JPS6064484A - Ferromagnetic magnetoresistance effect alloy film - Google Patents

Ferromagnetic magnetoresistance effect alloy film

Info

Publication number
JPS6064484A
JPS6064484A JP58171232A JP17123283A JPS6064484A JP S6064484 A JPS6064484 A JP S6064484A JP 58171232 A JP58171232 A JP 58171232A JP 17123283 A JP17123283 A JP 17123283A JP S6064484 A JPS6064484 A JP S6064484A
Authority
JP
Japan
Prior art keywords
film
magnetic
alloy
ferromagnetic
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58171232A
Other languages
Japanese (ja)
Other versions
JPH0426227B2 (en
Inventor
Shinji Narushige
成重 真治
Akira Kumagai
昭 熊谷
Katsuya Mitsuoka
光岡 勝也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58171232A priority Critical patent/JPS6064484A/en
Publication of JPS6064484A publication Critical patent/JPS6064484A/en
Publication of JPH0426227B2 publication Critical patent/JPH0426227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Abstract

PURPOSE:To contrive increase of the ferromagnetic magnetoresistance effect, decrease of the saturation magnetic flux density and upgrade of the uniaxial magnetic anisotropy by a method wherein the composition of an Ni-Fe-Co system alloy is chosen in a limited extent. CONSTITUTION:The weight composition of a ferromagnetic magnetoresistnace efect alloy film consisting of an Ni-Fe-Co ternary alloy is chosen in the extent indicated by oblique lines in the diagram. The alloy film, whose composition has been chosen in hte extent, has characteristics of having a larger ferromagnetic magnetoresistance effect, showing a uniaxial anisotropy and having a larger saturation magnetic flux density, in a thin film strip form. This alloy film is suitable to utilize for magnetic sensors, magnetoresistance effect type thin film magnetic heads, magnetic valve detecting elements, etc.

Description

【発明の詳細な説明】 (利用分野) 本発明は強磁性磁気抵抗効果合金膜に関するものであり
、特に、磁気センサ素子、磁気ヘッド素子2よび磁気バ
ブル検出素子等のように薄膜ストリップ形状で実用に供
される強磁性磁気抵抗効果合金膜に係る。ざらに具体的
にいえば、本発明は、薄膜ストリップ形状において高い
磁界感度を有する強磁性磁気抵抗効果合金膜に関する,
Detailed Description of the Invention (Field of Application) The present invention relates to a ferromagnetic magnetoresistive alloy film, and is particularly applicable to a thin film strip shape used in magnetic sensor elements, magnetic head elements 2, magnetic bubble detection elements, etc. The present invention relates to a ferromagnetic magnetoresistive alloy film that is used for. More specifically, the present invention relates to a ferromagnetic magnetoresistive alloy film having high magnetic field sensitivity in the form of a thin film strip.
.

(背 景) 近年、強磁性磁気抵抗効果合金膜を用いて、被検体の回
転角および回転速度などを検出する磁気センサや磁気抵
抗効果型薄膜磁気ヘノド、および前記強磁性磁気抵抗効
果合金膜を用いた硯気・・プル検出孝子などの開発が急
速に進展している3゜第1図に、回転角および回転速度
を検出する磁気センサの概略構造を示す。
(Background) In recent years, ferromagnetic magnetoresistive alloy films have been used to detect magnetic sensors and magnetoresistive thin-film magnetic henodes that detect the rotation angle and rotational speed of an object, as well as the ferromagnetic magnetoresistive alloy films. Figure 1 shows the schematic structure of a magnetic sensor that detects the rotation angle and rotation speed.

被検体である回転体(図示せず)の回転軸、すなわち、
シャフト21には、磁気配録媒体20をその局面に有す
る検出部22が固定しである。磁気配録媒体20は、本
図では図示を省略している磁気へノドにより、所定の配
録波長で円周方向に着@25されている。
The rotation axis of the rotating body (not shown) that is the subject, that is,
A detection unit 22 having a magnetic recording medium 20 on its side is fixed to the shaft 21 . The magnetic recording medium 20 is attached 25 in the circumferential direction at a predetermined recording wavelength by a magnetic head (not shown).

一方、前記磁気記録媒体20の面に隣接するように、基
板30が配置され、その上の前記磁気記録媒体20に対
向する面上には、ストリップ状の強磁性磁気抵抗効果合
金膜1が蒸着、スパッタリングなどの手法によって形成
される。
On the other hand, a substrate 30 is disposed adjacent to the surface of the magnetic recording medium 20, and a strip-shaped ferromagnetic magnetoresistive alloy film 1 is deposited on the surface thereof facing the magnetic recording medium 20. , sputtering, or other methods.

とのように、基板30上に形成された強磁性磁気抵抗効
果合金膜lは、磁気記録媒体200着磁されたパターン
による磁界を受けるので、前記シャフト210回転にと
もなって電気抵抗が変化する。これに基づいて、周知の
演詐を施すことにょシ、回転体の回転角と回伝速匪を検
出することができる。
Since the ferromagnetic magnetoresistive alloy film l formed on the substrate 30 receives the magnetic field from the magnetized pattern of the magnetic recording medium 200, the electrical resistance changes as the shaft 210 rotates. Based on this, the rotation angle and rotation speed of the rotating body can be detected by performing a well-known trick.

第2図は、磁気抵抗効果屋薄膜磁気ヘッドの一例を示す
概略斜視図でるる。
FIG. 2 is a schematic perspective view showing an example of a magnetoresistive thin film magnetic head.

基板30の上にバイアス磁界印加用の永久磁石膜31が
形成され、その上面に、非磁性絶縁膜32を介して、ス
トリップ状の強磁性磁気抵抗効果合金膜lが形成される
11強磁性磁気抵抗効果合金膜lの両端部にはリード線
33が接続されている。
A permanent magnet film 31 for applying a bias magnetic field is formed on a substrate 30, and a strip-shaped ferromagnetic magnetoresistive alloy film l is formed on the upper surface of the permanent magnet film 31 with a nonmagnetic insulating film 32 interposed therebetween. Lead wires 33 are connected to both ends of the resistance effect alloy film l.

第2図では図示を省略している記録媒体から発生する磁
界2の影醤により、強磁性砿プ(抵抗効果合金膜lの電
気抵抗が変化する1Jそれ故に、前記合金膜1に流れる
電流またはジ−1933,33間の電位差に基ついて情
報の4与生を行うことができる。
In FIG. 2, due to the influence of the magnetic field 2 generated from the recording medium (not shown), the electric resistance of the ferromagnetic rod (resistance effect alloy film 1 changes by 1 J). Therefore, the current flowing through the alloy film 1 or Information can be generated based on the potential difference between G-1933 and G-33.

なお、この場合、永久磁石膜31は、+IC録媒体から
発生される磁界2と同じ方向に着磁4oされており、強
ロ性磁気抵抗効果合金膜IKバイアス磁界を印加する働
らきをする。
In this case, the permanent magnet film 31 is magnetized 4o in the same direction as the magnetic field 2 generated from the +IC recording medium, and functions to apply a ferromagnetoresistive alloy film IK bias magnetic field.

前述したような、強磁性磁気抵抗効果を利用した素子の
強磁性磁気抵抗効果合金膜としては、82重fIcX 
Ni −18重量%Fe合金? @ ルバー −q 。
As the ferromagnetic magnetoresistive alloy film of the element using the ferromagnetic magnetoresistive effect as described above, 82-layer fIcX
Ni-18wt%Fe alloy? @ Ruber −q.

イが、従来から広範に用いられているっまた、前記のよ
うな磁気センサ、磁気抵抗効果屋薄膜磁気ヘッドおよび
磁気バブル検出素子等においては、膜厚が25−400
 nmで、幅が20〜30μm程度の、ストリップ状強
磁性磁気抵抗効果膜が用いられるのが一般的である。
A has been widely used in the past, and has a film thickness of 25 to 400 mm in magnetic sensors, magnetoresistive thin film magnetic heads, magnetic bubble detection elements, etc.
Generally, a strip-shaped ferromagnetic magnetoresistive film having a width of about 20 to 30 μm is used.

そして、膜厚が30〜40 nmのパーマロイ膜の強磁
性磁気抵抗効果ノル1は約2.5Xであり、膜厚が30
0〜400nmのパーマロイ膜のノル1は約3.5Xで
ある、。
The ferromagnetic magnetoresistive effect Nor 1 of a permalloy film with a film thickness of 30 to 40 nm is approximately 2.5X, and the permalloy film with a film thickness of 30 to 40 nm
The Nor 1 of a 0-400 nm permalloy film is about 3.5X.

r IE)J Transaction@on Mag
nesias J (MAG−11+m4 、1975
年7月号第1018〜1038貞)Kは、パーマロイ膜
よりも強磁性磁気抵抗効果の大きい合金材料として、9
2XNi−8%Fe、 (70〜90 )XNi −(
30〜10 )XCo、 67XN+ −30XC。
r IE) J Transaction@on Mag
nesias J (MAG-11+m4, 1975
July issue No. 1018-1038) K is an alloy material with a larger ferromagnetic magnetoresistance effect than permalloy film.
2XNi-8%Fe, (70~90)XNi-(
30-10) XCo, 67XN+ -30XC.

3 X Crがあることが記載されている。It is described that there is 3XCr.

r Th1n Soi!id Films J (48
巻、1978年、fJs247−255員)には、三元
合金である72JiiXNi−18重1itX Fe−
101ift%Co、 64 MllN Ni−1’ 
7 *産X Fe −19]i 3n%Coおよび60
重量%Ni−11重重殿 Fe−29重量%Coが開示
されており、これらはパーマロイ膜より強磁性磁気抵抗
効果が大きいことが記載されている。
r Th1n Soi! id Films J (48
Vol., 1978, fJs247-255 members) contains the ternary alloy 72JiiXNi-18 heavy 1itX Fe-
101ift%Co, 64 MllN Ni-1'
7 *Product X Fe-19]i 3n%Co and 60
%Ni-11 weight% Fe-29%Co by weight is disclosed, and it is stated that these have a greater ferromagnetic magnetoresistive effect than permalloy films.

更に、r IEFiB Transactions o
n MagneticsJ CMAG−19、m2 、
1983年3月号第104−110貞)にも、65XN
i −15%P’e−20X Coオよび6゜XNi 
−10XFe−30XCoが開示されており、これらの
三元合金もパーマロイ膜よシ強磁性磁気抵抗効果が大き
いことが記載されている。
Furthermore, r IEFiB Transactions o
n MagneticsJ CMAG-19, m2,
65XN (March 1983 issue No. 104-110)
i -15%P'e-20X Co and 6゜XNi
-10XFe-30XCo is disclosed, and it is stated that these ternary alloys also have a greater ferromagnetic magnetoresistive effect than permalloy films.

′ゝ−マロイ膜よりも頒蝋性硫気抵抗効果の太きい、こ
れら公知の磁性合金膜の、Ni −Fe −Co系三成
分図における位置は、第5図に、○印で示されている。
The positions of these known magnetic alloy films, which have a greater arsenic sulfur resistance effect than the Malloy film, in the Ni-Fe-Co ternary diagram are indicated by circles in Figure 5. There is.

しかし、これらの磁性三元合金膜には以下のような欠点
がある。
However, these magnetic ternary alloy films have the following drawbacks.

一般に、磁気センサ素子および磁気抵抗効果型薄膜磁気
ヘッド素子の磁気抵抗効果合金膜は、第1図および第2
図ならびにその説明から容易に理解されるように、薄膜
ストリップ形状で使用される。その際、磁界2は第2図
中にも示したように、薄M面内で、その幅方向に−すな
わち、長さ方向に直角に印加される。。
In general, the magnetoresistive alloy films of magnetic sensor elements and magnetoresistive thin film magnetic head elements are shown in FIGS. 1 and 2.
As can be easily understood from the figures and the description thereof, it is used in the form of a thin film strip. At this time, as shown in FIG. 2, the magnetic field 2 is applied within the thin M plane in its width direction, that is, at right angles to its length direction. .

1s3図は、この状態を模式的に示す斜視図である。こ
の場合の、令部寸法は、典臘的には膜J91〆が20〜
50nm、幅Wが5〜40pm、長さLが100〜30
00 μmである。すなわち、この磁気抵抗効果型合金
薄膜においては、長さLはその幅Wに比べて十分に大き
く、かつ幅Wは膜厚性に比べて十分に大きい。
Figure 1s3 is a perspective view schematically showing this state. In this case, the dimensions of the rear section are typically 20 to 20 mm.
50 nm, width W 5-40 pm, length L 100-30
00 μm. That is, in this magnetoresistive alloy thin film, the length L is sufficiently larger than its width W, and the width W is sufficiently larger than its film thickness.

ところで第1図ないし第3図に示される磁気抵抗効果合
金膜に於ては、強磁性磁気抵抗効果が大きいだけでなく
、下記の2点が必要である。
By the way, the magnetoresistive alloy films shown in FIGS. 1 to 3 require not only a large ferromagnetic magnetoresistive effect, but also the following two points.

第一は磁界感度が良いこと−すなわち、印加される磁界
2が小さくても十分な強磁性磁気抵抗効果を示すことが
必要である。
First, it must have good magnetic field sensitivity - that is, it must exhibit a sufficient ferromagnetic magnetoresistive effect even if the applied magnetic field 2 is small.

また、その第二は、磁界2に対するヒステリシス現象が
少ないとと−すなわち、長さLの方向が磁化容易軸とな
る一軸磁気異方性の磁性膜であることが必要である。
The second requirement is that the hysteresis phenomenon with respect to the magnetic field 2 is small; that is, the magnetic film must have uniaxial magnetic anisotropy, with the direction of length L being the axis of easy magnetization.

第一の磁界感度について、さらに説明するudi界感度
を表わすパラメータとしては、一般に、見掛けの異方性
磁界11k を用いるのが良いとされている。
Regarding the first magnetic field sensitivity, it is generally considered that it is best to use the apparent anisotropic magnetic field 11k as a parameter representing the udi field sensitivity, which will be further explained.

見掛けの異方性磁界H’にとは、第3図に示す薄膜スト
リップ形状の磁気抵抗効果合金膜lに、その幅方向に磁
界2を#J加したとき、第4図に示フー如く、磁気抵抗
効果が事実上飽和した(I:11加磁界Hが変化しても
、その抵抗値Rが変化しなくなった)と見なせる磁界で
ある。
The apparent anisotropic magnetic field H' is as shown in FIG. 4 when a magnetic field 2 #J is applied in the width direction of the thin strip-shaped magnetoresistive alloy film l shown in FIG. This is a magnetic field at which the magnetoresistive effect can be considered to have been practically saturated (even if the I:11 magnetic field H changes, the resistance value R no longer changes).

磁気抵抗効果屋簿膜磁気ヘッドの磁気抵抗効果合金膜は
、長さLの方向に対して、約45度の角度をなす方向に
バイアス磁界を印加して使用されるのが普通である。そ
して、この場合、磁気抵抗効果合金膜単体の磁界感度と
しては、前述の見掛けの異方性磁界H’にで磁性膜の特
性を評価することが一般的である。
Magnetoresistive Film The magnetoresistive alloy film of the magnetic head is normally used by applying a bias magnetic field in a direction forming an angle of about 45 degrees with respect to the direction of length L. In this case, as for the magnetic field sensitivity of a single magnetoresistive alloy film, it is common to evaluate the characteristics of the magnetic film using the above-mentioned apparent anisotropic magnetic field H'.

磁気バブル検出素子に於ても、r IEEETrans
actions onMagnetieJ (MAG 
−19、N12 +March 1983第104〜1
1G頁に記載されているように、見掛けの異方性磁界H
’にで、その特性を評価する。
Even in the magnetic bubble detection element, r IEEE Trans
actions on MagnetieJ (MAG
-19, N12 +March 1983 No. 104-1
As described on page 1G, the apparent anisotropic magnetic field H
' to evaluate its characteristics.

第3図の形状での磁気抵抗効果合金膜の見掛けの異方性
磁界H’には、次の(1)式で与えられる。
The apparent anisotropic magnetic field H' of the magnetoresistive alloy film in the shape shown in FIG. 3 is given by the following equation (1).

(1)式において、Hk は真の異方性磁界、Bs は
飽和磁束密度、aとbは磁性膜の特性には関係しない定
数でろる。それ故にIIIIIIは0式の中で磁性膜自
体に関係するものは真の異方性磁界Hk と飽和磁束密
度Bs でるる。
In equation (1), Hk is the true anisotropic magnetic field, Bs is the saturation magnetic flux density, and a and b are constants that are not related to the characteristics of the magnetic film. Therefore, in the formula III, those related to the magnetic film itself are the true anisotropic magnetic field Hk and the saturation magnetic flux density Bs.

ところで、磁界感度の良い磁性膜とは、見掛けの異方性
磁界1(’kが小ざいことでるる。このことは、前m1
(1)式を参照す2tは明らかなように、真の異方性磁
界HKが小さく、かつ飽和磁束密度Bsが小さいことを
意味する。
By the way, a magnetic film with good magnetic field sensitivity has a small apparent anisotropic magnetic field 1 ('k).
As is clear, 2t referring to equation (1) means that the true anisotropic magnetic field HK is small and the saturation magnetic flux density Bs is small.

前記の各刊行物に開示された公知材料でめるNi−Fe
−Co会全金膜、いずれも飽和磁束密tiBs が大き
く、従って、見掛けの異方性磁界H’kが太きいという
欠点かある。
Ni-Fe made of known materials disclosed in the above publications
-Co all-gold films both have a large saturation magnetic flux density tiBs, and therefore have the disadvantage that the apparent anisotropic magnetic field H'k is large.

更に、す2%Ni−8XFe、(70〜90 )XNi
−(30〜10)XCoおよび67%Ni−30%・−
3X Cr等は一軸磁気異方性のPlkを得ることが困
難で6るという欠点が少る。
Furthermore, 2%Ni-8XFe, (70~90)XNi
-(30-10)XCo and 67%Ni-30%・-
3X Cr and the like have fewer drawbacks in that it is difficult to obtain Plk with uniaxial magnetic anisotropy.

(発明の目的) 本発明は前述の欠点を除去するためになされたものであ
り、その目的は、82重量XNi−18重量X Fe合
金であるパーマロイ膜や公知のNi−Fe−Co三元合
金膜に比べて、薄膜ストリップ形状において、強磁性磁
気抵抗効果が大きく、飽和磁束密度Bs が公知の材料
よりも小さく(すなわち、見掛けの異方性磁界が小さく
)、かつ、−軸磁気異方性を示す良好な強磁性磁気抵抗
効果合金膜を提供することにある。
(Objective of the Invention) The present invention has been made to eliminate the above-mentioned drawbacks, and its purpose is to remove the permalloy film, which is an 82wtXNi-18wtXFe alloy, or a known Ni-Fe-Co ternary alloy. Compared to the film, in the thin film strip shape, the ferromagnetic magnetoresistive effect is large, the saturation magnetic flux density Bs is smaller than that of known materials (i.e., the apparent anisotropy field is smaller), and the −axial magnetic anisotropy is smaller than that of known materials. An object of the present invention is to provide a ferromagnetic magnetoresistive alloy film exhibiting good properties.

(発明の概4I) −本発明は、Ni −Fe−Co三元合金膜において、
その重量組成をNl+−ry Feよ−Coyと表わし
たとき、つぎ02つの不等式 %式% を、前記x、yが満足するような組成範囲とすることに
より、パーマロイ膜よりも強磁性磁気抵抗効果が大きく
、飽和磁束密度が公知のN1−Fe−C。
(Summary of the invention 4I) - The present invention provides a Ni-Fe-Co ternary alloy film that includes:
When its weight composition is expressed as Nl + - ry Fe yo - Coy, the following inequality % formula % is set to a composition range that satisfies the above x and y, so that the ferromagnetic magnetoresistive effect is better than that of permalloy film. N1-Fe-C is known to have a large saturation magnetic flux density.

三元合金膜よりも小さく、かつ−軸磁気異方性を示す、
良好な薄膜ストリップ状の強磁性磁気抵抗効果合金膜を
実現できるようにした点に特徴がある。
It is smaller than a ternary alloy film and exhibits −axial magnetic anisotropy.
The feature is that it is possible to realize a good thin film strip-like ferromagnetic magnetoresistive alloy film.

(発明の実施例) 本発明者らは、前述のように優れた特性を有するIw膜
ス) IJツブ状の強磁性磁気抵抗効果合金膜を得るた
めの、Ni −Fe −Co三元合金の組成範囲を確定
するために、種々の組成を有する前記三元合金膜を実験
的に作成した。l そして、これらについて、それぞれ、強磁性磁気抵抗効
果Δル1(%)、飽和磁束密度T(パーマロイを1とし
た場合の相対値)、2よび一軸磁気異方性を呈するか否
かを測定した。その結果を第1表(末屋隻)に示7゜ なお、とれらの実験において、それぞれの試料随に相当
するNi −Fa −Co合金膜は、所定の配合組成を
有する一つの蒸着源から蒸着して得たものでるる。魚屑
用加熱源としては抵抗加熱を用いたが、電子ビーム加熱
を用いても全く同じでるる。
(Embodiments of the Invention) The present inventors have developed a Ni-Fe-Co ternary alloy to obtain an IJ tube-shaped ferromagnetic magnetoresistive alloy film. In order to determine the composition range, the ternary alloy films having various compositions were experimentally created. l Then, for each of these, the ferromagnetic magnetoresistive effect Δl (%), the saturation magnetic flux density T (relative value when Permalloy is set to 1), 2, and whether or not they exhibit uniaxial magnetic anisotropy are measured. did. The results are shown in Table 1 (Mueya Sen).7 In these experiments, the Ni-Fa-Co alloy film corresponding to each sample was produced from a single evaporation source with a predetermined composition. It is obtained by vapor deposition. Resistance heating was used as the heating source for the fish scraps, but the results would be exactly the same even if electron beam heating was used.

また、蒸着時の真空圧力は5 X 10 ’ Torr
以下が筑く、さらに、バラツキが少なく、かつ強磁性磁
気抵抗効果の大きい付金臆を得るにはl X 10−’
Torr以下が望ましいことが分った。
Also, the vacuum pressure during vapor deposition was 5 x 10' Torr.
The following is required, and in order to obtain a ferromagnet with less variation and a large ferromagnetic magnetoresistance effect, l x 10-'
It was found that it is desirable to have a pressure of less than Torr.

蒸着時の基板温匿は、一般には200〜400℃の範囲
に保持するのが普通であり、ノ(ラツキが少なく、かつ
強磁性磁気抵抗効果の大きい合金膜を得るには約350
℃が望ましいことが分った。
The temperature of the substrate during vapor deposition is generally kept within the range of 200 to 400°C, and the temperature is approximately 350°C in order to obtain an alloy film with less scattering and a large ferromagnetic magnetoresistive effect.
℃ was found to be desirable.

この場合の基板としては、十分に平旦なttit”有す
るカラス、セラミックス等を用いることができる。蒸着
速度は1〜3 nm / 8の範囲であれば良く、蒸着
iA度は強磁性磁気抵抗効果に大きな影響を及はざない
ことが確認された。
In this case, the substrate can be made of glass, ceramics, etc., which have a sufficiently flat ttit.The deposition rate may be in the range of 1 to 3 nm/8, and the degree of deposition iA depends on the ferromagnetic magnetoresistive effect. It was confirmed that there would be no major impact.

一軸磁気異方性を付与する方法としては、一定方向の直
流または交流磁界中で蒸着する方法、蒸着粒子を基板面
の法線方向から傾ける斜方蒸着法、斜方蒸着でかつ基板
を回転する方法、あるいは回転磁界中で蒸着する方法等
を用いることができる。
Methods for imparting uniaxial magnetic anisotropy include evaporation in a DC or AC magnetic field in a fixed direction, oblique evaporation in which the evaporated particles are tilted away from the normal direction of the substrate surface, and oblique evaporation and rotation of the substrate. Alternatively, a method of vapor deposition in a rotating magnetic field, etc. can be used.

最も簡単に一軸磁気異方性を付与する方法は、直流磁界
中で蒸着する方法である7、 膜厚は、その用途によって異なるが、20〜400 n
mの範囲で変化させることは6易である。
The simplest method for imparting uniaxial magnetic anisotropy is to deposit in a direct current magnetic field.7 The film thickness varies depending on the application, but is between 20 and 400 nm.
It is easy to vary within the range of m.

第1表は、蒸着法で形成した膜厚45〜50’nmの、
種々の組成のNi −F’e −Co 三元合金に−x
yxy ついて、それぞれの強磁性磁気抵抗効果、飽和磁束密度
および一軸磁気異方性を測定したものである。
Table 1 shows the film thickness of 45 to 50'nm formed by vapor deposition method.
-x in Ni-F'e-Co ternary alloys of various compositions
The ferromagnetic magnetoresistive effect, saturation magnetic flux density, and uniaxial magnetic anisotropy of yxy were measured.

N’ 1.− y k’e at Lo y 合金膜に
おいて、一般的に、Coの含有虚をふやせば強磁性磁気
抵抗効果が大きくなることは知られているが、第1表の
実験結果から、実質的にパーマロイ膜よりも大きな強磁
性磁気抵抗効果を示すためには、coの組成比を15重
量に以上とすることが必要であることが分かる。
N'1. -y k'e at Lo y It is generally known that increasing the Co content in alloy films increases the ferromagnetic magnetoresistance effect, but from the experimental results in Table 1, it is clear that It can be seen that in order to exhibit a larger ferromagnetic magnetoresistance effect than the permalloy film, it is necessary to increase the composition ratio of co to 15% by weight or more.

すなわち、前記yFi、0.15以上であることが必要
である。これを第5図に示すN1− Fe−Co系3成
分図でいえは、図中の直線11よりもCo側の斜線領域
である。
That is, the yFi needs to be 0.15 or more. In the N1-Fe-Co ternary component diagram shown in FIG. 5, this is the shaded area on the Co side of the straight line 11 in the figure.

つぎに、同じく第1表から、Ni Fe −C。Next, also from Table 1, NiFe-C.

1272 y 合金Mにおいて、−軸磁気異方性膜を得るには、Feの
組成比を5重量%以上とすることが必要でるることが分
かる。すなわち、Xは0.05以上であることが必要で
あシ、これは第5図中の直$12よりもFe@の斜線領
域である。
It can be seen that in 1272y alloy M, in order to obtain a -axis magnetically anisotropic film, it is necessary to make the Fe composition ratio 5% by weight or more. That is, it is necessary that X be 0.05 or more, and this is the shaded region of Fe@ rather than the direct $12 in FIG.

また、Ni −Fe −Co 合金膜において、前r−
x−yxy 記公知のNi −Fe −Co合金膜よシも飽和磁束密
度が小となる組成範囲は、yが0.15以上で、かつX
が0.05以上であるとい52条件を満す組成範囲にお
いて、yが(0,5−2,5g)以下の範囲であること
が、第1表から判定きれる。この領域は1.:55図中
の直線13よりもNi側の斜線領域である。
In addition, in the Ni-Fe-Co alloy film, the front r-
x-yxy The composition range in which the saturation magnetic flux density is small compared to the known Ni-Fe-Co alloy film is that y is 0.15 or more, and
It can be determined from Table 1 that y is in the range of (0.5-2.5 g) or less in the composition range that satisfies the condition 52 that y is 0.05 or more. This area is 1. : This is the shaded area on the Ni side of the straight line 13 in Figure 55.

以上を綜合すれば、明らかなよりに、本発明の目的に適
合する強磁性磁気抵抗効果特性−換言すれば、 (1)パーマロイ膜よりも強磁性磁気抵抗効果が大きく
、 (2)−軸磁気異方性を示し、かつ (3)公知のNi −Fe −Co合金膜よりも飽和磁
束密度が大きい という特性を示すNi −Fe −Co 台金膜の組1
−x−yzy 成範囲は、第5図において、3本の直線11゜12.1
3で囲まれた領域であられされる。
Taking all the above into account, it is clear that the ferromagnetic magnetoresistive effect characteristics suitable for the purpose of the present invention - in other words, (1) the ferromagnetic magnetoresistive effect is larger than that of the permalloy film, and (2) - the axial magnetic Group 1 of Ni-Fe-Co base metal films exhibiting anisotropy and (3) a higher saturation magnetic flux density than known Ni-Fe-Co alloy films.
-x-yzy composition range is three straight lines 11°12.1 in Figure 5.
It will rain in the area surrounded by 3.

更に、本発明者らの実験によれば、fiIJ記組成範囲
内に含まれるNiO,71”−FeO,09−COO,
20の、膜厚350 nmの試料の強磁性磁気抵抗効果
は48%であり、同じ厚さのパーマロイの強磁性磁気抵
抗効果の値3.5Xよりも大きな値であることが確認さ
れた。
Furthermore, according to the experiments of the present inventors, NiO, 71"-FeO, 09-COO,
It was confirmed that the ferromagnetic magnetoresistive effect of the sample No. 20 with a film thickness of 350 nm was 48%, which was larger than the ferromagnetic magnetoresistive effect of Permalloy of the same thickness, which was 3.5X.

なお、本発明の合金膜を形成する方法としては、真空蒸
yIi法に限定されるものではなく、スパッタリング法
も有効であることは勿論である。
Note that the method for forming the alloy film of the present invention is not limited to the vacuum vaporization method, and it goes without saying that a sputtering method is also effective.

(発明の効果) 以上の説明から明らρ・な如く、本発明によって限定さ
れた組成範囲にある強fIi性磁気抵抗効果合金膜は、
通常実用に供される薄膜ストリップ状の形状において、
従来から同じ目的に使用されているバーマロイヤ公知の
同種合金に比較して、強磁性磁気抵抗効果が大きく、飽
和磁束密度が実質的に問題とならない程度に小さく、か
つ−軸磁気異方性を有するという効果があシ、磁気セン
サ、磁気抵抗効果型薄膜磁気ヘッドおよび磁気バブル検
出素子等に用いるのに極めて好適である。
(Effects of the Invention) From the above description, it is clear that the strong fIi magnetoresistive alloy film in the composition range limited by the present invention, as shown in ρ.
In the thin film strip shape that is usually used in practical use,
Compared to similar alloys known as Vermaloya, which have traditionally been used for the same purpose, the ferromagnetic magnetoresistance effect is large, the saturation magnetic flux density is so small that it does not pose a practical problem, and it has -axial magnetic anisotropy. This effect makes it extremely suitable for use in magnetic sensors, magnetoresistive thin film magnetic heads, magnetic bubble detection elements, and the like.

本発明のNi−Fe−Co系合金展は、また、その構成
元素がNi 、 Fs 、 Coという蒸気圧か比較重
傷かよつ九元素から成シ、工業的に再現性良く得ること
が出来るという利点も有しているっ
The Ni-Fe-Co alloy of the present invention also has the advantage that its constituent elements are Ni, Fs, and Co, which are nine elements with relatively high vapor pressure and can be obtained industrially with good reproducibility. I also have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転角および回転速度供出用の抵抗効果屋薄膜
磁気センサの概略構造を示すが)夜回、第2f!Ati
磁気抵抗効果型薄膜轍気ヘツドの概略構造を示す斜視図
、第3図は強磁性磁気抵抗効果膜を薄膜ス) IJノブ
形状で用いる場合における電流方向と磁界印加方向を説
明する斜視図、・耶4図は強磁性磁気抵抗効果膜に磁界
が印加された時の抵抗変化と磁界との関係を示す図、第
5図けNi−Fe−Co系3成分図と本発明の限定され
た組成範囲を説明する図である。 l・・・強磁性磁気抵抗効呆合金膜、2・・・印加され
る磁界 代理人弁理士 平 木 道 人 第1図 2n 第2図 第3図  Hi
Figure 1 shows the schematic structure of a resistive thin film magnetic sensor for providing rotation angle and rotation speed) night time, 2nd f! Ati
A perspective view showing the schematic structure of a magnetoresistive thin film rut head; Fig. 3 is a perspective view illustrating the current direction and magnetic field application direction when using a ferromagnetic magnetoresistive film in the IJ knob shape; Figure 4 shows the relationship between the change in resistance and the magnetic field when a magnetic field is applied to a ferromagnetic magnetoresistive film, and Figure 5 shows the Ni-Fe-Co ternary component diagram and the limited composition of the present invention. It is a figure explaining a range. l...Ferromagnetic magnetoresistive alloy film, 2...Magnetic field applied Patent attorney Michihito Hiraki Figure 1 2n Figure 2 Figure 3 Hi

Claims (3)

【特許請求の範囲】[Claims] (1) Ni −Fe −Co三元合金からなる強磁性
磁気抵抗効果合金膜において、その重量組成をN11−
ry−Fe −Co と表わしたとき、 x y Xが0.05≦Xで、かつ yが0.15≦y≦0.5−2.5 zの2条件を満足
する組成範囲であることを特徴とする強磁性磁気抵抗効
果合金膜。
(1) In a ferromagnetic magnetoresistive alloy film made of a Ni-Fe-Co ternary alloy, its weight composition is N11-
When expressed as ry-Fe-Co, the composition range satisfies the following two conditions: x y X is 0.05≦X, and y is 0.15≦y≦0.5-2.5 z Characteristic ferromagnetic magnetoresistive alloy film.
(2)前記強磁性磁気抵抗効果合金膜は、その形状が、
その幅に比べて長さが十分に長い薄膜ストップ状である
ことを特徴とする特許 項記載の強磁性磁気抵抗効果合金膜。
(2) The ferromagnetic magnetoresistive alloy film has a shape that is
A ferromagnetic magnetoresistive alloy film as described in the patent, characterized in that it is in the form of a thin film stop whose length is sufficiently longer than its width.
(3)膜厚力2 0〜400nmであることt″特徴す
る特許請求の範囲第1項または第2項記載の強磁性磁気
抵抗効果合金膜。
(3) The ferromagnetic magnetoresistive alloy film according to claim 1 or 2, characterized in that the film thickness is 20 to 400 nm.
JP58171232A 1983-09-19 1983-09-19 Ferromagnetic magnetoresistance effect alloy film Granted JPS6064484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58171232A JPS6064484A (en) 1983-09-19 1983-09-19 Ferromagnetic magnetoresistance effect alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171232A JPS6064484A (en) 1983-09-19 1983-09-19 Ferromagnetic magnetoresistance effect alloy film

Publications (2)

Publication Number Publication Date
JPS6064484A true JPS6064484A (en) 1985-04-13
JPH0426227B2 JPH0426227B2 (en) 1992-05-06

Family

ID=15919490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171232A Granted JPS6064484A (en) 1983-09-19 1983-09-19 Ferromagnetic magnetoresistance effect alloy film

Country Status (1)

Country Link
JP (1) JPS6064484A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240972A (en) * 1988-07-29 1990-02-09 Nec Corp Magnetoresistance effect thin film
JPH0567820A (en) * 1991-03-29 1993-03-19 Toshiba Corp Magnetoresistance effect element
JPH06310327A (en) * 1993-04-21 1994-11-04 Nec Corp Integrated magnetoresistance effect sensor
JPH0963843A (en) * 1995-08-23 1997-03-07 Nec Corp Multilayer structure for integrated magnetic sensor
US7043744B2 (en) 2001-10-17 2006-05-09 Samsung Electronics Co., Ltd. Disk cartridge and disk drive apparatus
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
US7830143B2 (en) 2006-03-10 2010-11-09 Nec Corporation Magnetic sensor, method of manufacturing the same, and electronic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240972A (en) * 1988-07-29 1990-02-09 Nec Corp Magnetoresistance effect thin film
JPH0567820A (en) * 1991-03-29 1993-03-19 Toshiba Corp Magnetoresistance effect element
JPH06310327A (en) * 1993-04-21 1994-11-04 Nec Corp Integrated magnetoresistance effect sensor
JPH0963843A (en) * 1995-08-23 1997-03-07 Nec Corp Multilayer structure for integrated magnetic sensor
US7043744B2 (en) 2001-10-17 2006-05-09 Samsung Electronics Co., Ltd. Disk cartridge and disk drive apparatus
US7178156B2 (en) 2001-10-17 2007-02-13 Samsung Electronics Co., Ltd. Disk cartridge having identification element and disk drive apparatus which recognizes the identification element
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
US7582489B2 (en) 2002-11-21 2009-09-01 Denso Corporation Method for manufacturing magnetic sensor apparatus
US7830143B2 (en) 2006-03-10 2010-11-09 Nec Corporation Magnetic sensor, method of manufacturing the same, and electronic device

Also Published As

Publication number Publication date
JPH0426227B2 (en) 1992-05-06

Similar Documents

Publication Publication Date Title
US5206590A (en) Magnetoresistive sensor based on the spin valve effect
JPH04247607A (en) Magnetoresistance effect element
JPS6032330B2 (en) magnetic thin film structure
JPH0440777B2 (en)
EP0130496B1 (en) Magnetic field sensing device
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JPH10143822A (en) Thin-film magnetic structure and thin-film magnetic head
US7535683B2 (en) Magnetoresistive head with improved in-stack longitudinal biasing layers
JPS6064484A (en) Ferromagnetic magnetoresistance effect alloy film
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
US6215631B1 (en) Magnetoresistive effect film and manufacturing method therefor
JP3247535B2 (en) Magnetoresistance effect element
Su et al. Laminated CoZr amorphous thin‐film recording heads
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JP3262697B2 (en) Magnetoresistance effect multilayer film
JPH08213238A (en) Magneto-resistance sensor
JPH0629589A (en) Magnetoresistance effect element
JPH04137572A (en) Magnetoresistance effect element and rotation detector
JP2000113416A (en) Magnetoresistive head and its manufacturing method
JP2910409B2 (en) Magnetoresistance effect element
JPH0354713A (en) Magneto-resistance effect head
JP2806549B2 (en) Magnetoresistance effect element
JP3028585B2 (en) Magnetoresistive element
JP2867416B2 (en) Magnetoresistive head