JP3142895B2 - Method for manufacturing field emission electrode - Google Patents

Method for manufacturing field emission electrode

Info

Publication number
JP3142895B2
JP3142895B2 JP17288991A JP17288991A JP3142895B2 JP 3142895 B2 JP3142895 B2 JP 3142895B2 JP 17288991 A JP17288991 A JP 17288991A JP 17288991 A JP17288991 A JP 17288991A JP 3142895 B2 JP3142895 B2 JP 3142895B2
Authority
JP
Japan
Prior art keywords
oxide film
field emission
emitter
gate layer
emission electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17288991A
Other languages
Japanese (ja)
Other versions
JPH0521002A (en
Inventor
行広 近藤
秀吉 木村
潤 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17288991A priority Critical patent/JP3142895B2/en
Publication of JPH0521002A publication Critical patent/JPH0521002A/en
Application granted granted Critical
Publication of JP3142895B2 publication Critical patent/JP3142895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電界放射により電子線
を放射するようにしたスピント方式の電界放射型電極の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Spindt type field emission electrode which emits an electron beam by field emission.
It relates to a manufacturing method .

【0002】[0002]

【従来の技術】この種の電界放射型電極を製造する場
合、薄膜を応用して形成するエミッタチップには、形
状、材質等多くの種類が考えられるが、電子放出の電流
密度を高くしようとした場合には材料として高融点の金
属材料か炭化物、硼化物が望ましい。
2. Description of the Related Art When manufacturing this kind of field emission type electrode, there are many types of emitter chips formed by applying a thin film, such as shapes and materials, but it is necessary to increase the current density of electron emission. In this case, a metal material having a high melting point, a carbide, or a boride is preferable.

【0003】一方シリコン等の半導体材料の単結晶を異
方性エッチングによってピラミッド型のエッミタチップ
を形成することは比較的容易である。他方金属材料や高
融点の金属炭化物等を使用する場合には膜形成にスパッ
タリングや、真空蒸着、種々のCVD等の方法が用いら
れるが、単結晶を得るには特殊な条件が必要であり、従
って異方性エッチングによる多数個のエミッタチップを
同時形成するのは難しい。
[0003] On the other hand, it is relatively easy to form a pyramid-type EMI emitter chip by anisotropically etching a single crystal of a semiconductor material such as silicon. On the other hand, when using a metal material or a metal carbide having a high melting point, a method such as sputtering, vacuum evaporation, or various CVD methods is used for film formation, but special conditions are required to obtain a single crystal. Therefore, it is difficult to simultaneously form a large number of emitter chips by anisotropic etching.

【0004】[0004]

【発明が解決しようとする課題】スピント方式の電界放
射型電極を製造方法において、上記金属材料や高融点の
金属炭化物の材料を用いてエミッタチップを形成する際
に、単結晶多結晶体やアモルファス体などの材料を用い
た場合、エミッタチップ形成後のチップ形状を適正な形
状に修正することは困難であった。本発明は上述の点に
鑑みて為されたもので、その目的とするところはスピン
ト方式の電界放射型電極の製造方法において、一度形成
されたエミッタチップの形状やエミッタチップとゲート
層間の距離を適正に修正することができる電界放射型電
極の製造方法を提供するにある。
SUMMARY OF THE INVENTION Spindt type electric field emission
In the method of manufacturing a projection electrode, when forming an emitter tip using the above-mentioned metal material or a material of a metal carbide having a high melting point, when a material such as a single crystal polycrystal or an amorphous body is used, after forming the emitter tip, It was difficult to correct the tip shape to an appropriate shape. The present invention has been made in view of the above points, and has as its object the purpose of spinning.
The method of manufacturing a field emission electrode bets scheme is to provide a method of manufacturing a field emission electrode which is capable of properly correcting the distance the shape and the emitter tip and the gate layers once formed the emitter tip.

【0005】[0005]

【課題を解決するための手段】本発明は、上述の目的を
達成するために、導電性の基板に、絶縁層を介して導電
性のゲート層を積層し、上記絶縁層及びゲート層を通し
て上記基板の表面を露出させる放射孔を形成するととも
に放射孔内に金属性材料でエミッタチップを形成するス
ピント方式の電界放射型電極において、上記エミッタチ
ップの形成後、該エミッタチップ及び上記ゲート層表面
に酸化膜を形成し、この酸化膜を除去することによりエ
ミッタチップの形状の修正、上記エミッタチップと上記
ゲート層間距離の調整を行うことを特徴とする。
According to the present invention, in order to achieve the above-mentioned object, a conductive substrate is provided on an electrically conductive substrate via an insulating layer.
A conductive gate layer and pass through the insulating layer and the gate layer.
Forming radiation holes to expose the surface of the substrate
The emitter tip is formed of a metallic material in the radiation hole.
In the field emission electrode of the focus system,
After forming the chip , an oxide film is formed on the surface of the emitter chip and the gate layer, and the oxide film is removed to correct the shape of the emitter chip and adjust the distance between the emitter chip and the gate layer. Features.

【0006】[0006]

【作用】本発明方法によれば、スピント方式の電界放射
型電極を製造する際に、既に金属性材料で形成されたエ
ミッタチップ及びゲート層表面に酸化膜を形成し、この
酸化膜を除去することによりエミッタチップの形状の修
正、ゲート層間距離の調整を行うから、従来スピント方
式の電界放射型電極において、形状修正が困難であった
金属材料や金属炭化物のような金属性材料から形成され
たエミッタチップの形状やエミッタチップとゲート層間
の距離を酸化膜の厚さを制御することにより、簡単に
修正することができる。
According to the method of the present invention, Spindt-type field emission
When manufacturing the mold electrode, an oxide film is formed on the surface of the emitter chip and gate layer already formed of a metallic material, and the oxide film is removed to correct the shape of the emitter chip and adjust the distance between the gate layers. Because it does, the conventional spint method
In the field emission electrode of the formula, the shape of the emitter tip formed from a metal material such as a metal material or a metal carbide, whose shape was difficult to modify , the distance between the emitter tip and the gate layer, and the thickness of the oxide film By controlling, it can be easily corrected.

【0007】[0007]

【実施例】図4は一次的に形成されたスピント方式の
界放射型電極を示しており、十分にドープされたシリコ
ンよりなる導電性の基板2に、二酸化シリコンよりなる
絶縁層3を介して金属モリブデンよりなる導電性のゲー
ト層4を積層した積層体を有し、絶縁層3及びゲート層
4を通して形成されて基板2の表面を露出させる放射孔
5内に金属モリブデンよりなるエミッタチップ1を形成
している。エミッタチップ1は電子線e- を放射孔5を
通してコレクタ6に向けて放射するようになっている。
FIG. 4 shows a Spindt-type field emission electrode formed primarily, in which a conductive substrate 2 made of fully doped silicon is placed on an insulating substrate 2 made of silicon dioxide. A conductive layer made of metal molybdenum with a layer 3 interposed between the insulating layer 3 and the gate layer 4 to expose a surface of the substrate 2 from the metal molybdenum; Is formed. Emitter tip 1 is an electron beam e - is adapted to emit towards the collector 6 through radiating holes 5 a.

【0008】尚この一次的な電界放射型電極の製造方法
は、SRI International(USA)のDr.Spindt等によって
提案されている公知の方法によって行う。本発明方法は
このような一次的に既に形成されたエミッタチップ1の
形状変更を行う際にエミッタチップ1の表面を酸化させ
た後酸化膜を除去することで先端形状やエミッタチップ
1とゲート層3間の距離を調整する方法であり、以下実
施例により説明する。
The method for producing this primary field emission electrode is described in Dr. Sri International (USA). This is performed by a known method proposed by Spindt et al. According to the method of the present invention, when the shape of the emitter chip 1 which has already been formed is changed, the surface of the emitter chip 1 is oxidized and then the oxide film is removed. This is a method for adjusting the distance between the three, and will be described below with reference to embodiments.

【0009】実施例1 実施例1では、金属モリブデンからなるエミッタチップ
1及びゲート層3の表面を530乃至630℃程度で加
熱して酸化させ、図1に示すように表面にMoO3 の酸
化膜7を形成する。ここでMoの酸化の際の温度条件を
変え、酸化膜7の厚さを測定したところ次のようになっ
た。
[0009] Example 1 In Example 1, the surface of the emitter tip 1 and the gate layer 3 made of a metallic molybdenum is heated at 530 to about 630 ° C. is oxidized, oxide films of MoO 3 on the surface as shown in FIG. 1 7 is formed. The thickness of the oxide film 7 was measured while changing the temperature conditions during the oxidation of Mo. The result was as follows.

【0010】 温度条件 535℃ 大気中フローで1時間酸化 膜厚測定 2.5μm/hr=約420Å/min 温度条件 570℃ 大気中フローで1時間酸化 膜厚測定 5μm/hr=約840Å/min 本実施例では535℃で約3分間酸化させて、1000
Å厚の酸化膜7を形成した。
Temperature condition 535 ° C. Oxidation in air for 1 hour Film thickness measurement 2.5 μm / hr = about 420 ° / min Temperature condition 570 ° C. Oxidation in air flow for 1 hour Film thickness measurement 5 μm / hr = about 840 ° / min In the example, oxidation at 535 ° C.
酸化 A thick oxide film 7 was formed.

【0011】尚酸化は次の化学式で表せる。 Mo+3/2O2 →MoO3 この形成された酸化膜7を除去することにより、図2に
示すようにエミッタチップ1の先端形状の修正や、エミ
ッタチップ1とゲート層4間の距離の修正を行う。
The oxidation can be represented by the following chemical formula. Mo + 3 / 2O 2 → MoO 3 By removing the formed oxide film 7, the tip shape of the emitter chip 1 and the distance between the emitter chip 1 and the gate layer 4 are corrected as shown in FIG. .

【0012】ここでNH3 水に対してMoO3 の酸化膜
7が可溶性を持つため、本実施例では、NH3 水で酸化
膜7を除去する。尚酸化膜7の厚さは、上記のように酸
化条件(温度と時間によって管理できる)によって設定
でき、例えば一定温度に保った状態で金属モリブデンの
酸化膜7の厚さは酸素の金属モリブデン中への拡散によ
って決定され、それはほぼ時間の2乗に比例する。また
拡散係数は温度の指数関数によって表されるので、温度
を高く設定することは効果がある。但し金属モリブデン
の6価の酸化物は比較的低温で昇華する性質があり、そ
の蒸気圧は0.30mm/700℃、10.1mm/8
00℃、476.2mm/1100℃、760mm/1
155℃である。
[0012] oxide film 7 of MoO 3 with respect to where NH 3 water to have a solubility, in the present embodiment, to remove the oxide film 7 with aqueous NH 3. Note that the thickness of the oxide film 7 can be set according to the oxidation conditions (which can be controlled by temperature and time) as described above. For example, the thickness of the metal molybdenum oxide film 7 is set to , Which is approximately proportional to the square of time. Since the diffusion coefficient is represented by an exponential function of temperature, setting the temperature to a high value is effective. However, hexavalent metal molybdenum oxide has the property of sublimating at a relatively low temperature, and its vapor pressure is 0.30 mm / 700 ° C., 10.1 mm / 8.
00 ° C, 476.2 mm / 1100 ° C, 760 mm / 1
155 ° C.

【0013】このようにして酸化膜7を形成する際に、
その厚さを制御することにより、除去後の、エミッタチ
ップ1の尖鋭化や、エミッタチップ1とゲート層4間の
距離を適正なものとすることができる。実施例2 本実施例は上記実施例1と同様な条件で酸化膜7を形成
した後の除去法が実施例1と異なるものである。
When forming oxide film 7 in this manner,
By controlling the thickness, the sharpness of the emitter chip 1 after removal and the distance between the emitter chip 1 and the gate layer 4 can be made appropriate. Embodiment 2 This embodiment is different from Embodiment 1 in the method of removing the oxide film 7 after forming the oxide film 7 under the same conditions as in Embodiment 1 described above.

【0014】つまり本実施例は、金属モリブデンの6価
の酸化物の昇華性を利用して、酸化膜7を加熱して昇華
除去するのである。本実施例では800℃で加熱して酸
化膜7を昇華除去した。実施例3 上記実施例1、2では金属モリブデンの酸化膜7を除去
するのに、NH3 水に対する可溶性や、昇華性を利用し
ているが、一部の酸化膜7が除去の際に4価の酸化膜と
なった場合には昇華性もなくなり、またNH3 水に対し
ても不溶性となるため、上記実施例1、2の方法では酸
化膜7の除去ができない。
That is, in the present embodiment, the oxide film 7 is heated and removed by sublimation utilizing the sublimability of hexavalent metal molybdenum oxide. In this embodiment, the oxide film 7 was heated at 800 ° C. to remove the sublimation. Embodiment 3 In the above Embodiments 1 and 2, the solubility of NH 3 water and sublimation are used to remove the metal molybdenum oxide film 7. When the oxide film becomes a multivalent oxide film, it loses sublimability and becomes insoluble in NH 3 water. Therefore, the oxide film 7 cannot be removed by the methods of the first and second embodiments.

【0015】4価の酸化膜は非常に導電性が良く残って
も問題とならない場合にはこのまま放置していても良い
が、仕事関数を上げ、電子線放射の閾値を上げる場合に
は除去する必要がある。尚金属モリブデンの比抵抗は
5.2×10-6Ωcm、MoO 3 の比抵抗は8.8×1
-5Ωcm(500℃)である。そこで本実施例では還
元性ガスである水素を酸化膜7表面に流して金属モリブ
デンに還元することにより除去する。また表面の酸化膜
7が6価に酸化された場合には実施例1、2の方法で除
去する。
The tetravalent oxide film has very good conductivity and remains.
If there is no problem, you can leave it as it is
Increases the work function and raises the threshold for electron beam emission.
Need to be removed. The specific resistance of metallic molybdenum is
5.2 × 10-6Ωcm, MoO ThreeHas a specific resistance of 8.8 × 1
0-FiveΩcm (500 ° C.). Therefore, in this embodiment,
Hydrogen, which is a primary gas, is flowed over the surface of the oxide
Removed by reduction to den. Also an oxide film on the surface
When 7 is oxidized to hexavalent, it is removed by the methods of Examples 1 and 2.
Leave.

【0016】尚4価の酸化物ができた場合、上述のよう
に還元するのでなく、硝酸処理を行って、6価の酸化物
に変え、昇華させるようにしても良い。
When a tetravalent oxide is formed, nitric acid treatment may be performed instead of the reduction as described above to convert the oxide to a hexavalent oxide and sublimate it.

【0017】[0017]

【発明の効果】本発明は、スピント方式の電界放射型電
極を製造する際に、既に金属性材料で形成されたエミッ
タチップ及びゲート層表面に酸化膜を形成し、この酸化
膜を除去することによりエミッタチップの形状の修正、
ゲート層間距離の調整を行うから、従来スピント方式の
電界放射型電極において、形状修正が困難であった金属
材料や金属炭化物のような金属性材料から形成されたエ
ミッタチップの形状やエミッタチップとゲート層間の距
離を酸化膜の厚さを制御することにより、簡単に修正
することができ、特にエミッタチップの尖鋭化が容易に
行えるという効果がある。
According to the present invention, an oxide film is formed on the surface of an emitter chip and a gate layer which are already formed of a metallic material when a Spindt-type field emission electrode is manufactured, and the oxide film is removed. Correction of the shape of the emitter tip,
Since the distance between gate layers is adjusted, the conventional Spindt method
In the field emission type electrode, the thickness of the oxide film is controlled by controlling the shape of the emitter tip formed from a metallic material such as a metal material or a metal carbide, which has been difficult to modify , and the distance between the emitter tip and the gate layer. This has the effect that the correction can be made easily, and in particular, the emitter tip can be easily sharpened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の方法による酸化膜形成状態
の電界放射型電極の断面図である。
FIG. 1 is a sectional view of a field emission electrode in an oxide film formation state according to a method of Example 1 of the present invention.

【図2】本発明の実施例1の方法による酸化膜除去後の
電界放射型電極の断面図である。
FIG. 2 is a cross-sectional view of the field emission electrode after removing an oxide film by the method according to the first embodiment of the present invention.

【図3】一次形成時の電界放射型電極の断面図である。FIG. 3 is a cross-sectional view of a field emission electrode at the time of primary formation.

【符号の説明】[Explanation of symbols]

1 エミッタチップ 2 基板 3 絶縁層 4 ゲート層 5 放射孔 6 コレクタ 7 酸化膜 DESCRIPTION OF SYMBOLS 1 Emitter chip 2 Substrate 3 Insulating layer 4 Gate layer 5 Radiation hole 6 Collector 7 Oxide film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−52274(JP,A) 特開 平3−71529(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 9/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-51-52274 (JP, A) JP-A-3-71529 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01J 9/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性の基板に、絶縁層を介して導電性の
ゲート層を積層し、上記絶縁層及びゲート層を通して上
記基板の表面を露出させる放射孔を形成するとともに放
射孔内に金属性材料でエミッタチップを形成するスピン
ト方式の電界放射型電極において、上記エミッタチップ
の形成後、該エミッタチップ及び上記ゲート層表面に酸
化膜を形成し、この酸化膜を除去することによりエミッ
タチップの形状の修正、上記エミッタチップと上記ゲー
ト層間距離の調整を行うことを特徴とする電界放射型電
極の製造方法。
A conductive substrate is provided on a conductive substrate via an insulating layer.
Laminate the gate layer and pass through the insulating layer and the gate layer.
Form radiation holes to expose the surface of the substrate and release
Spin forming emitter tip with metallic material in the hole
In the field emission type electrode of the
Forming an oxide film on the surface of the emitter chip and the gate layer, correcting the shape of the emitter chip and adjusting the distance between the emitter chip and the gate layer by removing the oxide film. Of manufacturing a field emission electrode.
JP17288991A 1991-07-15 1991-07-15 Method for manufacturing field emission electrode Expired - Fee Related JP3142895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17288991A JP3142895B2 (en) 1991-07-15 1991-07-15 Method for manufacturing field emission electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17288991A JP3142895B2 (en) 1991-07-15 1991-07-15 Method for manufacturing field emission electrode

Publications (2)

Publication Number Publication Date
JPH0521002A JPH0521002A (en) 1993-01-29
JP3142895B2 true JP3142895B2 (en) 2001-03-07

Family

ID=15950207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17288991A Expired - Fee Related JP3142895B2 (en) 1991-07-15 1991-07-15 Method for manufacturing field emission electrode

Country Status (1)

Country Link
JP (1) JP3142895B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696028A (en) * 1992-02-14 1997-12-09 Micron Technology, Inc. Method to form an insulative barrier useful in field emission displays for reducing surface leakage
US5461009A (en) * 1993-12-08 1995-10-24 Industrial Technology Research Institute Method of fabricating high uniformity field emission display
JP3080142B2 (en) * 1996-05-10 2000-08-21 日本電気株式会社 Method of manufacturing field emission cold cathode
US6022256A (en) * 1996-11-06 2000-02-08 Micron Display Technology, Inc. Field emission display and method of making same
JP2011129484A (en) 2009-12-21 2011-06-30 Canon Inc Electron-emitting device, electron source, and image display apparatus

Also Published As

Publication number Publication date
JPH0521002A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
JP2770755B2 (en) Field emission type electron gun
JP3142895B2 (en) Method for manufacturing field emission electrode
EP0681312B1 (en) Cold-cathode electron source element and method for producing the same
US6570305B1 (en) Field emission electron source and fabrication process thereof
JPH0850850A (en) Field emission type electron emission element and its manufacture
JP2004119018A (en) Electron emission element
JP3231528B2 (en) Field emission cold cathode and method of manufacturing the same
JP3190850B2 (en) Manufacturing method of vacuum micro element and vacuum micro element by this manufacturing method
JPH0765706A (en) Cathode device and its manufacture
JP3160547B2 (en) Method of manufacturing field emission electron source
JP3460376B2 (en) Manufacturing method of micro cold electron source
JP3536120B2 (en) Method for manufacturing electron-emitting device
JP3390255B2 (en) Field emission cathode device and method of manufacturing the same
JP3037780B2 (en) Manufacturing method of microemitter
US5953580A (en) Method of manufacturing a vacuum device
JPH05242796A (en) Manufacture of electron emission element
JP3457054B2 (en) Method of manufacturing rod-shaped silicon structure
KR100275524B1 (en) Method for fabricating field emission display using silicidation process
JP3143679B2 (en) Electron emitting device and method of manufacturing the same
JP3826539B2 (en) Method for manufacturing cold electron-emitting device
JPH08329832A (en) Electron emitting element and its manufacture
JP2811755B2 (en) Manufacturing method of micro vacuum triode
JP2001202872A (en) Electric field emission type electron source and method of manufacturing the same
JPH08111168A (en) Field emission type electron emitting element and its manufacture
JPH0785397B2 (en) Electron-emitting device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001212

LAPS Cancellation because of no payment of annual fees