
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
WO2020158159A1 (en) * 2019-01-30 2020-08-06 株式会社村田製作所 Stress sensor and manufacturing method for same
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US10991410B2 (en) 2016-09-27 2021-04-27 Spin Memory, Inc. Bi-polar write scheme
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
US11119910B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments
US11119936B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Error cache system with coarse and fine segments for power optimization
US11151042B2 (en) 2016-09-27 2021-10-19 Integrated Silicon Solution, (Cayman) Inc. Error cache segmentation for power reduction
JP2023500083A (en) * 2019-10-30 2023-01-04 江▲蘇▼多▲維▼科技有限公司 Hydrogen gas sensor using electrically isolated tunnel magnetoresistive stress sensing element
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
WO2023106130A1 (en) * 2021-12-07 2023-06-15 国立大学法人大阪大学 Distortion measurement device and distortion measurement method

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760915B2 (en) 2003-08-19 2014-06-24 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US9236103B2 (en) 2003-08-19 2016-01-12 New York University Bipolar spin-transfer switching
US9449668B2 (en) 2003-08-19 2016-09-20 New York University Current induced spin-momentum transfer stack with dual insulating layers
JP2012142589A (en) * 2003-08-19 2012-07-26 New York Univ High speed low power magnetic devices based on current induced spin-momentum transfer
US8755222B2 (en) 2003-08-19 2014-06-17 New York University Bipolar spin-transfer switching
US9812184B2 (en) 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers
WO2010021361A1 (en) * 2008-08-22 2010-02-25 キヤノンアネルバ株式会社 Negative resistance element using magnetoresistive effect
JP2011103336A (en) * 2009-11-10 2011-05-26 Denso Corp Magnetoresistive element and sensor using the same
US9066661B2 (en) 2010-09-30 2015-06-30 Kabushiki Kaisha Toshiba Strain sensor element and blood pressure sensor
JP2012078186A (en) * 2010-09-30 2012-04-19 Toshiba Corp Strain detecting element and blood pressure sensor
US9999356B2 (en) 2010-09-30 2018-06-19 Kabushiki Kaisha Toshiba Strain sensor element and blood pressure sensor
US8760154B2 (en) 2010-09-30 2014-06-24 Kabushiki Kaisha Toshiba Strain sensor element and blood pressure sensor
US9131856B2 (en) 2010-09-30 2015-09-15 Kabushiki Kaisha Toshiba Strain sensor element and blood pressure sensor
US10342439B2 (en) 2010-09-30 2019-07-09 Kabushiki Kaisha Toshiba Strain sensor element and blood pressure sensor
JP2012119518A (en) * 2010-12-01 2012-06-21 Denso Corp Rotation angle sensor
JP2012176294A (en) * 2012-06-19 2012-09-13 Toshiba Corp Blood pressure sensor
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US9082950B2 (en) 2012-10-17 2015-07-14 New York University Increased magnetoresistance in an inverted orthogonal spin transfer layer stack
KR101494396B1 (en) 2012-12-07 2015-02-23 주식회사 아이엔지아이에스 A Magnetic Applied Management System
JP5532166B1 (en) * 2013-03-29 2014-06-25 Tdk株式会社 Magnetic sensor and magnetic sensor system
US8982613B2 (en) 2013-06-17 2015-03-17 New York University Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates
US9773837B2 (en) 2013-06-17 2017-09-26 New York University Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates
US9654883B2 (en) 2013-09-20 2017-05-16 Kabushiki Kaisha Toshiba Strain sensing element, pressure sensor, microphone, blood pressure sensor, and touch panel
US10448845B2 (en) 2013-09-20 2019-10-22 Kabushiki Kaisha Toshiba Strain sensing element, having a first and second magnetic layer and a third layer that is antiferrimagnetic
JP2015061070A (en) * 2013-09-20 2015-03-30 株式会社東芝 Strain detection element, pressure sensor, microphone, blood pressure sensor, and touch panel
US9406876B2 (en) 2014-07-25 2016-08-02 Spin Transfer Technologies, Inc. Method for manufacturing MTJ memory device
US9263667B1 (en) 2014-07-25 2016-02-16 Spin Transfer Technologies, Inc. Method for manufacturing MTJ memory device
US9337412B2 (en) 2014-09-22 2016-05-10 Spin Transfer Technologies, Inc. Magnetic tunnel junction structure for MRAM device
US10615335B2 (en) 2015-04-21 2020-04-07 Spin Memory, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10147872B2 (en) 2015-04-21 2018-12-04 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US10734574B2 (en) 2015-04-21 2020-08-04 Spin Memory, Inc. Method of manufacturing high annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US10553787B2 (en) 2015-06-16 2020-02-04 Spin Memory, Inc. Precessional spin current structure for MRAM
US10026892B2 (en) 2015-06-16 2018-07-17 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10777736B2 (en) 2015-07-30 2020-09-15 Spin Memory, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10347314B2 (en) 2015-08-14 2019-07-09 Spin Memory, Inc. Method and apparatus for bipolar memory write-verify
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US10643680B2 (en) 2016-01-28 2020-05-05 Spin Memory, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US10381553B2 (en) 2016-01-28 2019-08-13 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US10628316B2 (en) 2016-09-27 2020-04-21 Spin Memory, Inc. Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US11151042B2 (en) 2016-09-27 2021-10-19 Integrated Silicon Solution, (Cayman) Inc. Error cache segmentation for power reduction
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US11119936B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Error cache system with coarse and fine segments for power optimization
US10424393B2 (en) 2016-09-27 2019-09-24 Spin Memory, Inc. Method of reading data from a memory device using multiple levels of dynamic redundancy registers
US10366775B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Memory device using levels of dynamic redundancy registers for writing a data word that failed a write operation
US11119910B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments
US10991410B2 (en) 2016-09-27 2021-04-27 Spin Memory, Inc. Bi-polar write scheme
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US11271149B2 (en) 2017-02-28 2022-03-08 Integrated Silicon Solution, (Cayman) Inc. Precessional spin current structure with nonmagnetic insertion layer for MRAM
US11355699B2 (en) 2017-02-28 2022-06-07 Integrated Silicon Solution, (Cayman) Inc. Precessional spin current structure for MRAM
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
JP2018006769A (en) * 2017-09-14 2018-01-11 株式会社東芝 Sensor, microphone, blood pressure sensor, and touch panel
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10679685B2 (en) 2017-12-27 2020-06-09 Spin Memory, Inc. Shared bit line array architecture for magnetoresistive memory
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10388861B1 (en) 2018-03-08 2019-08-20 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10529915B2 (en) 2018-03-23 2020-01-07 Spin Memory, Inc. Bit line structures for three-dimensional arrays with magnetic tunnel junction devices including an annular free magnetic layer and a planar reference magnetic layer
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10615337B2 (en) 2018-05-30 2020-04-07 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
JP2018201023A (en) * 2018-07-10 2018-12-20 株式会社東芝 Sensor, microphone, blood pressure sensor, and touch panel
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
JP7031023B2 (en) 2019-01-30 2022-03-07 株式会社村田製作所 Stress sensor and its manufacturing method
JPWO2020158159A1 (en) * 2019-01-30 2021-11-25 株式会社村田製作所 Stress sensor and its manufacturing method
WO2020158159A1 (en) * 2019-01-30 2020-08-06 株式会社村田製作所 Stress sensor and manufacturing method for same
US11959815B2 (en) 2019-01-30 2024-04-16 Murata Manufacturing Co., Ltd. Stress sensor and manufacturing method therefor
JP2023500083A (en) * 2019-10-30 2023-01-04 江▲蘇▼多▲維▼科技有限公司 Hydrogen gas sensor using electrically isolated tunnel magnetoresistive stress sensing element
WO2023106130A1 (en) * 2021-12-07 2023-06-15 国立大学法人大阪大学 Distortion measurement device and distortion measurement method

Similar Documents

Publication Publication Date Title
JP2002357489A (en) Stress sensor
US7786725B2 (en) Magnetic field detection apparatus for detecting an external magnetic field applied to a magnetoresistance effect element, and method of adjusting the same
US6577124B2 (en) Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
JP4780117B2 (en) Angle sensor, manufacturing method thereof, and angle detection device using the same
US7170724B2 (en) Magnetic sensor and manufacturing method therefor
JP2014516406A (en) Single chip bridge type magnetic field sensor and manufacturing method thereof
JP2008197089A (en) Magnetic sensor element and method for manufacturing the same
US20040115478A1 (en) Magnetic field sensor with augmented magnetoresistive sensing layer
JP2003008101A (en) Tunneling magnetoresistive effect element and bearing detecting system using the same
JP2008306112A (en) Magneto-resistance effect film, magnetic sensor, and rotation angle detecting device
JP2006269955A (en) Magnetic field detecting device
US7400143B2 (en) Magnetic bias film and magnetic sensor using the same
WO2021040801A1 (en) Tmr sensor with magnetic tunnel junctions with a free layer having an intrinsic anisotropy
JPH0763505A (en) Detecting device for movable body displacement
JP2005183614A (en) Magnetic sensor
JP4329746B2 (en) Magnetic sensor using giant magnetoresistive element and method of manufacturing the same
JP2000338211A (en) Magnetic sensor and its manufacture
JPH0870149A (en) Magnetoresistance element
JP2002357488A (en) Stress sensor
JP2003215222A (en) Magneto-resistance effect element sensor
JP4575602B2 (en) Magnetic sensing element
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JP3835445B2 (en) Magnetic sensor
US20240142549A1 (en) Magnetic sensor element, magnetic sensor, and magnetic sensor device
JPH08316548A (en) Magnetoresistive element