JP3182858B2 - Ferromagnetic magnetoresistive element - Google Patents

Ferromagnetic magnetoresistive element

Info

Publication number
JP3182858B2
JP3182858B2 JP09281692A JP9281692A JP3182858B2 JP 3182858 B2 JP3182858 B2 JP 3182858B2 JP 09281692 A JP09281692 A JP 09281692A JP 9281692 A JP9281692 A JP 9281692A JP 3182858 B2 JP3182858 B2 JP 3182858B2
Authority
JP
Japan
Prior art keywords
ferromagnetic magnetoresistive
magnetic field
film pattern
magnetoresistive film
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09281692A
Other languages
Japanese (ja)
Other versions
JPH05291645A (en
Inventor
敬三 井上
寛 吉川
昌明 金栄
卓二 中川
美文 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP09281692A priority Critical patent/JP3182858B2/en
Publication of JPH05291645A publication Critical patent/JPH05291645A/en
Application granted granted Critical
Publication of JP3182858B2 publication Critical patent/JP3182858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、強磁性体の磁気抵抗
効果を利用して磁界を検出する強磁性磁気抵抗素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic magnetoresistive element for detecting a magnetic field by utilizing a magnetoresistance effect of a ferromagnetic material.

【0002】[0002]

【従来の技術】一般に、強磁性磁気抵抗素子は、磁化方
向と電流方向とのなす角度によって抵抗率が変化する強
磁性磁気抵抗効果を有するNi系合金の薄膜を絶縁基板
上に形成し、フォトリソグラフィにより磁界感磁部を設
け、必要に応じて引き出し電極部を形成し、表面に保護
膜を形成している。また、強磁性磁気抵抗層は必要に応
じて一軸異方性を付与して、感度の向上と素子による電
力消費の低減のため、ミアンダライン状としている。さ
らに必要に応じて強磁性磁気抵抗パターンからなる素子
部分を相互に適当な角度を持たせて同一基板上に形成し
ている。
2. Description of the Related Art Generally, a ferromagnetic magnetoresistive element is formed by forming a thin film of a Ni-based alloy having a ferromagnetic magnetoresistive effect in which the resistivity changes depending on the angle between a magnetization direction and a current direction on an insulating substrate, A magnetic field sensing part is provided by lithography, an extraction electrode part is formed as necessary, and a protective film is formed on the surface. The ferromagnetic magnetoresistive layer is given a uniaxial anisotropy as required, and has a meandering line shape in order to improve sensitivity and reduce power consumption by the device. Further, if necessary, element portions made of a ferromagnetic magnetoresistive pattern are formed on the same substrate at an appropriate angle to each other.

【0003】図3と図4に従来の強磁性磁気抵抗素子の
構造および特性を示す。図3(A)は強磁性磁気抵抗素
子の平面図である。図3(A)において1は絶縁性ガラ
ス基板、2は強磁性磁気抵抗膜パターンである。具体的
には、絶縁性ガラス基板1の表面にNi−25%Co合
金を磁場中蒸着法により膜厚400Å成膜し、次いでフ
ォトリソグラフィにより、磁気容易軸を長手方向とし
て、線幅10μm長さ300μmの短冊状パターンを、
間隙sが5μmとなるように10本配置し、それぞれの
端部を交互に直列接続してミアンダライン状に形成して
いる。図3(B)は図3(A)において紙面に平行で且
つ強磁性磁気抵抗膜パターン2の磁気困難軸方向(磁気
容易軸に直角方向)に信号磁界を加えた時の、信号磁界
強度に対する強磁性磁気抵抗膜パターンの抵抗値変化を
示す。
FIGS. 3 and 4 show the structure and characteristics of a conventional ferromagnetic magnetoresistive element. FIG. 3A is a plan view of the ferromagnetic magnetoresistive element. In FIG. 3A, reference numeral 1 denotes an insulating glass substrate, and 2 denotes a ferromagnetic magnetoresistive film pattern. Specifically, a Ni-25% Co alloy is deposited on the surface of the insulating glass substrate 1 by a vapor deposition method in a magnetic field to form a film having a thickness of 400Å, and then, by photolithography, the line width is set to 10 μm with the magnetic easy axis as the longitudinal direction. 300μm strip pattern
Ten pieces are arranged so that the gap s is 5 μm, and the respective ends are alternately connected in series to form a meander line shape. FIG. 3B shows the signal magnetic field strength when a signal magnetic field is applied in the hard magnetic axis direction (perpendicular to the magnetic easy axis) of the ferromagnetic magnetoresistive film pattern 2 in FIG. 7 shows a change in resistance value of a ferromagnetic magnetoresistive film pattern.

【0004】図4(A)は他の強磁性磁気抵抗素子の平
面図である。図4(A)において1は絶縁性ガラス基
板、2は強磁性磁気抵抗膜パターン、3は電極である。
このような構造の強磁性磁気抵抗素子は、次のようにし
て作成される。まず熱酸化シリコン基板1の絶縁面上に
Ni−19%Fe合金を磁場中蒸着法により膜厚300
Å成膜し、次いでフォトリソグラフィにより、磁気困難
軸を長手方向として、線幅30μm長さ500μmの短
冊状パターンを、間隙sが10μmとなるように10本
配置し、それぞれの端部を交互に直列接続し、ミアンダ
ライン状に形成する。次いで、Co−17%Ni合金を
3000Å、Au1000Åからなる薄膜を成膜し、次
いでフォトリソグラフィにより、幅を強磁性磁気抵抗膜
パターン2の幅と同一とした電極3を強磁性磁気抵抗膜
パターン2の両端部に形成し、さらに電極3を強磁性磁
気抵抗膜パターン2の磁気容易軸方向に着磁する。図4
(B)は図4(A)において紙面に平行で且つ強磁性磁
気抵抗膜パターン2の磁気困難軸方向に信号磁界を加え
た時の、信号磁界強度に対する素子の抵抗値変化を示
す。
FIG. 4A is a plan view of another ferromagnetic magnetoresistive element. In FIG. 4A, 1 is an insulating glass substrate, 2 is a ferromagnetic magnetoresistive film pattern, and 3 is an electrode.
A ferromagnetic magnetoresistive element having such a structure is manufactured as follows. First, a Ni-19% Fe alloy having a film thickness of 300 was formed on the insulating surface of the thermally oxidized silicon substrate 1 by a magnetic field evaporation method.
Å Film formation, and then, by photolithography, ten strip-shaped patterns having a line width of 30 μm and a length of 500 μm are arranged so that the gap s is 10 μm, with the hard magnetic axis as the longitudinal direction, and the respective ends are alternately arranged. Connect in series and form a meander line. Next, a thin film of 3000% of Au and 17% of a Co-17% Ni alloy is formed, and then the electrode 3 having the same width as the width of the ferromagnetic magnetoresistive film pattern 2 is formed by photolithography. , And the electrodes 3 are magnetized in the magnetic easy axis direction of the ferromagnetic magnetoresistive film pattern 2. FIG.
FIG. 4B shows a change in the resistance value of the element with respect to the signal magnetic field intensity when a signal magnetic field is applied in the direction of the hard magnetic axis of the ferromagnetic magnetoresistive film pattern 2 in FIG.

【0005】[0005]

【発明が解決しようとする課題】ところが、図3に示し
た従来の強磁性磁気抵抗素子では、強磁性磁気抵抗膜2
の膜厚が400Åに対して、そのパターンの間隙sが5
μmであるため、膜厚に対する間隙の比は125倍と大
きい。そのため隣接する各強磁性磁気抵抗膜パターン間
は互いに磁気的に分離された状態となって、信号磁界の
強度に応じて磁化の回転に伴う素子の抵抗値変化は比較
的緩やかとなり、抵抗値の極大を示す曲線の幅が広く、
磁界検出素子としての感度は低い。
However, in the conventional ferromagnetic magnetoresistive element shown in FIG.
Is 400 °, the gap s of the pattern is 5
Since it is μm, the ratio of the gap to the film thickness is as large as 125 times. Therefore, the adjacent ferromagnetic magnetoresistive film patterns are magnetically separated from each other, and the change in the resistance value of the element due to the rotation of the magnetization according to the strength of the signal magnetic field becomes relatively gradual, and the resistance value increases. The width of the curve showing the maximum is wide,
The sensitivity as a magnetic field detecting element is low.

【0006】一方、図4に示した従来の強磁性磁気抵抗
素子では、強磁性磁気抵抗膜パターン2が磁気困難軸方
向に長いため、還流磁区が発生しやすく、これにより図
4(B)に示したようにヒステリシス特性が生じる。そ
のため、一方向(同一極性)にのみ変化する信号磁界の
有無または強度を確実に検知することは困難であった。
On the other hand, in the conventional ferromagnetic magnetoresistive element shown in FIG. 4, since the ferromagnetic magnetoresistive film pattern 2 is long in the direction of the hard magnetic axis, return magnetic domains are easily generated. Hysteresis characteristics occur as shown. For this reason, it has been difficult to reliably detect the presence or absence or strength of a signal magnetic field that changes only in one direction (the same polarity).

【0007】強磁性磁気抵抗素子の磁界検出感度を向上
させるためには、強磁性磁気抵抗膜パターンのパターン
幅を広くするか、その膜厚を薄くする必要がある。しか
しながら、パターン幅を広げれば素子のインピーダンス
が低下するため、素子による電力消費が増大し、また感
磁部の面積が増大するため微小面積の磁界検出には問題
となる。また、強磁性磁気抵抗膜パターンの膜厚を薄く
すれば、サイズ効果により抵抗率が増大して感度が低下
し、また製造上の困難性が増すという問題が生じる。
In order to improve the magnetic field detection sensitivity of the ferromagnetic magnetoresistive element, it is necessary to increase the pattern width of the ferromagnetic magnetoresistive film pattern or reduce its thickness. However, if the pattern width is increased, the impedance of the element is reduced, so that the power consumption by the element is increased, and the area of the magnetically sensitive portion is increased, which causes a problem in detecting a magnetic field having a small area. In addition, when the thickness of the ferromagnetic magnetoresistive film pattern is reduced, there arises a problem that the resistivity increases due to the size effect, the sensitivity decreases, and the manufacturing difficulty increases.

【0008】この発明の目的は、信号磁界の強度変化に
対する素子の抵抗値変化を急峻にし、磁界検出素子とし
ての感度を高めた強磁性磁気抵抗素子を提供することに
ある。
An object of the present invention is to provide a ferromagnetic magnetoresistive element in which the change in the resistance of the element with respect to the change in the intensity of the signal magnetic field is sharpened and the sensitivity as a magnetic field detecting element is enhanced.

【0009】この発明の他の目的は、強磁性磁気抵抗膜
パターンにおける還流磁区の発生を抑え、ヒステリシス
特性のない強磁性磁気抵抗素子を提供することにある。
Another object of the present invention is to provide a ferromagnetic magnetoresistive element which suppresses generation of a return magnetic domain in a ferromagnetic magnetoresistive film pattern and has no hysteresis characteristics.

【0010】[0010]

【課題を解決するための手段】この発明の強磁性磁気抵
抗素子は、基板上に強磁性磁気抵抗膜パターンをミアン
ダライン状に形成してなる強磁性磁気抵抗素子におい
て、強磁性磁気抵抗膜の膜厚tを500Å以下とし、隣
接するパターン間の間隙sをt<s<38tとしたこと
を特徴とする。
A ferromagnetic magnetoresistive element according to the present invention is a ferromagnetic magnetoresistive element formed by forming a ferromagnetic magnetoresistive film pattern on a substrate in a meander line shape. The film thickness t is set to 500 ° or less, and the gap s between adjacent patterns is set to t <s <38t.

【0011】[0011]

【作用】この発明の強磁性磁気抵抗素子では、強磁性磁
気抵抗膜の膜厚tが500Å以下で、隣接するパターン
間の間隙sがt<s<38tとなる関係で強磁性磁気抵
抗膜パターンがミアンダライン状に形成されている。こ
のように強磁性磁気抵抗膜パターンの膜厚が通常のパタ
ーン幅に比較して十分薄いため、膜厚が厚いことによる
磁気抵抗効果(抵抗率の横効果と縦効果の差)の低下が
ない。また、隣接するパターン間の間隙sを前記条件と
したことにより、強磁性磁気抵抗膜パターンの磁化の方
向がパターンの長手方向に対し直角方向に向くに従い、
隣接するパターンの磁化との相互作用により、見かけ上
の透磁率が増加し、感度が増大する。また、強磁性磁気
抵抗膜パターンの隣接するパターン同士の磁化の相互作
用により還流磁区が縮小または消失するため、ヒステリ
シス特性が低下または消失する。したがって一方向(同
一極性)の信号磁界の有無または強度を正確に検知でき
るようになる。
According to the ferromagnetic magnetoresistive element of the present invention, the thickness t of the ferromagnetic magnetoresistive film is 500 ° or less, and the gap s between adjacent patterns is t <s <38t. Are formed in a meander line shape. As described above, since the thickness of the ferromagnetic magnetoresistive film pattern is sufficiently smaller than the normal pattern width, there is no decrease in the magnetoresistance effect (difference between the lateral effect and the longitudinal effect of resistivity) due to the large film thickness. . Further, by setting the gap s between the adjacent patterns to the above condition, as the direction of magnetization of the ferromagnetic magnetoresistive film pattern is oriented in a direction perpendicular to the longitudinal direction of the pattern,
Interaction with the magnetization of the adjacent pattern increases apparent permeability and sensitivity. Further, the return magnetic domain is reduced or lost due to the interaction of the magnetizations of the adjacent patterns of the ferromagnetic magnetoresistive film pattern, so that the hysteresis characteristic is reduced or lost. Therefore, the presence / absence or strength of the signal magnetic field in one direction (the same polarity) can be accurately detected.

【0012】図6は強磁性磁気抵抗膜パターンの長手方
向を磁気容易軸とし、これに直角方向に信号磁界を受け
た場合の磁化方向の回転を模式的に示す。(B)は従来
の場合であり、各強磁性磁気抵抗膜パターン2の磁化方
向は外部から印加される信号磁界の強度に応じてそれぞ
れ回転する。(A)は本願発明の場合であり、強磁性磁
気抵抗膜パターン2の間隙sが小さいため、隣接するパ
ターン同士の磁化の相互作用によりミアンダライン状に
配置した強磁性磁気抵抗膜パターンからなる感磁部全体
の見かけ上の透磁率が増大し、各強磁性磁気抵抗膜パタ
ーン2の磁化方向の回転角が増大する。
FIG. 6 schematically shows the rotation of the magnetization direction when a signal magnetic field is applied in a direction perpendicular to the longitudinal direction of the ferromagnetic magnetoresistive film pattern as a magnetic easy axis. FIG. 3B shows a conventional case, in which the magnetization direction of each ferromagnetic magnetoresistive film pattern 2 rotates according to the strength of a signal magnetic field applied from the outside. (A) is the case of the present invention, and since the gap s between the ferromagnetic magnetoresistive film patterns 2 is small, the sense of the ferromagnetic magnetoresistive film patterns arranged in a meander line shape due to the interaction of magnetization between adjacent patterns. The apparent magnetic permeability of the entire magnetic part increases, and the rotation angle of the magnetization direction of each ferromagnetic magnetoresistive film pattern 2 increases.

【0013】図7は強磁性磁気抵抗膜パターンの長手方
向に対する直角方向を磁気容易軸とした強磁性磁気抵抗
素子において信号磁界を印加した場合の例を示す。
(B)は従来の例であり、強磁性磁気抵抗膜パターン2
の長手方向が磁気困難軸であるため、図に示すような還
流磁区が生じやすく、信号磁界の強度が変化した際、磁
壁が移動することによりヒステリシス特性が生じる。こ
れに対し、(A)は本願発明の例であり、強磁性磁気抵
抗膜パターン2の間隙sが小さいため、隣接する強磁性
磁気抵抗膜パターン間の磁化の相互作用によって、還流
磁区が縮小または消失する。そのため、信号磁界の強度
変化によっても磁壁の移動が発生せずヒステリシス特性
は表れない。そのため信号磁界強度が同一極性で変化す
る場合であっても、信号強度を高確度で検知できるよう
になる。
FIG. 7 shows an example in which a signal magnetic field is applied to a ferromagnetic magnetoresistive element whose magnetic easy axis is set in a direction perpendicular to the longitudinal direction of the ferromagnetic magnetoresistive film pattern.
(B) is a conventional example, in which a ferromagnetic magnetoresistive film pattern 2 is used.
Is a hard magnetic axis in the longitudinal direction, and thus a return magnetic domain is easily generated as shown in the figure, and when the strength of the signal magnetic field changes, the hysteresis characteristic occurs due to the movement of the domain wall. On the other hand, (A) is an example of the present invention, and since the gap s between the ferromagnetic magnetoresistive film patterns 2 is small, the return magnetic domain is reduced or reduced due to the interaction of magnetization between the adjacent ferromagnetic magnetoresistive film patterns. Disappear. Therefore, even when the intensity of the signal magnetic field changes, the domain wall does not move, and the hysteresis characteristic does not appear. Therefore, even if the signal magnetic field strength changes with the same polarity, the signal strength can be detected with high accuracy.

【0014】[0014]

【実施例】この発明の第1の実施例に係る強磁性磁気抵
抗素子の構造および特性を図1に示す。図1(A)は強
磁性磁気抵抗素子の平面図である。図1(A)において
1は絶縁性ガラス基板、2は強磁性磁気抵抗膜パターン
である。具体的には、絶縁性ガラス基板1の表面にNi
−25%Co合金を磁場中蒸着法により膜厚400Å成
膜し、次いでフォトリソグラフィにより、磁気容易軸を
長手方向として、線幅10μm長さ300μmの短冊状
パターンを、間隙sが1μmとなるように10本配置
し、それぞれの端部を交互に直列接続してミアンダライ
ン状に形成している。図1(B)は(A)において紙面
に平行で且つ強磁性磁気抵抗膜パターン2の磁気困難軸
方向(磁気容易軸に直角方向)に信号磁界を加えた時
の、信号磁界強度に対する強磁性磁気抵抗膜パターンの
抵抗値変化特性を示す。
FIG. 1 shows the structure and characteristics of a ferromagnetic magnetoresistive element according to a first embodiment of the present invention. FIG. 1A is a plan view of the ferromagnetic magnetoresistive element. In FIG. 1A, reference numeral 1 denotes an insulating glass substrate, and 2 denotes a ferromagnetic magnetoresistive film pattern. Specifically, the surface of the insulating glass substrate 1 is coated with Ni.
A −25% Co alloy is deposited in a thickness of 400 ° by a magnetic field evaporation method, and then a strip pattern having a line width of 10 μm and a length of 300 μm with a magnetic easy axis as a longitudinal direction is formed by photolithography so that a gap s is 1 μm. , And each end is alternately connected in series to form a meander line. FIG. 1B shows the ferromagnetic properties with respect to the signal magnetic field intensity when a signal magnetic field is applied in the direction of the hard magnetic axis (perpendicular to the easy magnetic axis) of the ferromagnetic magnetoresistive film pattern 2 in FIG. 4 shows a resistance value change characteristic of a magnetoresistive film pattern.

【0015】このように強磁性磁気抵抗膜パターン2の
膜厚400Åに対してそのパターン間の間隙sが1μm
と小さいため、信号磁界の強度が増して強磁性磁気抵抗
膜パターンの磁化の方向が容易軸方向から回転すること
にともない、隣接するパターンの磁化との相互作用によ
り見かけ上の透磁率が増加し、抵抗値が急激に低下す
る。同図(B)に示すように抵抗値の極大を示す曲線の
幅は狭くなり、磁界検出素子としての感度が増大するこ
とになる。
As described above, when the thickness of the ferromagnetic magnetoresistive film pattern 2 is 400 °, the gap s between the patterns is 1 μm.
As the signal magnetic field strength increases and the magnetization direction of the ferromagnetic magnetoresistive film pattern rotates from the easy axis direction, the apparent magnetic permeability increases due to the interaction with the magnetization of the adjacent pattern. , The resistance value drops sharply. As shown in FIG. 3B, the width of the curve showing the maximum of the resistance value becomes narrow, and the sensitivity as the magnetic field detecting element increases.

【0016】次に、この発明の第2の実施例に係る強磁
性磁気抵抗素子の構造および特性を図2に示す。図2
(A)は強磁性磁気抵抗素子の平面図である。(A)に
おいて1は絶縁性ガラス基板、2は強磁性磁気抵抗膜パ
ターン、3は電極である。このような構造の強磁性磁気
抵抗素子を作成するには、まず熱酸化シリコン基板1の
絶縁面上にNi−19%Fe合金を磁場中蒸着法により
膜厚300Å成膜し、次いでフォトリソグラフィによ
り、磁気困難軸を長手方向として、線幅30μm長さ5
00μmの短冊状パターンを、間隙sが1μmとなるよ
うに10本配置し、それぞれの端部を交互に直列接続
し、ミアンダライン状に形成する。次いで、Co−17
%Ni合金を3000Å、Au1000Åからなる薄膜
を成膜し、次いでフォトリソグラフィにより、強磁性磁
気抵抗膜パターン2に幅を同一とした電極3を強磁性磁
気抵抗膜パターン2の両端部に形成し、さらに電極3を
強磁性磁気抵抗膜パターン2の磁気容易軸方向に着磁す
る。図2(B)は(A)において紙面に平行で且つ強磁
性磁気抵抗膜パターン2の磁気困難軸方向に信号磁界を
加えた時の、信号磁界強度に対する素子の抵抗値変化を
示す。
Next, FIG. 2 shows the structure and characteristics of a ferromagnetic magnetoresistive element according to a second embodiment of the present invention. FIG.
(A) is a plan view of a ferromagnetic magnetoresistive element. In (A), 1 is an insulating glass substrate, 2 is a ferromagnetic magnetoresistive film pattern, and 3 is an electrode. In order to produce a ferromagnetic magnetoresistive element having such a structure, first, a Ni-19% Fe alloy is formed on an insulating surface of a thermally oxidized silicon substrate 1 by a vapor deposition method in a magnetic field to a thickness of 300.degree. The line width is 30 μm and the length is 5 with the hard magnetic axis as the longitudinal direction.
Ten 100 μm strip-shaped patterns are arranged so that the gap s is 1 μm, and their ends are alternately connected in series to form a meander line shape. Then, Co-17
% Ni alloy, a thin film made of 3000% and Au1000% is formed, and then electrodes 3 having the same width as the ferromagnetic magnetoresistive film pattern 2 are formed at both ends of the ferromagnetic magnetoresistive film pattern 2 by photolithography. Further, the electrode 3 is magnetized in the magnetic easy axis direction of the ferromagnetic magnetoresistive film pattern 2. FIG. 2B shows a change in the resistance value of the element with respect to the signal magnetic field intensity when a signal magnetic field is applied in the direction of the hard magnetic axis of the ferromagnetic magnetoresistive film pattern 2 in FIG.

【0017】このように強磁性磁気抵抗膜パターン2が
磁気困難軸方向に長い場合には、還流磁区が発生しやす
いが、強磁性磁気抵抗膜パターン2の膜厚300Åに対
してパターンの間隙sが1μmと小さいため、隣接する
パターン同士の磁化の相互作用により還流磁区が縮小ま
たは消失する。その結果、図2(B)に示すようにヒス
テリシスのない特性が得られる。
When the ferromagnetic magnetoresistive film pattern 2 is long in the direction of the hard magnetic axis as described above, a return domain is apt to be generated. Is as small as 1 μm, so that the return magnetic domain is reduced or disappears due to the interaction between the magnetizations of the adjacent patterns. As a result, characteristics without hysteresis are obtained as shown in FIG.

【0018】図2(A)または図4(A)に示した構造
の強磁性磁気抵抗素子において、パターン間の間隙sを
変化させた時の保磁力Hcの変化を図5に示す。ここで
保磁力Hcは図4(B)に示したように、抵抗値が極小
値をとる磁界強度である。また、パターン間の間隙sは
0.5μm、1μm、2μm、4μm、6μm、8μ
m、10μm、12μm、14μmおよび15μmの1
0個の試料を作成し、保磁力Hcを測定した。強磁性磁
気抵抗膜パターンの膜厚は300Åであるから、パター
ン間の間隙sは300Å〜1.1μmの範囲Aが本願発
明の範囲となり、同図に示すように保磁力は極めて小さ
く、信号磁界の変化に対する抵抗値変化にほとんどヒス
テリシスは生じないことが分かる。
FIG. 5 shows a change in the coercive force Hc when the gap s between the patterns is changed in the ferromagnetic magnetoresistive element having the structure shown in FIG. 2A or 4A. Here, as shown in FIG. 4B, the coercive force Hc is the magnetic field strength at which the resistance takes a minimum value. The gap s between the patterns is 0.5 μm, 1 μm, 2 μm, 4 μm, 6 μm, 8 μm
m, 10 μm, 12 μm, 14 μm and 15 μm
Zero samples were prepared and the coercive force Hc was measured. Since the ferromagnetic magnetoresistive film pattern has a film thickness of 300 °, the gap A between the patterns is in the range A of 300 ° to 1.1 μm, and the coercive force is extremely small as shown in FIG. It can be seen that almost no hysteresis occurs in the change in the resistance value with respect to the change in.

【0019】[0019]

【発明の効果】この発明によれば、強磁性磁気抵抗膜パ
ターンの長手方向を磁気容易軸とする場合に、強磁性磁
気抵抗膜パターンの磁化方向がその容易軸方向から回転
するにともない、隣接するパターンの磁化との相互作用
により、見かけ上の透磁率が増大するため、インピーダ
ンスの低下または感磁部の面積増大を招くことがなく、
磁気センサとしての感度を高めることができる。また、
強磁性磁気抵抗膜パターンの長手方向を磁気困難軸とす
る場合に、隣接するパターン同士の磁化の相互作用によ
り、還流磁区が縮小または消失するため、ヒステリシス
特性は表れず、信号磁界の極性が一方向のみである場合
でも、磁界の有無またはその強度を高確度で検知できる
ようになる。
According to the present invention, when the longitudinal direction of the ferromagnetic magnetoresistive film pattern is defined as the magnetic easy axis, as the magnetization direction of the ferromagnetic magnetoresistive film pattern rotates from the direction of the easy axis, it becomes adjacent. Due to the interaction with the magnetization of the pattern, the apparent magnetic permeability increases, so that the impedance does not decrease or the area of the magnetic sensing portion does not increase,
The sensitivity as a magnetic sensor can be increased. Also,
When the longitudinal direction of the ferromagnetic magnetoresistive film pattern is set as the hard magnetic axis, the magnetization domains of adjacent patterns reduce or eliminate the return magnetic domain due to the interaction of magnetization, so that the hysteresis characteristic does not appear and the polarity of the signal magnetic field is one. Even in the case of only the direction, the presence or absence of the magnetic field or the strength thereof can be detected with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例に係る強磁性磁気抵抗
素子の構造および特性を示す図であり、(A)は平面
図、(B)は信号磁界に対する抵抗値の変化特性を示す
図である。
FIGS. 1A and 1B are diagrams showing the structure and characteristics of a ferromagnetic magnetoresistive element according to a first embodiment of the present invention, wherein FIG. 1A is a plan view and FIG. 1B shows a change characteristic of a resistance value with respect to a signal magnetic field. FIG.

【図2】この発明の第2の実施例に係る強磁性磁気抵抗
素子の構造および特性を示す図であり、(A)は平面
図、(B)は信号磁界に対する抵抗値の変化特性を示す
図である。
FIGS. 2A and 2B are diagrams showing a structure and characteristics of a ferromagnetic magnetoresistive element according to a second embodiment of the present invention, wherein FIG. 2A is a plan view and FIG. 2B shows a change characteristic of a resistance value with respect to a signal magnetic field. FIG.

【図3】従来の強磁性磁気抵抗素子の構造および特性を
示す図であり、(A)は平面図、(B)は信号磁界に対
する抵抗値の変化特性を示す図である。
3A and 3B are diagrams showing the structure and characteristics of a conventional ferromagnetic magnetoresistive element, in which FIG. 3A is a plan view and FIG. 3B is a diagram showing a change characteristic of a resistance value with respect to a signal magnetic field.

【図4】従来の強磁性磁気抵抗素子の構造および特性を
示す図であり、(A)は平面図、(B)は信号磁界に対
する抵抗値の変化特性を示す図である。
4A and 4B are diagrams illustrating the structure and characteristics of a conventional ferromagnetic magnetoresistive element, wherein FIG. 4A is a plan view and FIG. 4B is a diagram illustrating a change characteristic of a resistance value with respect to a signal magnetic field.

【図5】図2(A)または図4(A)に示す構造の強磁
性磁気抵抗素子において、パターン間の間隙sを変化さ
せた時の保磁力の変化を示す図である。
FIG. 5 is a diagram showing a change in coercive force when a gap s between patterns is changed in the ferromagnetic magnetoresistive element having the structure shown in FIG. 2A or 4A.

【図6】強磁性磁気抵抗膜パターンの長手方向を磁気容
易軸とする素子の動作説明図であり、(A)は本願発明
に係る図、(B)は従来例に係る図である。
6A and 6B are explanatory diagrams of an operation of an element having a longitudinal direction of a ferromagnetic magnetoresistive film pattern as an easy axis of magnetic field, wherein FIG. 6A is a diagram according to the present invention and FIG. 6B is a diagram according to a conventional example.

【図7】強磁性磁気抵抗膜パターンの長手方向を磁気困
難軸とする素子の動作説明図であり、(A)は本願発明
に係る図、(B)は従来例に係る図である。
7A and 7B are diagrams illustrating the operation of an element having a hard magnetic axis in the longitudinal direction of a ferromagnetic magnetoresistive film pattern, wherein FIG. 7A is a diagram according to the present invention and FIG. 7B is a diagram according to a conventional example.

【符号の説明】[Explanation of symbols]

1−基板 2−強磁性磁気抵抗膜パターン 3−電極 s−強磁性磁気抵抗膜パターン間の間隙 1-substrate 2-ferromagnetic magnetoresistive film pattern 3-electrode gap between s-ferromagnetic magnetoresistive film pattern

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 卓二 京都府長岡京市天神二丁目26番10号 株 式会社村田製作所内 (72)発明者 小木曽 美文 京都府長岡京市天神二丁目26番10号 株 式会社村田製作所内 (56)参考文献 特開 平2−161783(JP,A) 特開 平2−66479(JP,A) 特開 平2−229479(JP,A) 実開 昭55−147766(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 43/08 H01F 10/08 G11B 5/39 G01R 33/09 JICSTファイル(JOIS)──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takuji Nakagawa 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Co., Ltd. Inside Murata Manufacturing Co., Ltd. (72) Mibun Ogiso 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto, Japan (56) References JP-A-2-161784 (JP, A) JP-A-2-66479 (JP, A) JP-A-2-229479 (JP, A) (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 43/08 H01F 10/08 G11B 5/39 G01R 33/09 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に強磁性磁気抵抗膜パターンをミア
ンダライン状に形成してなる強磁性磁気抵抗素子におい
て、 強磁性磁気抵抗膜の膜厚tを500Å以下とし、隣接す
るパターン間の間隙sをt<s<38tとしたことを特
徴とする強磁性磁気抵抗素子。
1. A ferromagnetic magnetoresistive element in which a ferromagnetic magnetoresistive film pattern is formed in a meandering line pattern on a substrate, wherein the thickness t of the ferromagnetic magnetoresistive film is 500 ° or less, and a gap between adjacent patterns is provided. A ferromagnetic magnetoresistive element, wherein s is set to t <s <38t.
JP09281692A 1992-04-13 1992-04-13 Ferromagnetic magnetoresistive element Expired - Fee Related JP3182858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09281692A JP3182858B2 (en) 1992-04-13 1992-04-13 Ferromagnetic magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09281692A JP3182858B2 (en) 1992-04-13 1992-04-13 Ferromagnetic magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH05291645A JPH05291645A (en) 1993-11-05
JP3182858B2 true JP3182858B2 (en) 2001-07-03

Family

ID=14064952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09281692A Expired - Fee Related JP3182858B2 (en) 1992-04-13 1992-04-13 Ferromagnetic magnetoresistive element

Country Status (1)

Country Link
JP (1) JP3182858B2 (en)

Also Published As

Publication number Publication date
JPH05291645A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
US6112402A (en) Method for manufacturing magnetoresistive sensor
JPH10256620A (en) Giant magnetoresistive effect element sensor
JPH11513128A (en) Magnetic field sensor with magnetoresistive bridge
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JP3089828B2 (en) Ferromagnetic magnetoresistive element
KR100284779B1 (en) Spin valve magnetoresistance effect magnetic head and magnetic disk device
JP3562993B2 (en) Magnetic detector
US6120920A (en) Magneto-resistive effect magnetic head
JPH0870149A (en) Magnetoresistance element
JP3035836B2 (en) Magnetoresistive element
JPH0870148A (en) Magnetoresistance element
JP3035838B2 (en) Magnetoresistance composite element
JP3182858B2 (en) Ferromagnetic magnetoresistive element
JP3282444B2 (en) Magnetoresistive element
JPH0845030A (en) Magneto-resistive magnetic head
JPS6064484A (en) Ferromagnetic magnetoresistance effect alloy film
JP2865055B2 (en) Magnetoresistive magnetic sensing element and magnetic head using the same
JP3013031B2 (en) Magnetoresistance effect element and magnetoresistance sensor
JPH09231517A (en) Magnetic reluctance sensor
JPH07297464A (en) Differential magnetoresistive effect element
JP4110468B2 (en) Magneto-impedance element
JPH0473210B2 (en)
JPH09270544A (en) Macro-magnetoresistance effect element
JP3047607B2 (en) Ferromagnetic magnetoresistive element
JP2668897B2 (en) Magnetoresistive magnetic head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees