JPS6366417A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPS6366417A
JPS6366417A JP21076786A JP21076786A JPS6366417A JP S6366417 A JPS6366417 A JP S6366417A JP 21076786 A JP21076786 A JP 21076786A JP 21076786 A JP21076786 A JP 21076786A JP S6366417 A JPS6366417 A JP S6366417A
Authority
JP
Japan
Prior art keywords
temperature
operating point
magnetic sensor
substrate
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21076786A
Other languages
Japanese (ja)
Inventor
Kokichi Terajima
厚吉 寺嶋
Toru Inomata
猪股 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akai Electric Co Ltd
Original Assignee
Akai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akai Electric Co Ltd filed Critical Akai Electric Co Ltd
Priority to JP21076786A priority Critical patent/JPS6366417A/en
Publication of JPS6366417A publication Critical patent/JPS6366417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To reduce a drift in the operating point of a sensor and the temperature dependency of a duty ratio when a detecting signal is converted to a square wave by using a silicon plate as a substrate for providing a magnetoresistance effect element thereon. CONSTITUTION:A silicon plate is used as a substrate for providing a magnetoresistance effect element MR thereon. Thus, a good temperature characteristic sensor wherein heat from the magnetoresistance effect element MR constituting a Joule heat generating source is well radiated, a temperature gradient is gentle and a drift in the operating point of a half bridge due to an external temperature is reduced can be obtained. That is, the thermal conductivity of silicon is 0.36cal.cm/(cm<2>.sec. deg.C) which is larger than that of glass by about two figures. Thus, heat generated from the magnetoresistance effect element MR is radiated by using the silicon plate as the substrate. Accordingly, a temperature rise in the magnetoresistance effect element MR is restrained and the drift in the operating point is reduced. Thus, the temperature dependency of a duty ratio when a detecting signal is converted to a square wave is reduced and temperature characteristics can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、回転体の回転角等を検出する磁気式ロータ
リニンコーダの磁気信号検出手段として用いる磁気抵抗
効果素子を基板上に設けた磁気センサに関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic sensor in which a magnetoresistance effect element is provided on a substrate to be used as a magnetic signal detection means of a magnetic rotary encoder that detects the rotation angle of a rotating body. It is related to sensors.

〔発明の概要〕[Summary of the invention]

この発明は1回転体の回転角等を検出する磁気式ロータ
リエンコーダの磁気信号検出手段として用いる磁気抵抗
効果素子を基板上に設けた磁気センサの基板としてシリ
コン板を用いることにより、磁気抵抗効果素子の発生す
るジュール熱の蓄積を低減し、外部温度の変動による磁
気センサの動作点のドリフトを安定化するようにしたも
のである。
This invention uses a silicon plate as a substrate of a magnetic sensor in which a magnetoresistive element is provided on the substrate to be used as a magnetic signal detection means of a magnetic rotary encoder that detects the rotation angle of a rotating body. This reduces the accumulation of Joule heat generated by the sensor and stabilizes the drift of the operating point of the magnetic sensor due to fluctuations in external temperature.

〔従来の技術〕[Conventional technology]

磁気式ロータリエンコーダの磁気信号検出手段として用
いる磁気抵抗効果素子を基板上に設けた従来の磁気セン
サは、ガラスからなる基板上にNi−Co合金等からな
る1膜を300〜2000 A の厚さに蒸着し、その
4瞑をフォントエツチングにより所定形状に加工して磁
気抵抗効果素子を形成したものである。
A conventional magnetic sensor in which a magnetoresistive element is provided on a substrate, which is used as a magnetic signal detection means of a magnetic rotary encoder, is a film made of a Ni-Co alloy or the like with a thickness of 300 to 2000 A on a glass substrate. The magnetoresistive element is formed by vapor depositing the four layers and processing the four lines into a predetermined shape by font etching.

そして1例えば第1図に示すようにFeCrC。and 1, for example, FeCrC as shown in FIG.

磁石等からなる回転体1の外周に一定間隔で磁極を多極
着磁するとともに、この回転体1の磁極に約20〜20
0μmの距離をもってその磁気抵抗効果素子MRを対向
させて配置する。この磁気センサの基板の寸法は数mm
角である。
Multi-pole magnetic poles are magnetized at regular intervals on the outer periphery of a rotating body 1 made of a magnet, etc., and approximately 20 to 20 magnetic poles are attached to the magnetic poles of this rotating body 1.
The magnetoresistive elements MR are placed facing each other with a distance of 0 μm. The size of the substrate of this magnetic sensor is several mm.
It is a corner.

この回転体1の回転に伴う磁界の変化により。Due to changes in the magnetic field accompanying the rotation of the rotating body 1.

磁気抵抗効果素子MRの抵抗値が変化することを利用し
て1回転体1の回転角等を検出することができる。
The rotation angle of the rotating body 1 can be detected by utilizing the change in the resistance value of the magnetoresistive element MR.

このような磁気センサは、磁気抵抗効果素子MRをハー
フブリッジ構成にする方法が一般的にとられており、第
2図に示すように磁気抵抗効果素子MRA、Lとこれと
180’位相の異なる位置に配置した磁気抵抗効果素子
MRA、Rとを直列接続してハーフブリッジMRA、と
し、その接続部Sを磁気信号の検出端とじ5他端を直流
電mV及びアースGに接続する。
Such a magnetic sensor generally employs a method in which the magnetoresistive element MR is configured in a half-bridge configuration, and as shown in Fig. 2, the magnetoresistive element MRA, L has a phase difference of 180' from the magnetoresistive element MRA, L. The magnetoresistive elements MRA and R placed at the same position are connected in series to form a half-bridge MRA, and the connection part S is connected to the magnetic signal detection end 5 and the other end is connected to the DC current mV and the ground G.

これにより、第3図に示すように磁気抵抗効果素子MR
A、Lは曲fi2のように抵抗変化し、磁気抵抗効果素
子MRAIRは曲線3のように抵抗変化するので、磁気
抵抗効果素子M RA I Lの抵抗値をRL、磁気抵
抗効果素子MRA、Rの抵抗値をRRとすると、ハーフ
ブリッジの出力としては、vo=V−RL/ (RL+
RR)を動作点として第4図の曲線4が得られる。
As a result, as shown in FIG. 3, the magnetoresistive effect element MR
A and L change their resistance as shown in curve fi2, and the resistance of magnetoresistive element MRAIR changes as shown in curve 3, so the resistance value of magnetoresistive element MRA I L is expressed as RL, magnetoresistive element MRA, R. If the resistance value of is RR, then the output of the half bridge is vo=V-RL/(RL+
Curve 4 in FIG. 4 is obtained with RR) as the operating point.

このハーフブリッジを基本構成とし、第5図に示すよう
にハーフブリッジMRA、とこれと位相の90°異なる
近接した位置に配置したハーフブリッジMRB、の出力
を、それぞれ増幅器5及び6に入力させれば、90”位
相差の2相出力AとBが得られる。
With this half-bridge as the basic configuration, as shown in FIG. 5, the outputs of the half-bridge MRA and the half-bridge MRB placed in close proximity with a phase difference of 90 degrees are input to amplifiers 5 and 6, respectively. For example, two-phase outputs A and B with a phase difference of 90'' can be obtained.

また、別の方法として第6図に示すように、ハーフブリ
ッジMRA1と、これと1808位相の異なる近接した
位置に配置されたハーフブリッジMRA2の各出力を差
動増幅器7にそれぞれ入力し、さらにハーフブリッジM
RB lと、これと180°位相の異なる近接した位置
に配置されたハーフブリッジMRB2の各出力を差動増
幅器8に入力して、同相ノイズを除去するようにしたも
のもある。
As another method, as shown in FIG. Bridge M
There is also a system in which the outputs of RB1 and a half bridge MRB2 disposed close to each other with a phase difference of 180 degrees are input to a differential amplifier 8 to remove common mode noise.

以上のように基本構成をハーフブリッジにすることによ
り、外部温度が変動した場合でも、例えば第2図におけ
る磁気抵抗効果素子MRA、LとMRA、Rの抵抗値R
L、RRの温度係数αが等しくなるため、その温度変化
をΔTとしたとき。
By making the basic configuration half-bridge as described above, even if the external temperature fluctuates, for example, the resistance value R of the magnetoresistive elements MRA, L and MRA, R in FIG.
Since the temperature coefficients α of L and RR are equal, let the temperature change be ΔT.

変化後の各抵抗値RL’ 、RR’は。The respective resistance values RL' and RR' after the change are as follows.

RL’ ==RL (1+α・ΔT)  ・・・■RR
’ =RR(1+α・ΔT)  ・・・■となり、動作
点voは理想的には vo =V−RL/(RL+RR)    −・・■で
変化しないはずである。
RL' ==RL (1+α・ΔT) ・・・■RR
'=RR(1+α・ΔT)...■, and the operating point vo should ideally remain unchanged at vo=V-RL/(RL+RR)--■.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来のガラス基板上に磁気抵
抗効果素子が形成された磁気センサにおいては、磁気抵
抗効果素子自身により発生するジュール熱が蓄積されや
すいため、実際には外部温度の変動に伴なって動作点v
oが変動するという問題点があった。
However, in such a conventional magnetic sensor in which a magnetoresistive element is formed on a glass substrate, Joule heat generated by the magnetoresistive element itself tends to accumulate, so in reality, it is generated due to fluctuations in external temperature. operating point v
There was a problem that o fluctuated.

すなわち、ハーフブリッジ内で第7図に曲線日で示すよ
うに、磁気抵抗効果素子MRA1L。
That is, as shown by the curved line in FIG. 7 within the half bridge, the magnetoresistive element MRA1L.

MRA、Rを発熱源としてその中間点Pを頂点に温度分
布を生じ、さらに先に第1図に示したように、磁気セン
サは約20〜200μmの距離をもって回転体1と対向
しているため、この熱の一部が回転体1に吸収されるよ
うになる。
A temperature distribution is generated with MRA and R as heat sources and the midpoint P is the apex, and as shown in FIG. , part of this heat is absorbed by the rotating body 1.

この熱の吸収は回転体1との距離が近いほど多いので1
回転体と磁気センサのハーフブリッジとの距だが傾斜し
ていると1例えば第7図に曲線10で示すような温度分
布となって対称性がなくなり、動作点voは0式からは
ずれる。
The closer the distance to the rotating body 1, the more this heat is absorbed, so 1
If the distance between the rotating body and the half bridge of the magnetic sensor is inclined, the temperature distribution will become as shown, for example, by curve 10 in FIG. 7, and the symmetry will disappear, and the operating point vo will deviate from the equation 0.

この対称性のない状態で外部温度が変動すると。If the external temperature fluctuates without this symmetry.

発生するジュール熱の変化に伴なう温度分布の変化によ
り動作点voがドリフトしやすくなるのは明らかである
It is clear that the operating point vo tends to drift due to changes in temperature distribution due to changes in Joule heat generated.

また、第5図あるいは第6図に示したように、近接した
ハーフブリッジを複数組形成した場合においては1個々
の温度分布状悪が重畳するため、各ハーフブリッジのP
点からみた温度分布の対称性が失なわれて1回転体をハ
ーフブリッジに平行に設置しても動作点VOは移動して
しまうし、外部温度の変動に対して動作点V、はドリフ
トしやすい。
In addition, as shown in FIG. 5 or 6, when multiple sets of adjacent half bridges are formed, the poor temperature distribution of each half bridge overlaps, so the P of each half bridge is
The symmetry of the temperature distribution seen from the point is lost, and even if a rotating body is installed parallel to the half bridge, the operating point VO will move, and the operating point V will drift due to changes in external temperature. Cheap.

第1表 第1表は第6図のような構成の磁気センサにおいて1回
転体を設置する前と後との動作点voの電圧を測定した
例を示す。 この時の電源電圧はDC12Vである。
Table 1 Table 1 shows an example of measuring the voltage at the operating point vo before and after installing a rotating body in a magnetic sensor configured as shown in FIG. The power supply voltage at this time is DC12V.

以上のように、動作点がドリフトすると、増幅器の後段
でコンパレータにより一定電圧のしきい値で方形波に変
換する際に、方形波のデユーティ比が外部温度により変
化するという問題を生じる。
As described above, if the operating point drifts, a problem arises in that the duty ratio of the square wave changes depending on the external temperature when it is converted into a square wave with a constant voltage threshold by a comparator in the downstream stage of the amplifier.

第8図は、第1表に示した特性を有する磁気センサによ
り検出した信号を方形波に変換した場合のデユーティ比
の温度依存性を示す。
FIG. 8 shows the temperature dependence of the duty ratio when a signal detected by a magnetic sensor having the characteristics shown in Table 1 is converted into a square wave.

曲線11は第6図において増幅器7の後段にコンパレー
タを接続して方形波に変換した際のデユーティ比、曲線
12ノは増幅器8の後段にコンパレータを接続して方形
波に変換した際のデユーティ比の実測例である。
In Fig. 6, curve 11 shows the duty ratio when a comparator is connected after amplifier 7 to convert it into a square wave, and curve 12 shows the duty ratio when a comparator is connected after amplifier 8 to convert it into a square wave. This is an actual measurement example.

この発明は、上記のような従来の磁気センサにおける問
題点を解決するためになされたもので、動作点のドリフ
トを低減して、検出信号を方形波に変換した時のデユー
ティ比の温度依存性が小さい磁気センサを得ることを目
的とする。
This invention was made to solve the above-mentioned problems with conventional magnetic sensors.It reduces the drift of the operating point and reduces the temperature dependence of the duty ratio when converting the detection signal into a square wave. The purpose is to obtain a magnetic sensor with small magnetic field.

〔問題点を解決するための手段〕[Means for solving problems]

この発明による磁気センサは、上記の問題点を解決する
ため、磁気センサの磁気抵抗効果素子を設ける基板とし
てシリコン(Si)板を用いることによって、ジュール
熱発生源となる磁気抵抗効果素子からの熱の放散を良好
にして温度勾配をなだらかにし、外部温度の変動に対す
るハーフブリッジの動作点のドリフトを低減した、温度
特性の良好な磁気センサを提供するものである。
In order to solve the above-mentioned problems, the magnetic sensor according to the present invention uses a silicon (Si) plate as a substrate on which the magnetoresistive element of the magnetic sensor is provided, so that heat from the magnetoresistive element, which is a source of Joule heat generation, is removed. The purpose of the present invention is to provide a magnetic sensor with good temperature characteristics, which has good dissipation, smoothes the temperature gradient, and reduces the drift of the operating point of a half bridge with respect to external temperature fluctuations.

〔作 用〕[For production]

シリコン(Si)の熱伝導率は、0.36cal・cm
/(cJ・ssc・’c)であり、従来のガラスの0.
002〜0.004cal・cm/(cof−see・
℃)に比べて約2桁大きい。このため磁気抵抗効果素子
からの発熱は、基板としてシリコン板を用いることによ
って放熱され、1ケ所に蓄積しない。往って、磁気抵抗
効果素子の温度上昇が抑えられ、動作点のドリフトも小
さくなる。
The thermal conductivity of silicon (Si) is 0.36 cal/cm
/(cJ・ssc・'c), which is 0.
002~0.004cal・cm/(cof-see・
It is about two orders of magnitude larger than ℃). Therefore, the heat generated from the magnetoresistive element is radiated by using the silicon plate as the substrate, and is not accumulated in one place. As a result, the temperature rise of the magnetoresistive element is suppressed, and the drift of the operating point is also reduced.

〔実 施 例〕〔Example〕

以下、この発明の実施例を表及び図面によって説明する
Examples of the present invention will be described below with reference to tables and drawings.

第2表は、この発明の一実施例による磁気センサにおけ
る1回転体を設置する前と後との動作点VOの電圧を測
定した例を示す。
Table 2 shows an example of measuring the voltage at the operating point VO before and after installing a rotating body in a magnetic sensor according to an embodiment of the present invention.

この実施例の磁気センサは、数I角のシリコン基板上に
磁気抵抗効果素子による八−ツブリッジを第6図に示し
たように形成する。電源電圧はDC12Vである。
In the magnetic sensor of this embodiment, an eight-bridge formed by magnetoresistive elements is formed on a silicon substrate of several I square as shown in FIG. The power supply voltage is DC12V.

第2表 この第2表から明らかなように、シリコン基板により放
熱が十分に行なわれるため、回転体1を設置しても動作
点voの変動は小さく5回転体への放熱による温度分布
の変化が小さいことがわかる。
Table 2 As is clear from this Table 2, heat is radiated sufficiently by the silicon substrate, so even if the rotating body 1 is installed, the operating point vo does not fluctuate much, and the temperature distribution changes due to the heat radiation to the rotating body 5. It can be seen that is small.

第S図は、この磁気センサを用いて検出した信号を方形
波に変換した時のデユーティ比の温度依存性を示す。
FIG. S shows the temperature dependence of the duty ratio when a signal detected using this magnetic sensor is converted into a square wave.

曲g13は第6図における増幅器7の後段にコンパレー
タを接続して方形波に変換した際のデユーティ比、曲線
14は増幅器8の後段にコンパレータを接続して方形波
に変換した際のデユーティ比の実測例である。
Curve g13 shows the duty ratio when a comparator is connected after the amplifier 7 in Fig. 6 to convert it into a square wave, and curve 14 shows the duty ratio when a comparator is connected after the amplifier 8 to convert it into a square wave. This is an actual measurement example.

ガラスを基板として用いていた従来の磁気センサによる
検出信号を方形波に変換した場合の第8図に示したよう
なデユーティ比の温度依存性に比べ、この実施例による
第S図に示すデユーティ比は、外部温度に対して明らか
に安定している。
Compared to the temperature dependence of the duty ratio shown in FIG. 8 when a detection signal from a conventional magnetic sensor using glass as a substrate is converted into a square wave, the duty ratio shown in FIG. is clearly stable with respect to external temperature.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、この発明による磁気センサは
、従来の磁気センサに比べて外部温度の変動による動作
点のドリフトが小さく、その検出信号を方形波に変換し
た場合のデユーティ比の温度依存性が少なくなり、温度
特性が向上する。
As explained above, the magnetic sensor according to the present invention has a smaller drift in the operating point due to external temperature fluctuations than conventional magnetic sensors, and the temperature dependence of the duty ratio when the detection signal is converted into a square wave. The temperature characteristics are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の対象とする磁気センサと回転体の位
置関係を示す模式的斜視図。 第2図は磁気抵抗効果素子の基本構成を示す図。 第3図は磁気抵抗効果素子の抵抗値変化の動作原理を示
す波形図、 第4図は磁気センサの出力信号の例を示す波形図、第5
図は磁気センサ出力の増幅器への接続例を示す図、 第6図は同じく磁気センサ出力の増幅器への他の接続例
を示す図。 第7図はハーフブリッジ内での温度勾配を示す線図。 第8図は従来の磁気センサにより検出した信号を方形波
に変換した場合のデユーティ比の温度依存性を示す線図
、 第S図はこの発明の一実施例の磁気センサにより検出し
た信号を方形波に変換した場合のデユーティ比の温度依
存性を示す線図である。 1・・・回転体 M R,M RA HL 、 M RA 1R・・・磁
気抵抗効果素子MRA4 、MRA2 、MRBl 、
MRB2・・・磁気抵抗効果素子からなるハーフブリッ
ジ5〜8・・・増幅器 第1図 第3図 第4図 回転角 第7図 第8図 第9図 外l目CC>
FIG. 1 is a schematic perspective view showing the positional relationship between a magnetic sensor and a rotating body, which are objects of the present invention. FIG. 2 is a diagram showing the basic configuration of a magnetoresistive element. Figure 3 is a waveform diagram showing the operating principle of resistance value change of the magnetoresistive element, Figure 4 is a waveform diagram showing an example of the output signal of the magnetic sensor, and Figure 5 is a waveform diagram showing an example of the output signal of the magnetic sensor.
The figure shows an example of how the output of the magnetic sensor is connected to the amplifier, and FIG. 6 is a diagram showing another example of how the output of the magnetic sensor is connected to the amplifier. FIG. 7 is a diagram showing the temperature gradient within the half bridge. FIG. 8 is a diagram showing the temperature dependence of the duty ratio when a signal detected by a conventional magnetic sensor is converted into a square wave, and FIG. FIG. 3 is a diagram showing the temperature dependence of the duty ratio when converted into a wave. 1... Rotating body M R, M RA HL, M RA 1R... Magnetoresistive element MRA4, MRA2, MRBl,
MRB2...Half bridges 5 to 8 consisting of magnetoresistive elements...Amplifier Fig. 1 Fig. 3 Fig. 4 Rotation angle Fig. 7 Fig. 8 Fig. 9 Outside lth CC>

Claims (1)

【特許請求の範囲】[Claims] 1 磁気式ロータリエンコーダの磁気信号検出手段とし
て用いる磁気抵抗効果素子を基板上に設けた磁気センサ
において、前記基板がシリコン板であることを特徴とす
る磁気センサ。
1. A magnetic sensor in which a magnetoresistive element used as a magnetic signal detection means of a magnetic rotary encoder is provided on a substrate, wherein the substrate is a silicon plate.
JP21076786A 1986-09-09 1986-09-09 Magnetic sensor Pending JPS6366417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21076786A JPS6366417A (en) 1986-09-09 1986-09-09 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21076786A JPS6366417A (en) 1986-09-09 1986-09-09 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPS6366417A true JPS6366417A (en) 1988-03-25

Family

ID=16594793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21076786A Pending JPS6366417A (en) 1986-09-09 1986-09-09 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPS6366417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105716632A (en) * 2014-12-23 2016-06-29 英飞凌科技股份有限公司 Sensor circuit, a sensor device and a method for forming the sensor circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114413A (en) * 1982-12-21 1984-07-02 Copal Co Ltd Magnetic detector with magneto-resistance element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114413A (en) * 1982-12-21 1984-07-02 Copal Co Ltd Magnetic detector with magneto-resistance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105716632A (en) * 2014-12-23 2016-06-29 英飞凌科技股份有限公司 Sensor circuit, a sensor device and a method for forming the sensor circuit

Similar Documents

Publication Publication Date Title
US6246233B1 (en) Magnetoresistive sensor with reduced output signal jitter and temperature compensation
US9429632B2 (en) Magnetic position detection device
JP2018537942A (en) Linear Hall Device Based Vector Control (FOC) Motor Drive System
EP2284555A1 (en) Magnetic sensor including a bridge circuit
US5680042A (en) Magnetoresistive sensor with reduced output signal jitter
JP2011501153A (en) Matching of GMR sensors at the bridge
US20130314079A1 (en) Rotation angle detection device
US20080191694A1 (en) Magneto-Resistive Sensor in form of a Half or Full Bridge Circuit
US20200400760A1 (en) Magnetic sensor with an asymmetric wheatstone bridge
JP2014071039A (en) Rotary magnetic detection circuit and rotary magnetic sensor
US11169225B2 (en) TMR high-sensitivity single-chip push-pull bridge magnetic field sensor
JP2022524488A (en) Electronic circuit that measures the angle and strength of an external magnetic field
JPH06148301A (en) Magnetic sensor
JPS58106462A (en) Rotation detector
JPS6366417A (en) Magnetic sensor
US20190173002A1 (en) Two-dimensional magnetic field sensor with a single integrated magnetic field concentrator
JPH04282417A (en) Magnetic sensor
Wang et al. Angular displacement sensor for gear position detection based on the tunneling magnetoresistance effect
US10852365B2 (en) Stray field suppression in magnetic sensor Wheatstone bridges
JPH02189484A (en) Magnetic sensor
JPH069306Y2 (en) Position detector
JP2669631B2 (en) Magnetic detector
Wang et al. Suppression Method of Jump Points for Multipole Magnetic Encoder at Low Temperature Based on Single‐Pole Angle Value Fitting
JPH01233318A (en) Position detector
JPS62137514A (en) Magnetic sensor