JPS61272901A - Manufacture of thermal head - Google Patents

Manufacture of thermal head

Info

Publication number
JPS61272901A
JPS61272901A JP60114293A JP11429385A JPS61272901A JP S61272901 A JPS61272901 A JP S61272901A JP 60114293 A JP60114293 A JP 60114293A JP 11429385 A JP11429385 A JP 11429385A JP S61272901 A JPS61272901 A JP S61272901A
Authority
JP
Japan
Prior art keywords
heating resistor
thermal head
substrate
ions
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60114293A
Other languages
Japanese (ja)
Inventor
安原 直俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP60114293A priority Critical patent/JPS61272901A/en
Publication of JPS61272901A publication Critical patent/JPS61272901A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 第1図は電気導体の改質によって発熱抵抗体を形成する
プロセスの説明図である。基板1上に、電力供給用電気
導体3が、発熱抵抗体形成部位A及び電気導体形成部位
B、Bを含めて形成される。
DETAILED DESCRIPTION OF THE INVENTION FIG. 1 is an explanatory diagram of a process for forming a heating resistor by modifying an electrical conductor. On the substrate 1, an electric conductor 3 for power supply is formed including a heat generating resistor forming part A and an electric conductor forming part B, B.

次いで、発熱抵抗体形成部位Aにイオン注入が施されて
、電気導体を改質し、その電気的物性を所望の発熱抵抗
体特性に変換する。斯うして、基板1上に発熱抵抗体2
とその両側の電気導体3.31とを備えるサーマルヘッ
ドの発熱体部が生成される。例えば、電気導体としてア
ルミニウムを使用し、そして注入物質として酸素イオン
、硅素イオン、クロムイオン、窒素イオン等を使用する
ことにより所望の改質が実現できる。電気導体は比較的
薄く形成できる。
Next, ion implantation is performed in the heating resistor formation site A to modify the electrical conductor and convert its electrical properties into desired heating resistor characteristics. In this way, the heating resistor 2 is placed on the substrate 1.
A heating element part of the thermal head is produced, comprising: and electrical conductors 3.31 on both sides thereof. For example, the desired modification can be achieved by using aluminum as the electrical conductor and oxygen ions, silicon ions, chromium ions, nitrogen ions, etc. as the implants. Electrical conductors can be formed relatively thin.

第2図は、基板表面の改質によって発熱抵抗体を形成す
るプロセスの説明図である。基板1において、発熱抵抗
体形成部位Aと電気導体形成部位Bとが決定される。次
いで部位Aにイオン注入が施されて基板表面を改質して
その電気的特性を所望の発熱体特性に変換する。この後
、電力供給用電気導体3.3′が形成される。例えば、
基板を810、を主成分とする材料から作成し、そして
注入物質としてアルミニウムイオン、ボロンイオン、リ
ンイオン等を用いることによって所望の改質が実現しう
る。
FIG. 2 is an explanatory diagram of a process of forming a heating resistor by modifying the surface of a substrate. On the substrate 1, a heat generating resistor forming region A and an electric conductor forming region B are determined. Ion implantation is then performed at site A to modify the substrate surface and convert its electrical properties to the desired heating element properties. After this, the power supply electrical conductor 3.3' is formed. for example,
The desired modification can be achieved by making the substrate from a material whose main component is 810 and using aluminum ions, boron ions, phosphorus ions, etc. as implants.

第1及び2図の具体例において、第3図に示したような
保護層が設けられる。また、イオン注入後、アニール等
の活性化プロセスを実施することが出来る。アニールは
、イオン注入によって結晶格子が壊れてアモルファス状
態となったのをイオンを取込んだ状態で安定位置で結晶
化する為のものであり、半導体の不純物拡散工程等にお
いて使用される周知の技術である。
In the embodiment of FIGS. 1 and 2, a protective layer as shown in FIG. 3 is provided. Further, after ion implantation, an activation process such as annealing can be performed. Annealing is a well-known technique used in semiconductor impurity diffusion processes, etc. to crystallize the amorphous state caused by the crystal lattice broken by ion implantation in a stable position while incorporating ions. It is.

イオン注入技術は、加熱したフィラメントで蒸発させた
金属やガスを高電界中でプラズマ化させ、このグツズ、
マイオンを加速してビーム状に引出し、目標電気導体乃
至基板部位に衝突させる技術であり、半導体分野等で広
く用いられている。注入面積及び注入深さを精度良く制
御することが出来る。
Ion implantation technology uses a heated filament to evaporate metals and gases into plasma in a high electric field.
This is a technique that accelerates myions, draws them out in a beam, and causes them to collide with a target electrical conductor or substrate, and is widely used in the semiconductor field. The implantation area and implantation depth can be controlled with high accuracy.

、第1図に示した具体例の特筆すべき特徴は、電気導体
と発熱抵抗体との表面段差が生じないことである。従来
、第3図に示すように、電気導体と発熱抵抗体とを異種
物質を用いて別々に形成した場合、電気導体表面と発熱
抵抗体表面に段差が生じ、被印字媒体への伝熱効率が低
下すると共に、角隅部で応力集中が生じて電気導体の剥
離等の問題が認識されていた。第1図の具体例において
は、段差が生じないので、上記問題が根本的に解決でき
る。イオン注入により形成された発熱抵抗体部位は注入
イオンの種類及び量によっては電気導体部位より高く盛
上る場合があるが、この場合被印字媒体への伝熱効率は
かえって向上するので何等支障はない。
A noteworthy feature of the specific example shown in FIG. 1 is that there is no surface step difference between the electrical conductor and the heating resistor. Conventionally, as shown in Fig. 3, when an electric conductor and a heating resistor are formed separately using different materials, a step is created between the surface of the electric conductor and the surface of the heating resistor, which reduces the efficiency of heat transfer to the printing medium. Along with this decrease, problems such as stress concentration occurring at corners and peeling of electrical conductors have been recognized. In the specific example shown in FIG. 1, since no step occurs, the above problem can be fundamentally solved. Depending on the type and amount of implanted ions, the heating resistor portion formed by ion implantation may swell higher than the electrical conductor portion, but in this case there is no problem because the heat transfer efficiency to the printing medium is improved.

発明の効果 t 第1図の具体例では電気導体と鵬熱抵抗体との間で
の表面段差が生じないか或いは後者が盛上るので、被印
字媒体への伝熱効率が向上する。耐摩耗寿命が向上する
Effects of the Invention t In the specific example shown in FIG. 1, the surface level difference between the electrical conductor and the thermal resistor does not occur, or the latter is raised, so that the efficiency of heat transfer to the printing medium is improved. Wear resistance life is improved.

2 第2図の具体例では数人〜数百人の厚みの発熱抵抗
体を容易に形成できるので、電熱変換効率が向上する。
2. In the specific example shown in FIG. 2, a heating resistor with a thickness of several to several hundred thicknesses can be easily formed, so that the electrothermal conversion efficiency is improved.

五 発熱抵抗体の形状及び寸法が精度の良いフォトレジ
ストプロセスによって決定されるので、該発熱抵抗体の
寸法精度が向上し、サーマルヘッドの抵抗値の均一性が
向上する。
(5) Since the shape and dimensions of the heating resistor are determined by a highly accurate photoresist process, the dimensional accuracy of the heating resistor is improved and the uniformity of the resistance value of the thermal head is improved.

4 必要域においてのみイオン注入を行うので、発熱抵
抗体構成物質のエツチングプロセスが不要とkる。その
為、エツチングに基くバラツキが無くなり、抵抗値の均
一性が向上する。
4. Since ion implantation is performed only in the necessary areas, there is no need for an etching process for the constituent material of the heating resistor. Therefore, variations due to etching are eliminated, and the uniformity of the resistance value is improved.

また、電気導体とのエッチャントの選択性に対する制約
が無くなる。これにより電気導体の材料選定に自由度が
増す。更には、エツチングプロセスに伴う洗浄等の工程
が不要となり、プロセスが簡略化される。
Additionally, there are no restrictions on the selectivity of the etchant with respect to the electrical conductor. This increases the degree of freedom in selecting the material for the electrical conductor. Furthermore, steps such as cleaning associated with the etching process are no longer necessary, simplifying the process.

五 発熱抵抗体の形成が必要最小限の面積ですむ為、コ
ストダウンとガると共に装置処理能力がアップする。
5. Since the heating resistor can be formed using the minimum necessary area, the processing capacity of the device can be increased as well as reducing costs.

実施例1 グレーズ層を設けたアルミナ基板上に厚さのA1電気導
体をDCスパッタ法によって形成し、その後発熱抵抗体
形成部位にSi、O,Nをイオン注入した。イオン注入
条件は次の通りとした:Slイオン  40〜100K
eV  α3〜lX101丁ff1−”Oイオン  1
00に4!V    2)l Q”am″″N イオン
  100Kev   6x101・c’x−”実施例
2 StO,裏基板の発熱抵抗体形成部位にCr、 Bイオ
ンを300〜500人の深さまで注入し、その後A1か
ら成る電気導体を形成した。イオン注入条件は次の通り
とした: Cr     I Do〜150KeV  α3〜lX
10”cIrL″″2B       40 KeV 
   7 X 10” crIL−”実施例1及び2で
得られた生成物から常法に従いサーマルヘッドを作製し
た。実施例1のサーマルヘッドでは従来、丸みを帯びて
いた印字ドツト形状が矩形に近くカリシャープな形状を
示すと共に耐摩耗層の寿命が62 kmから、81 k
mと13倍に伸びるという性能の効上が見られた。実施
例2のサーマルヘッドでは第4図に示す様に従来品に比
較して、約8チの低い印字電力で同一の印字濃度を実現
している。
Example 1 An electrical conductor having a thickness of A1 was formed by DC sputtering on an alumina substrate provided with a glaze layer, and then Si, O, and N were ion-implanted into the region where the heating resistor was to be formed. The ion implantation conditions were as follows: Sl ion 40-100K
eV α3~lX101cndff1-”O ion 1
00 to 4! V 2)l Q"am""N ion 100Kev 6x101・c'x-"Example 2 Cr and B ions were implanted to a depth of 300 to 500 mm into the heating resistor formation site of the StO and back substrate, and then A1 An electrical conductor was formed. The ion implantation conditions were as follows: Cr I Do ~ 150 KeV α3 ~ lX
10"cIrL""2B 40 KeV
A thermal head was prepared from the products obtained in Examples 1 and 2 according to a conventional method. In the thermal head of Example 1, the print dot shape, which was conventionally rounded, is now close to rectangular and has a sharp shape, and the life of the wear-resistant layer has increased from 62 km to 81 km.
An improvement in performance was seen, with the length increasing by 13 times. As shown in FIG. 4, the thermal head of Example 2 achieves the same print density with about 8 inches lower printing power than the conventional product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1及び2図は本方法に従うイオン注入条件を用いての
発熱抵抗体の形成プロセスを説明する説明図である。 第3図は従来のサーマルヘッドの一例の断面図である。 第4図は、実施例2からのサーマルヘッドの印字濃度−
印字電力の特性を示す。 1 : 基板 2 = 発熱抵抗体 3.31 :電気導体 4 : 保護層 第1図 第2図 第3図 第4図 Ep字を力 (イdot)
1 and 2 are explanatory diagrams illustrating the process of forming a heating resistor using ion implantation conditions according to the present method. FIG. 3 is a sectional view of an example of a conventional thermal head. FIG. 4 shows the print density of the thermal head from Example 2.
Shows the characteristics of printing power. 1: Substrate 2 = Heat generating resistor 3.31: Electric conductor 4: Protective layer Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)基板上に電力供給用電気導体を発熱抵抗体形成部位
にまで及んで形成し、該発熱抵抗体形成部位にイオン注
入を施すことにより電気導体の該部位を発熱抵抗体に改
質することを特徴とするサーマルヘッド製造方法。 2)基板上の発熱抵抗体形成部位にイオン注入を施して
基板表面の該部位を発熱抵抗体に改質し、その後電力供
給用電気導体を形成することを特徴とするサーマルヘッ
ド製造方法。
[Scope of Claims] 1) An electric conductor for power supply is formed on a substrate to extend to a heating resistor formation site, and ions are implanted into the heating resistor formation site to transform the electric conductor into a heating resistor. A method for manufacturing a thermal head characterized by modifying the body. 2) A method for manufacturing a thermal head, which comprises performing ion implantation on a heating resistor formation site on a substrate to modify the site on the substrate surface into a heating resistor, and then forming an electric conductor for power supply.
JP60114293A 1985-05-29 1985-05-29 Manufacture of thermal head Pending JPS61272901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60114293A JPS61272901A (en) 1985-05-29 1985-05-29 Manufacture of thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60114293A JPS61272901A (en) 1985-05-29 1985-05-29 Manufacture of thermal head

Publications (1)

Publication Number Publication Date
JPS61272901A true JPS61272901A (en) 1986-12-03

Family

ID=14634228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60114293A Pending JPS61272901A (en) 1985-05-29 1985-05-29 Manufacture of thermal head

Country Status (1)

Country Link
JP (1) JPS61272901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196084A (en) * 1990-11-27 1992-07-15 Agency Of Ind Science & Technol High-temperature heater and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196084A (en) * 1990-11-27 1992-07-15 Agency Of Ind Science & Technol High-temperature heater and manufacture thereof

Similar Documents

Publication Publication Date Title
EP0301463B1 (en) Thin film silicon semiconductor device and process for producing it
JPS61190984A (en) Formation of high melting point metal silicide layer
JPS6456867A (en) Method for metallizing aln ceramic
JPS62203380A (en) Semiconductor device and manufacture of the same
CN105518829A (en) Method for manufacturing semiconductor device
JPH11229130A (en) Sputtering target, and its manufacture
JPS59169121A (en) Method of producing semiconductor device
US3879236A (en) Method of making a semiconductor resistor
JPS61272901A (en) Manufacture of thermal head
GB2098818A (en) Method of ion implantation
JPH03105712A (en) Method of forming pull piece and gap of magnetic head for audio ,video, and computer in film layer
GB1280199A (en) Method for producing semiconductor device utilizing ion implantation
JPH0118496B2 (en)
GB2034519A (en) Masking procedure for semiconductor device manufacture
JPH0521002A (en) Manufacture of field emission type electrode
JPS5812732B2 (en) Manufacturing method for semiconductor devices
JP3347564B2 (en) Processing jig and ion beam processing apparatus using the same
JPH0621353B2 (en) High thermal conductivity composite circuit board manufacturing method
JP2643406B2 (en) Method of forming oxide film and oxidation device
JPH0782098A (en) Silicon substrate having silicon carbide-embedded layer and its production
JPH0872278A (en) Manufacture of thermal head
JP2569402B2 (en) Manufacturing method of semiconductor thin film crystal layer
JPS6146017A (en) Thin film producing apparatus
JPH0845651A (en) Double-layered ceramic heater
JPH0682641B2 (en) Method for manufacturing semiconductor integrated circuit device