JPH0521002A - Manufacture of field emission type electrode - Google Patents

Manufacture of field emission type electrode

Info

Publication number
JPH0521002A
JPH0521002A JP17288991A JP17288991A JPH0521002A JP H0521002 A JPH0521002 A JP H0521002A JP 17288991 A JP17288991 A JP 17288991A JP 17288991 A JP17288991 A JP 17288991A JP H0521002 A JPH0521002 A JP H0521002A
Authority
JP
Japan
Prior art keywords
oxide film
emitter
gate layer
chip
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17288991A
Other languages
Japanese (ja)
Other versions
JP3142895B2 (en
Inventor
Yukihiro Kondo
行広 近藤
Hideyoshi Kimura
秀吉 木村
Jun Matsuura
潤 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17288991A priority Critical patent/JP3142895B2/en
Publication of JPH0521002A publication Critical patent/JPH0521002A/en
Application granted granted Critical
Publication of JP3142895B2 publication Critical patent/JP3142895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide manufacture of a field emission type electrode which can properly correct the form of a primarily formed emitter chip and the distance between the emitter chip and gate layers. CONSTITUTION:The surface of a primarily formed chip 1 made up of metal molybdenum and a gate layer 3 are heated at a temperature of approximately 530-630 deg.C to be oxidized so that oxide film 7 of MoO3 is formed on the surfaces. The oxide film 7 thus formed is dissolved in an NH3 solution to be removed, so that the form of the tip of the emitter chip 1 and the distance between gate layers 4 are corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電界放射により電子線
を放射するようにした電界放射型電極に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission electrode which emits an electron beam by field emission.

【0002】[0002]

【従来の技術】この種の電界放射型電極を製造する場
合、薄膜を応用して形成するエミッタチップには、形
状、材質等多くの種類が考えられるが、電子放出の電流
密度を高くしようとした場合には材料として高融点の金
属材料か炭化物、硼化物が望ましい。
2. Description of the Related Art When manufacturing a field emission electrode of this type, there are many types of emitter chips formed by applying a thin film, such as shape and material. In this case, a metal material having a high melting point, a carbide, or a boride is desirable as the material.

【0003】一方シリコン等の半導体材料の単結晶を異
方性エッチングによってピラミッド型のエッミタチップ
を形成することは比較的容易である。他方金属材料や高
融点の金属炭化物等を使用する場合には膜形成にスパッ
タリングや、真空蒸着、種々のCVD等の方法が用いら
れるが、単結晶を得るには特殊な条件が必要であり、従
って異方性エッチングによる多数個のエミッタチップを
同時形成するのは難しい。
On the other hand, it is relatively easy to form a pyramid type emitter chip by anisotropically etching a single crystal of a semiconductor material such as silicon. On the other hand, when using a metal material or a metal carbide having a high melting point, sputtering, vacuum deposition, various CVD methods are used for film formation, but special conditions are required to obtain a single crystal. Therefore, it is difficult to simultaneously form a large number of emitter chips by anisotropic etching.

【0004】[0004]

【発明が解決しようとする課題】そこで、これら金属材
料や高融点の金属炭化物の材料を用いてエミッタチップ
を形成する際に、単結晶多結晶体やアモルファス体等の
材料を用いた場合、エミッタチップ形成後のチップ形状
を適正な形状に修正することは困難であった。本発明は
上述の点に鑑みて為されたもので、その目的とするとこ
ろは一度形成されたエミッタチップの形状やエミッタチ
ップとゲート層間の距離を適正に修正することができる
電界放射型電極の製造方法を提供するにある。
Therefore, when a material such as a single crystal polycrystal or an amorphous material is used when forming an emitter tip using these metal materials or high melting point metal carbide materials, the emitter It was difficult to correct the chip shape after chip formation to an appropriate shape. The present invention has been made in view of the above points, and an object of the present invention is to provide a field emission electrode capable of appropriately correcting the shape of the emitter tip once formed and the distance between the emitter tip and the gate layer. It is to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明は、上述の目的を
達成するために、エミッタチップと、エミッタチップの
先端部を露出させる放射孔を有するとともにエミッタチ
ップに対して絶縁された形で配置されたゲート層とが真
空中に配設された電極部を有し、エミッタチップをゲー
ト層に対して負極としてショットキー効果が生じる程度
の電圧を印加することにより、エミッタチップから放射
孔を通して電子線を放射する電界放射型電極において、
金属性材料で形成されたエミッタチップ及びゲート層表
面に酸化膜を形成し、この酸化膜を除去することにより
エミッタチップの形状の修正、エミッタチップとゲート
層間距離の調整を行うことを特徴とする。
In order to achieve the above-mentioned object, the present invention has an emitter tip and a radiation hole exposing the tip of the emitter tip, and is arranged in an insulated manner with respect to the emitter tip. The gate layer and the gate layer are disposed in a vacuum, and by applying a voltage to the gate layer so that the Schottky effect is produced by using the emitter tip as a negative electrode, electrons are emitted from the emitter tip through the emission hole. In a field emission electrode that emits a line,
An oxide film is formed on the surface of the emitter chip and the gate layer formed of a metallic material, and the oxide film is removed to correct the shape of the emitter chip and adjust the distance between the emitter chip and the gate layer. ..

【0006】[0006]

【作用】本発明方法によれば、金属性材料で形成された
エミッタチップ及びゲート層表面に酸化膜を形成し、こ
の酸化膜を除去することによりエミッタチップの形状の
修正、ゲート層間距離の調整を行うから、従来形状修正
が困難であった金属材料や、金属炭化物のような金属性
材料から形成されたエミッタチップの形状や、エミッタ
チップとゲート層間の距離を酸化膜の厚さを制御するこ
とにより、簡単に修正することができる。
According to the method of the present invention, an oxide film is formed on the surface of an emitter chip and a gate layer formed of a metallic material, and the oxide film is removed to correct the shape of the emitter chip and adjust the distance between gate layers. Therefore, the shape of the emitter tip formed of a metallic material or a metallic material such as metal carbide, which has been difficult to modify the shape in the past, and the distance between the emitter tip and the gate layer are controlled by the thickness of the oxide film. Therefore, it can be easily corrected.

【0007】[0007]

【実施例】図4は一次的に形成された電界放射型電極を
示しており、十分にドープされたシリコンよりなる導電
性の基板2に、二酸化シリコンよりなる絶縁層3を介し
て金属モリブデンよりなる導電性のゲート層4を積層し
た積層体を有し、絶縁層3及びゲート層4を通して形成
されて基板2の表面を露出させる放射孔5内に金属モリ
ブデンからなるエミッタチップ1を形成している。エミ
ッタチップ1は電子線e - を放射孔5を通してコレクタ
6に向けて放射するようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 4 shows a field emission electrode formed temporarily, in which a conductive molybdenum substrate 2 made of fully doped silicon is covered with an insulating layer 3 made of silicon dioxide. An emitter chip 1 made of molybdenum metal is formed in a radiation hole 5 which is formed through the insulating layer 3 and the gate layer 4 and exposes the surface of the substrate 2. There is. The emitter tip 1 emits an electron beam e toward the collector 6 through the emission hole 5.

【0008】尚この一次的な電界放射型電極の製造方法
は、SRI International(USA)のDr.Spindt等によって
提案されている公知の方法によって行う。本発明方法は
このような一次的に既に形成されたエミッタチップ1の
形状変更を行う際にエミッタチップ1の表面を酸化させ
た後酸化膜を除去することで先端形状やエミッタチップ
1とゲート層3間の距離を調整する方法であり、以下実
施例により説明する。
The primary method of manufacturing the field emission electrode is described in SRI International (USA) Dr. It is performed by a known method proposed by Spindt and the like. According to the method of the present invention, when the shape of the emitter chip 1 that has already been formed is changed, the tip shape, the emitter chip 1 and the gate layer are removed by removing the oxide film after oxidizing the surface of the emitter chip 1. This is a method of adjusting the distance between the three, and will be described below with reference to an embodiment.

【0009】実施例1 実施例1では、金属モリブデンからなるエミッタチップ
1及びゲート層3の表面を530乃至630℃程度で加
熱して酸化させ、図1に示すように表面にMoO3 の酸
化膜7を形成する。ここでMoの酸化の際の温度条件を
変え、酸化膜7の厚さを測定したところ次のようになっ
た。
Example 1 In Example 1, the surfaces of the emitter chip 1 and the gate layer 3 made of molybdenum metal are heated and oxidized at about 530 to 630 ° C., and an oxide film of MoO 3 is formed on the surface as shown in FIG. Form 7. The thickness of the oxide film 7 was measured by changing the temperature condition for Mo oxidation, and the result was as follows.

【0010】 温度条件 535℃ 大気中フローで1時間酸化 膜厚測定 2.5μm/hr=約420Å/min 温度条件 570℃ 大気中フローで1時間酸化 膜厚測定 5μm/hr=約840Å/min 本実施例では535℃で約3分間酸化させて、1000
Å厚の酸化膜7を形成した。
Temperature condition 535 ° C., 1 hour oxidation in air flow film thickness measurement 2.5 μm / hr = about 420 Å / min Temperature condition 570 ° C. 1 hour oxidation in air flow film thickness measurement 5 μm / hr = about 840 Å / min In the example, oxidation was performed at 535 ° C. for about 3 minutes to obtain 1000
A thick oxide film 7 was formed.

【0011】尚酸化は次の化学式で表せる。 Mo+3/2O2 →MoO3 この形成された酸化膜7を除去することにより、図2に
示すようにエミッタチップ1の先端形状の修正や、エミ
ッタチップ1とゲート層4間の距離の修正を行う。
The oxidation can be expressed by the following chemical formula. Mo + 3 / 2O 2 → MoO 3 By removing the oxide film 7 thus formed, the tip shape of the emitter chip 1 is corrected and the distance between the emitter chip 1 and the gate layer 4 is corrected as shown in FIG. ..

【0012】ここでNH3 水に対してMoO3 の酸化膜
7が可溶性を持つため、本実施例では、NH3 水で酸化
膜7を除去する。尚酸化膜7の厚さは、上記のように酸
化条件(温度と時間によって管理できる)によって設定
でき、例えば一定温度に保った状態で金属モリブデンの
酸化膜7の厚さは酸素の金属モリブデン中への拡散によ
って決定され、それは略時間の2乗に比例する。また拡
散係数は温度の指数関数によって表されるので、温度を
高く設定することは効果がある。但し金属モリブデンの
6価の酸化物は比較的低温で昇華する性質があり、その
蒸気圧は0.30mm/700℃、10.1mm/80
0℃、476.2mm/1100℃、760mm/11
55℃である。
[0012] oxide film 7 of MoO 3 with respect to where NH 3 water to have a solubility, in the present embodiment, to remove the oxide film 7 with aqueous NH 3. The thickness of the oxide film 7 can be set by the oxidizing conditions (which can be controlled by the temperature and the time) as described above. For example, the thickness of the oxide film 7 of molybdenum metal is the same as that of the metal molybdenum of oxygen in a state of being kept at a constant temperature. It is determined by the diffusion to, which is approximately proportional to the square of time. Since the diffusion coefficient is represented by the exponential function of temperature, setting the temperature high is effective. However, the hexavalent oxide of metallic molybdenum has the property of subliming at a relatively low temperature, and its vapor pressure is 0.30 mm / 700 ° C., 10.1 mm / 80.
0 ° C, 476.2mm / 1100 ° C, 760mm / 11
55 ° C.

【0013】このようにして酸化膜7を形成する際に、
その厚さを制御することにより、除去後の、エミッタチ
ップ1の尖鋭化や、エミッタチップ1とゲート層4間の
距離を適正なものとすることができる。実施例2 本実施例は上記実施例1と同様な条件で酸化膜7を形成
した後の除去法が実施例1と異なるものである。
When the oxide film 7 is formed in this way,
By controlling the thickness, it is possible to sharpen the emitter tip 1 after removal and to make the distance between the emitter tip 1 and the gate layer 4 appropriate. Example 2 This example is different from Example 1 in the removal method after forming the oxide film 7 under the same conditions as in Example 1 above.

【0014】つまり本実施例は、金属モリブデンの6価
の酸化物の昇華性を利用して、酸化膜7を加熱して昇華
除去するのである。本実施例では800℃で加熱して酸
化膜7を昇華除去した。実施例3 上記実施例1、2では金属モリブデンの酸化膜7を除去
するのに、NH3 水に対する可溶性や、昇華性を利用し
ているが、一部の酸化膜7が除去の際に4価の酸化膜と
なった場合には昇華性もなくなり、またNH3 水に対し
ても不溶性となるため、上記実施例1、2の方法では酸
化膜7の除去ができない。
That is, in this embodiment, the sublimation property of the hexavalent oxide of molybdenum metal is utilized to heat the oxide film 7 to remove it by sublimation. In this example, the oxide film 7 was removed by sublimation by heating at 800 ° C. Embodiment 3 In Embodiments 1 and 2 described above, in order to remove the oxide film 7 of metallic molybdenum, solubility in NH 3 water and sublimability are used. When it becomes a valent oxide film, the sublimation property also disappears and it becomes insoluble in NH 3 water. Therefore, the oxide film 7 cannot be removed by the methods of Examples 1 and 2.

【0015】4価の酸化膜は非常に導電性が良く残って
も問題とならない場合にはこのまま放置していても良い
が、仕事関数を上げ、電子線放射の閾値を上げる場合に
は除去する必要がある。尚金属モリブデンの比抵抗は
5.2×10-6Ωcm、MoO 3 の比抵抗は8.8×1
-5Ωcm(500℃)である。そこで本実施例では還
元性ガスである水素を酸化膜7表面に流して金属モリブ
デンに還元することにより除去する。また表面の酸化膜
7が6価に酸化された場合には実施例1、2の方法で除
去する。
The tetravalent oxide film has very good conductivity and remains.
If it does not matter, you can leave it as it is
But when raising the work function and raising the threshold of electron beam emission
Need to be removed. The specific resistance of metallic molybdenum is
5.2 x 10-6Ωcm, MoO 3Specific resistance of 8.8 × 1
0-FiveΩcm (500 ° C). Therefore, in this embodiment,
Hydrogen, which is an original gas, is caused to flow on the surface of the oxide film 7 so that metal molybdenum
Remove by reducing to den. Also oxide film on the surface
When 7 was oxidized to be hexavalent, it was removed by the method of Examples 1 and 2.
Leave.

【0016】尚4価の酸化物ができた場合、上述のよう
に還元するのでなく、硝酸処理を行って、6価の酸化物
に変え、昇華させるようにしても良い。
When a tetravalent oxide is formed, it may be sublimated by performing nitric acid treatment to convert it into a hexavalent oxide instead of reducing it as described above.

【0017】[0017]

【発明の効果】本発明は、金属性材料で形成されたエミ
ッタチップ及びゲート層表面に酸化膜を形成し、この酸
化膜を除去することによりエミッタチップの形状の修
正、ゲート層間距離の調整を行うから、従来形状修正が
困難であった金属材料や、金属炭化物のような金属性材
料から形成されたエミッタチップの形状や、ゲート層間
の距離を酸化膜の厚さを制御することにより、簡単に適
正な状態に修正することができ、特にエミッタチップの
尖鋭化が容易に行えるという効果がある。
According to the present invention, an oxide film is formed on the surface of an emitter chip and a gate layer made of a metallic material, and the oxide film is removed to correct the shape of the emitter chip and adjust the distance between gate layers. Therefore, the shape of the emitter tip made of a metal material or a metal material such as metal carbide, which was difficult to modify the shape in the past, and the distance between the gate layers can be controlled easily by controlling the thickness of the oxide film. The effect is that it can be corrected to a proper state, and in particular that the emitter tip can be sharpened easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の方法による酸化膜形成状態
の電界放射型電極の断面図である。
FIG. 1 is a cross-sectional view of a field emission electrode in a state where an oxide film is formed by the method of Example 1 of the present invention.

【図2】本発明の実施例1の方法による酸化膜除去後の
電界放射型電極の断面図である。
FIG. 2 is a cross-sectional view of a field emission electrode after removing an oxide film by the method of Example 1 of the present invention.

【図3】一次形成時の電界放射型電極の断面図である。FIG. 3 is a cross-sectional view of a field emission electrode during primary formation.

【符号の説明】[Explanation of symbols]

1 エミッタチップ 2 基板 3 絶縁層 4 ゲート層 5 放射孔 6 コレクタ 7 酸化膜 1 Emitter Chip 2 Substrate 3 Insulation Layer 4 Gate Layer 5 Radiation Hole 6 Collector 7 Oxide Film

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年9月30日[Submission date] September 30, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【課題を解決するための手段】本発明は、上述の目的を
達成するために、エミッタチップと、エミッタチップの
先端部を露出させる放射孔を有するとともにエミッタチ
ップに対して絶縁された形で配置されたゲート層とが真
空中に配設された電極部を有し、エミッタチップをゲー
ト層に対して負極として電界放射効果が生じる程度の電
圧を印加することにより、エミッタチップから放射孔を
通して電子線を放射する電界放射型電極において、金属
性材料で形成されたエミッタチップ及びゲート層表面に
酸化膜を形成し、この酸化膜を除去することによりエミ
ッタチップの形状の修正、エミッタチップとゲート層間
距離の調整を行うことを特徴とする。
In order to achieve the above-mentioned object, the present invention has an emitter tip and a radiation hole exposing the tip of the emitter tip, and is arranged in an insulated manner with respect to the emitter tip. The gate layer and the gate layer are disposed in a vacuum, and by applying a voltage that causes the field emission effect with the emitter tip being a negative electrode with respect to the gate layer, electrons are emitted from the emitter tip through the emission hole. In a field emission electrode that emits a line, an oxide film is formed on the surface of the emitter chip and gate layer made of a metallic material, and the oxide film is removed to correct the shape of the emitter chip and the emitter chip and the gate layer. The feature is that the distance is adjusted.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】ここでNH3 水に対してMoO3 の酸化膜
7が可溶性を持つため、本実施例では、NH3 水で酸化
膜7を除去する。尚酸化膜7の厚さは、上記のように酸
化条件(温度と時間によって管理できる)によって設定
でき、例えば一定温度に保った状態で金属モリブデンの
酸化膜7の厚さは酸素の金属モリブデン中への拡散によ
って決定され、それはほぼ時間の2乗に比例する。また
拡散係数は温度の指数関数によって表されるので、温度
を高く設定することは効果がある。但し金属モリブデン
の6価の酸化物は比較的低温で昇華する性質があり、そ
の蒸気圧は0.30mm/700℃、10.1mm/8
00℃、476.2mm/1100℃、760mm/1
155℃である。
[0012] oxide film 7 of MoO 3 with respect to where NH 3 water to have a solubility, in the present embodiment, to remove the oxide film 7 with aqueous NH 3. The thickness of the oxide film 7 can be set by the oxidizing conditions (which can be controlled by the temperature and the time) as described above. For example, the thickness of the oxide film 7 of molybdenum metal is the same as that of the metal molybdenum of oxygen in a state of being kept at a constant temperature. It is determined by the diffusion to, which is approximately proportional to the square of time. Since the diffusion coefficient is represented by the exponential function of temperature, setting the temperature high is effective. However, the hexavalent oxide of metallic molybdenum has the property of subliming at a relatively low temperature, and its vapor pressure is 0.30 mm / 700 ° C., 10.1 mm / 8.
00 ° C, 476.2 mm / 1100 ° C, 760 mm / 1
155 ° C.

Claims (1)

【特許請求の範囲】 【請求項1】エミッタチップと、エミッタチップの先端
部を露出させる放射孔を有するとともにエミッタチップ
に対して絶縁された形で配置されたゲート層とが真空中
に配設された電極部を有し、エミッタチップをゲート層
に対して負極としてショットキー効果が生じる程度の電
圧を印加することにより、エミッタチップから放射孔を
通して電子線を放射する電界放射型電極において、金属
性材料で形成されたエミッタチップ及びゲート層表面に
酸化膜を形成し、この酸化膜を除去することによりエミ
ッタチップの形状の修正、エミッタチップとゲート層間
距離の調整を行うことを特徴とする電界放射型電極の製
造方法。
Claim: What is claimed is: 1. An emitter tip and a gate layer which has a radiation hole for exposing a tip portion of the emitter tip and is arranged insulated from the emitter tip are arranged in a vacuum. In the field emission electrode in which an electron beam is radiated from the emitter tip through the radiation hole by applying a voltage having a Schottky effect with the emitter tip being a negative electrode with respect to the gate layer, the metal An electric field characterized by forming an oxide film on the surface of an emitter chip and a gate layer formed of a conductive material and correcting the shape of the emitter chip and adjusting the distance between the emitter chip and the gate layer by removing this oxide film. A method for manufacturing a radiation electrode.
JP17288991A 1991-07-15 1991-07-15 Method for manufacturing field emission electrode Expired - Fee Related JP3142895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17288991A JP3142895B2 (en) 1991-07-15 1991-07-15 Method for manufacturing field emission electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17288991A JP3142895B2 (en) 1991-07-15 1991-07-15 Method for manufacturing field emission electrode

Publications (2)

Publication Number Publication Date
JPH0521002A true JPH0521002A (en) 1993-01-29
JP3142895B2 JP3142895B2 (en) 2001-03-07

Family

ID=15950207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17288991A Expired - Fee Related JP3142895B2 (en) 1991-07-15 1991-07-15 Method for manufacturing field emission electrode

Country Status (1)

Country Link
JP (1) JP3142895B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461009A (en) * 1993-12-08 1995-10-24 Industrial Technology Research Institute Method of fabricating high uniformity field emission display
US5831378A (en) * 1992-02-14 1998-11-03 Micron Technology, Inc. Insulative barrier useful in field emission displays for reducing surface leakage
US5938495A (en) * 1996-05-10 1999-08-17 Nec Corporation Method of manufacturing a field emission cold cathode capable of stably producing a high emission current
US6022256A (en) * 1996-11-06 2000-02-08 Micron Display Technology, Inc. Field emission display and method of making same
US8134288B2 (en) 2009-12-21 2012-03-13 Canon Kabushiki Kaisha Electron-emitting device, electron source, and image display apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831378A (en) * 1992-02-14 1998-11-03 Micron Technology, Inc. Insulative barrier useful in field emission displays for reducing surface leakage
US6066507A (en) * 1992-02-14 2000-05-23 Micron Technology, Inc. Method to form an insulative barrier useful in field emission displays for reducing surface leakage
US5461009A (en) * 1993-12-08 1995-10-24 Industrial Technology Research Institute Method of fabricating high uniformity field emission display
US5938495A (en) * 1996-05-10 1999-08-17 Nec Corporation Method of manufacturing a field emission cold cathode capable of stably producing a high emission current
US6022256A (en) * 1996-11-06 2000-02-08 Micron Display Technology, Inc. Field emission display and method of making same
US6181060B1 (en) 1996-11-06 2001-01-30 Micron Technology, Inc. Field emission display with plural dielectric layers
US8134288B2 (en) 2009-12-21 2012-03-13 Canon Kabushiki Kaisha Electron-emitting device, electron source, and image display apparatus

Also Published As

Publication number Publication date
JP3142895B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
JP2770755B2 (en) Field emission type electron gun
JP3380313B2 (en) Diamond field effect transistor
CN105518829B (en) The manufacture method of semiconductor device
KR100442982B1 (en) Field-emission electron source and method of manufacturing the same
JPH0521002A (en) Manufacture of field emission type electrode
US6570305B1 (en) Field emission electron source and fabrication process thereof
KR19990038696A (en) Method of manufacturing cathode tips of field emission devices
GB2034519A (en) Masking procedure for semiconductor device manufacture
JP3160547B2 (en) Method of manufacturing field emission electron source
JP3452222B2 (en) Cold cathode electron source device and method of manufacturing the same
JP2006073923A (en) SiC SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD FOR SiC SEMICONDUCTOR DEVICE
JP2000106350A (en) Manufacture of ohmic electrode and semiconductor element
JP2939819B2 (en) Method for manufacturing thin film transistor
JPH05242796A (en) Manufacture of electron emission element
JP4679713B2 (en) Manufacturing method of field emission electron source
KR100199295B1 (en) Method of manufacturing field emission device
JP3508651B2 (en) Field emission type electron source and method of manufacturing the same
JP3687520B2 (en) Field emission electron source and manufacturing method thereof
JPS60195978A (en) Manufacture of semiconductor device
JP4119968B2 (en) Electrode forming method for silicon carbide semiconductor device
US5953580A (en) Method of manufacturing a vacuum device
JPS61272901A (en) Manufacture of thermal head
JP2002076008A (en) Method of forming ohmic electrode on diamond and electronic device
JP2001202872A (en) Electric field emission type electron source and method of manufacturing the same
KR0176086B1 (en) Method of manufacturing vacuum device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001212

LAPS Cancellation because of no payment of annual fees