JP2659716B2 - Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same - Google Patents

Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same

Info

Publication number
JP2659716B2
JP2659716B2 JP62192567A JP19256787A JP2659716B2 JP 2659716 B2 JP2659716 B2 JP 2659716B2 JP 62192567 A JP62192567 A JP 62192567A JP 19256787 A JP19256787 A JP 19256787A JP 2659716 B2 JP2659716 B2 JP 2659716B2
Authority
JP
Japan
Prior art keywords
alloy
electric resistance
weight
melting point
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62192567A
Other languages
Japanese (ja)
Other versions
JPS6436736A (en
Inventor
量 増本
直司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP62192567A priority Critical patent/JP2659716B2/en
Publication of JPS6436736A publication Critical patent/JPS6436736A/en
Application granted granted Critical
Publication of JP2659716B2 publication Critical patent/JP2659716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金−コバルト−鉄系電気抵抗合金に関するも
のであり、詳しくは本発明は電気抵抗の温度係数が小さ
く、しかも融点が低い特長を有する高安定性抵抗体ある
いは渦電流式変位センサ用金−コバルト−鉄系電気抵抗
合金に関するものである。
Description: TECHNICAL FIELD The present invention relates to a gold-cobalt-iron-based electric resistance alloy. More specifically, the present invention has a feature that the temperature coefficient of electric resistance is small and the melting point is low. The present invention relates to a highly stable resistor or a gold-cobalt-iron-based electric resistance alloy for an eddy current displacement sensor.

(従来の技術) 近年エレクトロニクス関連機器における部品、例えば
電気抵抗体あるいは渦電流式変位センサ等では、その小
型化、高性能化さらには耐環境性の向上のためにこれら
部品に使用される熱的安定性に優れた電気抵抗合金の素
材開発が強く要望されつつある。
(Prior Art) In recent years, components of electronics-related devices, such as electric resistors or eddy current type displacement sensors, have been used to reduce the size, performance, and environmental resistance. There is a strong demand for the development of a material for an electric resistance alloy having excellent stability.

すなわち電気抵抗合金に求められる必要条件として
は、比電気抵抗が適当な値を有すること、比電気抵抗の
温度係数が小さいこと、融点が低いことならびに素材が
軟かいことなどの他に電気抵抗の経時変化が少ないこ
と、ろう付け性に優れていること、加工しやすいこと、
化学的に安定であること、絶縁体とのなじみ性に優れて
いることならびにコストが安価であること等も重要であ
る。
In other words, the necessary conditions required for the electric resistance alloy are that the electric resistance has an appropriate value, the temperature coefficient of the electric resistance is small, the melting point is low, and the material is soft. Less change over time, excellent brazing properties, easy processing,
It is also important that they are chemically stable, have good compatibility with insulators, have low cost, and the like.

従来電気抵抗が小さい材料としては銀(Ag)、銅(C
u)や金(Au)等の純金属が考えられるが、いずれも電
気抵抗の温度係数が4000ppm/℃以上の極めて大きな値を
有するため本目的の部品への応用化は困難である。
Conventionally, silver (Ag), copper (C
Pure metals such as u) and gold (Au) are conceivable, but all have extremely large temperature coefficients of electric resistance of 4000 ppm / ° C. or more, and it is difficult to apply them to the parts for this purpose.

ここで電気抵抗の温度係数Cfは式 Cf=ΔR/ΔT/Rで定義され、その単位は〔10-6/℃〕また
は〔ppm/℃〕である。
Here the temperature coefficient C f of the electrical resistance is defined by the formula C f = ΔR / ΔT / R , its unit is [10 -6 / ° C.) or (ppm / ° C.].

(発明が解決しようとする問題点) ところでこれらの元素にニッケル(Ni)、マンガン
(Mn)、コバルト(Co)あるいはクローム(Cr)等を微
量添加することによって電気特性がかなり改善されるこ
とは既に報告されている(「計測材料の進歩」:日本計
測学会材料研究部会編、コロナ社、1959、p.157)。ま
たこれとは別に開示されているものとしては、本発明者
が以前に発明したパラジウム−銀系合金(特開昭55−12
2839号および同60−204846号および同60−204847号各公
報)また銅−ニッケル−金系合金(特開昭59−6345号公
報)等がある。これらの材料はいずれも電気抵抗の温度
係数が負値あるいは100ppm/℃以下の極めて小さい値を
有しているので部品に応用した場合には合金の優れた特
性を十分に発揮し得る。しかし他方合金個々については
多くの欠点、例えば融点が高い、素材が硬く可撓性が劣
る、化学的安定性に欠けるあるいは熱エージングによる
電気抵抗の経時変化が生ずることもあり、また応用上部
品製作における巻線作業が困難であること等多くの問題
があった。
(Problems to be Solved by the Invention) By the way, the addition of a small amount of nickel (Ni), manganese (Mn), cobalt (Co) or chromium (Cr) to these elements does not significantly improve the electrical characteristics. It has already been reported ("Progress of Measurement Materials", edited by the Materials Research Group of the Measurement Society of Japan, Corona, 1959, p.157). Also disclosed separately therefrom is a palladium-silver alloy previously invented by the present inventors (JP-A-55-1212).
Nos. 2839, 60-204846 and 60-204847) and copper-nickel-gold alloys (JP-A-59-6345). Each of these materials has a negative temperature coefficient of electric resistance or a very small value of 100 ppm / ° C. or less, so that when applied to parts, the alloy can sufficiently exhibit excellent properties. However, on the other hand, individual alloys have many disadvantages, such as high melting point, hard and inflexible materials, lack of chemical stability, or the electrical resistance may change with time due to thermal aging. There are many problems such as difficulty in winding work in the above.

(問題点を解決するための手段) そこで本発明者らは関連産業界の緊急の要請に応える
べく幾多研究の末、電気抵抗の温度係数が小さくしかも
融点が低く素材が軟かい等の優れた特性を有する電気抵
抗合金、さらにはこの合金を使用した高安定性抵抗体あ
るいは渦電流式変位センサを提供しようとするものであ
る。
(Means for Solving the Problems) In order to respond to the urgent demands of the related industries, the present inventors have conducted various studies and have found that the temperature coefficient of electric resistance is small, the melting point is low, and the material is excellent. It is an object of the present invention to provide an electric resistance alloy having characteristics, and a highly stable resistor or an eddy current displacement sensor using the alloy.

すなわち本発明者らは比電気抵抗が小さく、融点が低
く、しかも化学的に安定な貴金属の金(Au)に注目し、
これにコバルト(Co)および鉄(Fe)を微量添加した合
金について研究を行った。なおAu−Co2元系合金の電気
特性については前述の専門書「計測材料の進歩」(第14
9頁〜第157頁)によると、電気抵抗の温度係数がかた引
による冷間加工および140℃の低温焼なましにおいて負
値を示すことが記述されている。しかしながらこの合金
の組織がAuの固溶体と共晶相間の不安定な状態にあるた
めに上記の処理では電気的特性の安定性は十分に得にく
いばかりでなく析出の影響による電気抵抗の経時変化の
あることも考慮しなければならない。さらにまた上記の
処理では合金素材が硬く良好な可撓性は得られない。
That is, the present inventors have focused on gold (Au), a noble metal that has a low specific electric resistance, a low melting point, and is chemically stable,
A study was conducted on an alloy containing a small amount of cobalt (Co) and iron (Fe). Regarding the electrical properties of Au-Co binary alloys, see the above-mentioned specialized book “Progress of Measurement Materials” (No. 14).
According to pages 9 to 157), it is described that the temperature coefficient of electrical resistance shows a negative value in cold working by cold working and in low-temperature annealing at 140 ° C. However, since the structure of this alloy is in an unstable state between the solid solution of Au and the eutectic phase, the above-mentioned treatment not only makes it difficult to sufficiently obtain the stability of the electrical characteristics, but also changes the electrical resistance with time due to the influence of precipitation. There are also things to consider. Furthermore, in the above treatment, the alloy material is hard and good flexibility cannot be obtained.

本発明は上述の諸問題を解決し、優れた特性を有する
Au−Co−Fe系電気抵抗合金とその製造法さらには本発明
合金を使用した高安定性抵抗体あるいは渦電流式変位セ
ンサ等を提供することが目的である。
The present invention solves the above-mentioned problems and has excellent characteristics.
It is an object of the present invention to provide an Au-Co-Fe-based electric resistance alloy, a method for producing the same, and a highly stable resistor or an eddy current displacement sensor using the alloy of the present invention.

本発明の目的とする所は、重量%にてコバルト0.01〜
10%、鉄0.01〜8%および残部が実質的に金の組成と、
少量の不純物からなり、比電気抵抗の温度係数が1000pp
m/℃以下および融点が1055℃以下であることを特徴とす
る電気抵抗合金の製造法を提供するにある。
It is an object of the present invention that the weight percentage of cobalt is 0.01 to 0.01%.
10% iron 0.01-8% and the balance substantially gold,
Consists of a small amount of impurities, the temperature coefficient of specific electrical resistance is 1000pp
An object of the present invention is to provide a method for producing an electric resistance alloy, which has a m / ° C or lower and a melting point of 1055 ° C or lower.

本発明の他の目的とする所は、重量%にてコバルト0.
01〜10%、鉄0.01〜8%および残部が実質的に金の組成
と、少量の不純物からなる合金を鋳造及び鍛造後熱間加
工あるいは冷間加工により線材または板材より選ばれた
所望の形状となし、非酸化性雰囲気中または真空中にお
いて200〜800℃で2秒以上100時間以下加熱することを
特徴とする電気抵抗合金の製造法を提供するにある。
Another object of the present invention is to obtain cobalt by weight of 0.1%.
01-10%, iron 0.01-8%, the balance is substantially gold, and the desired shape selected from wire or plate by hot working or cold working after casting and forging an alloy consisting of a small amount of impurities It is another object of the present invention to provide a method for producing an electric resistance alloy, which comprises heating at 200 to 800 ° C. for 2 seconds to 100 hours in a non-oxidizing atmosphere or vacuum.

本発明の更に他の目的とする所は、重量%にてコバル
ト0.01〜10%、鉄0.01〜8%および残部が実質的に金の
組成と、少量の不純物からなる電気抵抗合金の素材をス
パイラル状またはトロイダル状より選ばれた所望の形に
成形し、これをそのままの状態で無機質あるいは有機質
の電気絶縁体に固定するかまたは該絶縁体内に埋め込む
ことにより温度に対する電気抵抗の変化が少なく、比電
気抵抗の温度係数が1000ppm/℃以下および融点が1055℃
以下である高安定性電気抵抗体を得ることを特徴とする
渦電流式変位センサの製造法を提供するにある。
Still another object of the present invention is to provide an electric resistance alloy material consisting of 0.01 to 10% by weight of cobalt, 0.01 to 8% of iron and the balance being substantially gold and a small amount of impurities by weight. Shape or a toroidal shape, and fixing the same as it is to an inorganic or organic electrical insulator or embedding it in the insulator, the change in electrical resistance with respect to temperature is small, Temperature coefficient of electric resistance is less than 1000ppm / ℃ and melting point is 1055 ℃
An object of the present invention is to provide a method for manufacturing an eddy current type displacement sensor characterized by obtaining the following highly stable electric resistor.

本発明の更に他の目的とする所は、重量%にてコバル
ト0.01〜10%、鉄0.01〜8%および残部が実質的に金の
組成と、少量の不純物からなる電気抵抗合金を、電気絶
縁体表面に電着、蒸着またはスパッタリングの何れかの
方法により薄膜として被着した後、エッチング打抜きま
たはトリミング加工により所望のパターンとなし、これ
を別の電気絶縁体に固定するかあるいは該絶縁体内に埋
め込むか、若しくは合金薄膜の表面に絶縁体を塗布ある
いはコーティング処理を行い、絶縁体ケース内に装填す
ることにより温度に対する電気抵抗の変化が少なく、比
電気抵抗の温度係数が1000ppm/℃以下および融点が1055
℃以下である高安定性抵抗体を得ることを特徴とする渦
電流式変位センサの製造法を提供するにある。
Still another object of the present invention is to provide an electric resistance alloy consisting of 0.01 to 10% by weight of cobalt, 0.01 to 8% of iron and the balance being substantially gold and a small amount of impurities, by weight percent. After being deposited on the body surface as a thin film by any of the methods of electrodeposition, vapor deposition or sputtering, a desired pattern is formed by etching punching or trimming processing, and this is fixed to another electrical insulator, or is placed in the insulator. By embedding or applying or coating an insulator on the surface of the alloy thin film and loading it in an insulator case, the change in electrical resistance with respect to temperature is small, the temperature coefficient of specific electrical resistance is 1000 ppm / ° C or less and the melting point Is 1055
An object of the present invention is to provide a method for manufacturing an eddy current type displacement sensor characterized by obtaining a highly stable resistor having a temperature of not more than ° C.

本発明の更に他の目的とする所は、重量%にてコバル
ト0.01〜10%、鉄0.01〜8%および残部が実質的に金の
組成と、少量の不純物からなり、比電気抵抗の温度係数
が1000ppm/℃以下および融点が1055℃以下である電気抵
抗合金を用いた渦電流式変位センサを提供するにある。
It is a further object of the present invention to provide a method of manufacturing a semiconductor device comprising 0.01 to 10% by weight of cobalt, 0.01 to 8% of iron and the balance substantially consisting of gold and a small amount of impurities, and the temperature coefficient of specific electric resistance. An object of the present invention is to provide an eddy current type displacement sensor using an electric resistance alloy having a melting point of 1000 ppm / ° C. or less and a melting point of 1055 ° C. or less.

(発明の構成及び作用) 以下本発明合金の製造法について具体的に説明する。(Structure and Function of the Invention) Hereinafter, a method for producing the alloy of the present invention will be specifically described.

本発明においてまずコバルト0.01〜10%、鉄0.01〜8
%および残部金の適量を空気中または真空中好ましくは
非酸化性雰囲気中において適当な溶解炉を用いて溶解し
た後、十分に撹拌して均一な溶融合金を造る。この場合
原料としては、あらかじめ用意した金−鉄母合金あるい
は金−コバルト母合金を使用すると合金組成の調整が極
めて容易となる。なお本発明合金の融点は1055℃以下で
あるので、溶解作業において通常の巻線型電気炉あるい
は都市ガス炉等が使用でき取扱いが非常に容易である特
長がある。つぎに溶融合金を適当な形および大きさの鋳
型に注入して健全な鋳塊を得る。その後そのままかある
いは800℃以下の高温で加工して適当な形状のもの、例
えば棒あるいは板を造る。さらにこれをスエージング、
伸線、圧延あるいは押潰し等の方法によって冷間加工を
施し目的の形状のもの、例えば細線あるいは薄板にす
る。最後に電気的特性の安定化および軟化を図るために
非酸化性雰囲気中あるいは真空中で200〜800℃の温度に
2秒以上100時間以下加熱保持後、5〜300℃/hの速度で
冷却し焼鈍を行う。この焼鈍処理は、合金素材のインナ
ーガスや表面の汚れなどが抜け出るので溶接性、ロー付
け性や絶縁物に対するぬれ性が良好となるばかりでな
く、素材が軟化して可撓性も向上するので応用上極めて
有効である。
In the present invention, firstly, 0.01 to 10% of cobalt and 0.01 to 8% of iron.
% And the balance of gold are melted in air or vacuum, preferably in a non-oxidizing atmosphere, using a suitable melting furnace, and then sufficiently stirred to produce a homogeneous molten alloy. In this case, if a gold-iron mother alloy or a gold-cobalt mother alloy prepared in advance is used, the adjustment of the alloy composition becomes extremely easy. In addition, since the melting point of the alloy of the present invention is 1055 ° C. or less, an ordinary wire-type electric furnace or a city gas furnace can be used in the melting operation, so that the handling is very easy. Next, the molten alloy is poured into a mold having an appropriate shape and size to obtain a sound ingot. Thereafter, it is processed as it is or at a high temperature of 800 ° C. or less to produce a rod having an appropriate shape, for example, a rod or a plate. Swaging this further,
Cold working is performed by a method such as drawing, rolling or crushing to obtain a target shape, for example, a thin wire or a thin plate. Finally, in order to stabilize and soften the electrical characteristics, heat and maintain at a temperature of 200 to 800 ° C for 2 seconds to 100 hours in a non-oxidizing atmosphere or vacuum, and then cool at a rate of 5 to 300 ° C / h. Perform annealing. This annealing treatment not only improves the weldability, brazing properties and wettability to insulators because the inner gas and surface dirt of the alloy material escape, and also improves the flexibility by softening the material. It is extremely effective in application.

上述した方法によって得られた合金素材を高安定性抵
抗体あるいは渦電流式変位センサに用いる場合、電気絶
縁物質の被着には種々な方法が考えられるが、以下には
その代表的な工程について説明する。
When the alloy material obtained by the above-described method is used for a highly stable resistor or an eddy current type displacement sensor, various methods are conceivable for applying an electric insulating material. explain.

(A)本発明合金素材例えば線材あるいは板材等のまま
絶縁体に直接巻きつけ、その表面に無機質または有機質
のいずれかの電気絶縁物を塗布乾燥するか、あるいは前
記合金素材を所望の形状、例えばスパイラルあるいはト
ロイダルに成形し、これをそのままの状態で前記絶縁体
に埋め込むか、あるいは絶縁体に接着剤で直接貼付する
か、またあるいは2枚の絶縁体で挟む等の方法により固
定する。
(A) The alloy material of the present invention, such as a wire or a plate, is directly wound around an insulator, and the surface thereof is coated with an inorganic or organic electrical insulator and dried, or the alloy material is formed into a desired shape, for example, It is formed into a spiral or toroidal shape and embedded in the insulator as it is, or is directly attached to the insulator with an adhesive, or is fixed by a method such as being sandwiched between two insulators.

(B)本発明合金を電気絶縁体表面に電着、蒸着、プレ
ーティングあるいはスパッタリング等の適当な方法によ
り薄膜状に被着形成した後、所望のパターンにエッチン
グ打抜きあるいはトリミング加工等により所望のパター
ンとなし必要ならばさらにこれをそのままの状態で別の
絶縁体に固定するか、または絶縁体内に埋め込むか、若
しくは合金薄膜の表面に絶縁体を塗布あるいはコーティ
ング処理を行う。
(B) After forming the alloy of the present invention on a surface of an electric insulator in the form of a thin film by an appropriate method such as electrodeposition, vapor deposition, plating, or sputtering, a desired pattern is formed by punching, trimming, or the like into a desired pattern. If necessary, this is fixed to another insulator as it is, embedded in the insulator, or the insulator is applied or coated on the surface of the alloy thin film.

以上のような工程により製造した成品をそのままで使
用してもよいが、必要ならば成品の安定化のために再び
前述の焼鈍処理を施せば本発明合金自体と同じ特性を発
揮する高安定性抵抗体あるいは渦電流式変位センサの製
造が可能となる。
The product manufactured by the above process may be used as it is, but if necessary, if the above-mentioned annealing treatment is performed again for stabilization of the product, the same stability as the alloy of the present invention itself is exhibited. It becomes possible to manufacture a resistor or an eddy current displacement sensor.

(実施例) つぎに本発明の実施例について述べる。(Example) Next, an example of the present invention will be described.

実施例1 合金番号No.GCF−10(合金組成Au=95%、Co=2.5%、F
e=2.5%) 原料としては純度99.99%以上の金、純度99.8%以上
のコバルトおよび純度99.9%以上の鉄を用いた。試料を
造るには金重量10gの原料を高純度アルミナ坩堝(SSA−
H,#2)に入れ酸化を防ぐために高純度アルゴンガスを
吹きつけながらタンマン炉によって溶解し、よく撹拌し
て均質な溶融合金とした。ついで融点より約100℃高い
温度1080℃において、内径3.5mmφのシリカパイプ中に
素早く吸い上げ丸棒とした。この後スエージングマシン
および伸線機により減面率〔(A′−A)/A)×100〕
が10〜99%の範囲で冷間加工して線径0.5mmφの細線を
得た。ここでA′およびAはそれぞれ加工以后および加
工以前の断面積である。この細線から長さ105mmに切り
取り、冷間加工のままかあるいは200〜800℃の種々の温
度で2秒〜100時間の種々の時間で加熱を行い室温まで
徐冷する焼鈍を行い電気抵抗測定用試料とした。またこ
れとは別に線径0.5mmの細線をさらに精密冷間圧延機に
より厚さ0.28mmおよび厚さ0.22mmの2種類のリボン状薄
板を作製した。つぎにこれら厚さの異なるリボン状薄板
を重ねてトロイダル状に20〜50回巻いた後、再結晶化温
度よりやや高い350〜400℃で30分間加熱してくせ付けを
施した。その後厚さ0.22mmのリボン状コイルを抜きと
り、残ったもう一方の厚さ0.28mmのトロイダル状センサ
コイルをポリイミド樹脂中に浸漬して、乾燥固着した後
さらにセンサコイル表面の樹脂を研削して平滑となし、
セラミック製ケース内に装填し、ついで電極に同軸ケー
ブルをハンダ付けして渦電流式変位センサを作製した。
まず前述の電気抵抗の測定は室温〜800℃の温度範囲で
真空中において180℃/hの加熱および冷却速度で連続的
に行った。第1図は本発明合金の測定結果を示したもの
である。図からもわかるように焼鈍状態の比電気抵抗ρ
は加工状態のそれより小さく、しかも温度Tに対する変
化も少ない。また焼鈍状態のρ−T特性曲線の場合、加
熱と冷却を繰り返しても同じ曲線をたどるが、加工状態
の場合では加熱途中の温度T1から冷却するとa点に達し
ρは減少する。そして再びa点から加熱しても元の経路
をたどらずT1より高い温度T2において加工状態の曲線に
一致する。しかし上述の不安定な現象は200℃以上の中
程度の温度において数十時間〜数日間の長期間保持する
ことによってρが減少して安定する。ただし加工状態の
材料の場合でも100℃以下の比較的低い温度においては
上述の不安定な現象はほとんどみられないが、ρが大き
いために応用上使用できない。
Example 1 Alloy No. GCF-10 (alloy composition Au = 95%, Co = 2.5%, F
e = 2.5%) As raw materials, gold with a purity of 99.99% or more, cobalt with a purity of 99.8% or more, and iron with a purity of 99.9% or more were used. To prepare a sample, a 10g gold material was added to a high-purity alumina crucible (SSA-
H, # 2) and melted by a Tamman furnace while blowing high-purity argon gas to prevent oxidation, and stirred well to obtain a homogeneous molten alloy. Next, at a temperature of 1080 ° C., which is about 100 ° C. higher than the melting point, a round rod was quickly drawn into a silica pipe having an inner diameter of 3.5 mmφ. Thereafter, the area reduction rate is determined by a swaging machine and a wire drawing machine [(A'-A) / A) × 100.
Was cold-worked in the range of 10 to 99% to obtain a fine wire having a wire diameter of 0.5 mmφ. Here, A 'and A are the cross-sectional areas after and before processing, respectively. Cut to a length of 105 mm from this fine wire, and as it is cold-worked or heated at various temperatures of 200 to 800 ° C for various times of 2 seconds to 100 hours and gradually cooled down to room temperature, annealing for electrical resistance measurement A sample was used. Separately, two types of ribbon-like thin plates having a thickness of 0.28 mm and a thickness of 0.22 mm were prepared from a fine wire having a wire diameter of 0.5 mm by a precision cold rolling mill. Next, these ribbon-shaped thin plates having different thicknesses were stacked and wound in a toroidal shape 20 to 50 times, and then heated at 350 to 400 ° C., which was slightly higher than the recrystallization temperature, for 30 minutes to give a habit. Then, the ribbon-shaped coil with a thickness of 0.22 mm was pulled out, and the other 0.28 mm-thick toroidal sensor coil was immersed in polyimide resin, dried and fixed, and then the resin on the sensor coil surface was further ground. Smooth and none,
The eddy current type displacement sensor was manufactured by mounting in a ceramic case and then soldering a coaxial cable to the electrodes.
First, the above-mentioned measurement of the electric resistance was performed continuously at a heating and cooling rate of 180 ° C./h in a vacuum in a temperature range from room temperature to 800 ° C. FIG. 1 shows the measurement results of the alloy of the present invention. As can be seen from the figure, the specific electrical resistance ρ in the annealed state
Is smaller than that of the processing state, and the change with respect to the temperature T is small. In the case of [rho-T characteristic curve of the annealed condition, but it follows the same curve even after repeated heating and cooling, in the case of machining state [rho decreases reaching a point when cooling from the temperature T 1 of the middle heating. And again it matches the curve of the machining state at temperature T 2 higher than T 1 not follow the original path be heated from a point. However, the above-mentioned unstable phenomenon is stabilized by reducing ρ by maintaining the medium at a medium temperature of 200 ° C. or more for several tens of hours to several days. However, even in the case of a material in a processed state, at a relatively low temperature of 100 ° C. or less, the above-mentioned unstable phenomenon is hardly observed, but it cannot be used for application due to a large ρ.

第2図は第1図における0〜100℃間のρ−T特性曲
線から求めた0℃における比電気抵抗ρおよび比電気
抵抗の平均温度係数 と焼鈍温度との関係を示したものである。図からわかる
ようにρおよびCfは焼鈍温度の増加とともに両者とも
減少する。従って冷間加工の場合より焼鈍処理を行った
場合の特性が優れていることを示している。尚800℃で
1時間加熱後徐冷した合金試料の0℃における比電気抵
抗は63.0μΩ・cm、0〜100℃間の比電気抵抗の平均温
度係数は140ppm/℃、融点は1025℃ならびにビッカース
硬さは50であった。また本発明合金を使用した渦電流式
変位センサについては、コイル径が温度とともに若干変
化するとによってコイルのインピーダンスの温度係数と
合金の電気抵抗の温度係数がほぼ相殺され、本発明合金
の優れた特性が十分に発揮されることが認められた。
FIG. 2 shows the specific electric resistance ρ 0 at 0 ° C. and the average temperature coefficient of the specific electric resistance obtained from the ρ-T characteristic curve between 0 and 100 ° C. in FIG. And the relationship between the temperature and the annealing temperature. As can be seen, both ρ 0 and C f decrease with increasing annealing temperature. Therefore, it shows that the characteristics in the case of performing the annealing treatment are better than those in the case of the cold working. The specific electrical resistance at 0 ° C of the alloy sample heated at 800 ° C for 1 hour and then slowly cooled was 63.0μΩ · cm, the average temperature coefficient of the specific electrical resistance between 0 and 100 ° C was 140ppm / ° C, the melting point was 1025 ° C and Vickers. Hardness was 50. Also, for the eddy current displacement sensor using the alloy of the present invention, the temperature coefficient of the coil impedance and the temperature coefficient of the electrical resistance of the alloy are almost offset by the coil diameter slightly changing with the temperature, and the excellent characteristics of the alloy of the present invention Was fully demonstrated.

実施例2 合金番号No.GCF−6(合金組成Au=98.0%、Fe=2.0
%) 製造原料は実施例1と同じ焼鈍の金および鉄を用い
た。試料の製造方法は実施例1と同じ工程で行った。ま
たこれとは別に原料の適量、例えば金および鉄のそれぞ
れ5gおよび1gを原料毎にアルミナ坩堝に入れ10-6Torrの
真空中においてイオンプレーティング法によって薄いア
ルミナ基板表面に本発明合金の組成配合となるように制
御して薄膜を被着させた。その後被膜表面をグリッド状
にレーザートリミング加工を施して約5×10mmの大きさ
となし真空中800℃で1時間焼成した。ついでこれに電
極2個を取り付け全体を樹脂でモールドして抵抗体素子
を作製した。本発明合金試料のρ−T特性曲線を第3図
に示しておいた。その結果は実施例1の場合と類似して
いるが、比電気抵抗値は約40μΩ・cmで実施例1の場合
に比べて25μΩ・cm以上も小さい。また第3図のρ−T
特性曲線から求めたρあるいはCfと焼鈍温度との関係
を第4図に示す。図にみるようにρの変化は実施例1
の場合と類似しているが、Cfの変化は実施例1の場合と
異なり、焼鈍温度が高くなるにしたがい増加してゆき50
0ppm/℃の一定値となる。尚800℃で1時間加熱後徐冷し
た場合の0℃における比電気抵抗は37.5μΩ・cm、0〜
100℃間の比電気抵抗の平均温度係数は294ppm/℃、融点
は1055℃ならびにビッカース硬さは55であった。また抵
抗体素子の電気抵抗は1kΩで、その他の電気的特性は合
金組成のそれとほとんど同じ結果が得られた。
Example 2 Alloy No. GCF-6 (alloy composition Au = 98.0%, Fe = 2.0
%) As the production raw materials, the same annealed gold and iron as in Example 1 were used. The sample was manufactured in the same steps as in Example 1. Separately, an appropriate amount of the raw materials, for example, 5 g and 1 g of gold and iron, respectively, are put into an alumina crucible for each raw material, and the composition of the alloy of the present invention is mixed with a thin alumina substrate surface by an ion plating method in a vacuum of 10 -6 Torr. The thin film was deposited by controlling so as to be as follows. Thereafter, the surface of the coating film was subjected to laser trimming in a grid shape, and was made into a size of about 5 × 10 mm and baked at 800 ° C. for 1 hour in a vacuum. Next, two electrodes were attached thereto, and the whole was molded with resin to produce a resistor element. FIG. 3 shows the ρ-T characteristic curve of the alloy sample of the present invention. The result is similar to that of the first embodiment, but the specific electric resistance is about 40 μΩ · cm, which is smaller than that of the first embodiment by 25 μΩ · cm or more. Also, ρ-T in FIG.
FIG. 4 shows the relationship between ρ 0 or C f obtained from the characteristic curve and the annealing temperature. Changes in the [rho 0 As seen in FIG Example 1
However, the change of C f is different from that of the first embodiment, and increases as the annealing temperature increases.
It is a constant value of 0 ppm / ° C. The specific electrical resistance at 0 ° C. when heated at 800 ° C. for 1 hour and then slowly cooled was 37.5 μΩ · cm,
The average temperature coefficient of the specific electrical resistance between 100 ° C. was 294 ppm / ° C., the melting point was 1055 ° C., and the Vickers hardness was 55. The electrical resistance of the resistor element was 1 kΩ, and other electrical characteristics were almost the same as those of the alloy composition.

実施例3 合金番号No.GCF−4(合金組成Au=98.5%、コバルト=
1.5%) 製造原料は実施例1と同じ純度の金およびコバルトを
用いた。試料の製造方法は実施例1と同じ工程で行っ
た。試料のρ−T特性曲線およびρあるいはCfと焼鈍
温度との関係はそれぞれ第5図および第6図である。ρ
−T特性曲線は第1図あるいは第3図のそれとかなり異
っているのがわかる。すなわち加工状態の約300℃以上
および焼鈍状態の約400℃以上の温度において、それぞ
れ極小および加熱と冷却曲線のヒステリシスが観察され
る。つぎに第6図では、ρは実施例1第2図の場合に
より低い温度500℃において極小値11μΩ・cmを、またC
fは約120℃以下の温度において負値を示す。すなわち20
0℃以上の焼鈍温度ではρが小さくCfも400ppm/℃以下
の優れた特性が得られることがわかる。
Example 3 Alloy No. GCF-4 (alloy composition Au = 98.5%, cobalt =
1.5%) As production materials, gold and cobalt having the same purity as in Example 1 were used. The sample was manufactured in the same steps as in Example 1. Relationship between [rho-T characteristic curve and [rho 0 or C f of the sample and the annealing temperature is FIG. 5 and FIG. 6 respectively. ρ
It can be seen that the -T characteristic curve is quite different from that of FIG. 1 or FIG. That is, at the temperature of about 300 ° C. or more in the processed state and about 400 ° C. or more in the annealed state, the minimum and the hysteresis of the heating and cooling curves are observed, respectively. Next, in FIG. 6, ρ 0 has a minimum value of 11 μΩ · cm at a lower temperature of 500 ° C. than in the case of FIG.
f shows a negative value at a temperature of about 120 ° C. or less. Ie 20
It can be seen that at an annealing temperature of 0 ° C. or higher, ρ 0 is small and excellent characteristics of C f of 400 ppm / ° C. or lower can be obtained.

第7図には800℃で1時間加熱後徐冷したAu−0〜15
%Co−0〜10%Fe3元合金について電気抵抗の平均温度
係数Cfの等値曲線が示してある。Cfが1000ppm/℃以下を
示す合金組成は、図において点A(Au:Co:Fe=99.19:0.
8:0.01)、点B(Au:Co:Fe=99.19:0.01:0.8)、点C
(Au:Co:Fe=91.99:0.01:8)、点D(Au:Co:Fe=86:6:
8)、点E(Au:Co:Fe=86:10:4)および点F(Au:Co:Fe
=89.99:10.0:0.01)を結ぶ点線の内側であることがわ
かる。
FIG. 7 shows Au-0 to 15 which were slowly cooled after heating at 800 ° C. for 1 hour.
% For Co-0% Fe @ 3-way alloy equality curves of the mean temperature coefficient C f of the electrical resistance are shown. The alloy composition having a C f of 1000 ppm / ° C. or less is indicated by a point A (Au: Co: Fe = 99.19: 0.
8: 0.01), point B (Au: Co: Fe = 99.19: 0.01: 0.8), point C
(Au: Co: Fe = 91.99: 0.01: 8), point D (Au: Co: Fe = 86: 6:
8), point E (Au: Co: Fe = 86: 10: 4) and point F (Au: Co: Fe)
= 89.99: 10.0: 0.01).

またCfが200ppm/℃以下の値は点A′、B′、C′、
D′、E′およびF′の範囲内の組成、すなわちAuが9
0.4〜97.5%、Coが0.1〜5・6%およびFeが0.1〜5・
3%の合金において得られることがわかる。第8図には
第7図と同様の処理を施したAu−Co−Fe3元合金の比電
気抵抗ρの等値曲線を示す。さらに第9図には第7図
および第8図と同じ組成範囲のAu−Co−Fe3元合金の融
点Tmを示す。さらに第10図にはAu−Co−Fe3元合金の組
成比 Fe:Co=1:1における第7図のCf、第8図のρおよび
第9図のTmを〔Co+Fe〕量に対して示してある。この図
から〔Co+Fe〕量が2〜13.7%の広い組成範囲において
Cfが1000ppm/℃以下、ρが92μΩ・cm以下およびTm
1055℃以下の値が得られることがわかる。
The C f is 200 ppm / ° C. The following values are the points A ', B', C ' ,
The composition within the range of D ', E' and F ', that is, Au is 9
0.4-97.5%, Co 0.1-5.6% and Fe 0.1-5.
It can be seen that a 3% alloy is obtained. FIG. 8 shows an equivalent curve of the specific electric resistance ρ 0 of the Au—Co—Fe ternary alloy subjected to the same treatment as in FIG. Further in FIG. 9 shows a melting point T m of a Au-Co-Fe3 binary alloy having the same composition range as the FIGS. 7 and 8. Further, FIG. 10 shows that the composition ratio of the Au—Co—Fe ternary alloy, C f , FIG. 8 ρ 0, and T m of FIG. Is shown. From this figure, it can be seen that in a wide composition range where the [Co + Fe] amount is 2 to 13.7%.
C f is 1000 ppm / ° C or less, ρ 0 is 92 μΩ · cm or less, and T m is
It can be seen that a value of 1055 ° C. or less is obtained.

上述の実施例の他に多くの合金についても実験を行っ
たが、第1表には代表的な合金試料の電気的特性、融
点、ビッカース硬さならびに可撓性を示す。
Experiments were also conducted on a number of alloys in addition to the examples described above. Table 1 shows the electrical properties, melting points, Vickers hardness and flexibility of typical alloy samples.

以上実施例1〜実施例3および第1表からわかるよう
に、Co0.01〜10%、Fe0.01〜8%および残部Auと少量の
不純物からなる合金は、電気抵抗の温度係数が1000ppm/
℃以下、融点が1055℃以下の優れた特性を有しており、
さらに第7図および第10図にみるように電気抵抗の温度
係数が200ppm/℃以下の小さい値が広い組成範囲にわた
って得られる特長がある。また本発明合金のビッカース
硬さは100以下でしかも可撓性が極めて良好であるの
で、これを応用した高安定性抵抗体および渦電流式変位
センサの製作が極めて容易となりしかも熱エージングに
よる電気的特性の変化が少なくなり本発明合金の優秀な
特性が十分に発揮できる。
As can be seen from Examples 1 to 3 and Table 1, the alloy composed of 0.01 to 10% of Co, 0.01 to 8% of Fe and the balance of Au and a small amount of impurities has a temperature coefficient of electric resistance of 1000 ppm /
℃ or less, melting point 1055 ℃ or less has excellent properties,
Further, as shown in FIGS. 7 and 10, there is a feature that a small temperature coefficient of electric resistance of 200 ppm / ° C. or less can be obtained over a wide composition range. Also, since the Vickers hardness of the alloy of the present invention is 100 or less and the flexibility is extremely good, it is extremely easy to manufacture a high-stability resistor and an eddy current type displacement sensor to which the alloy is applied. The change in characteristics is small, and the excellent characteristics of the alloy of the present invention can be sufficiently exhibited.

つぎに本発明合金の組成および熱処理温度を限定した
理由について述べる。
Next, the reasons for limiting the composition and heat treatment temperature of the alloy of the present invention will be described.

まず本発明合金の組成範囲についてコバルトを0.01〜
10%および鉄を0.01〜8%に限定した理由は、各実施
例、第7図、第9図および第10図からも明らかなよう
に、電気抵抗の温度係数が1000ppm/℃以下および融点が
1055℃以下の特性を示すが、組成がこの範囲を超えると
上記の値より大きくなり、本発明の目的である高安定性
電気抵抗体あるいは渦電流式変位センサ用合金としては
不適当となるからである。また本発明合金の熱処理の温
度範囲を200〜800℃に限定した理由は、この温度範囲内
では本発明合金の全組成において加熱時間を2秒〜100
時間で保持後徐冷することによって電気抵抗の温度係数
が1000ppm/℃以下の特性を有し、しかも実施例1〜実施
例3からもわかるように加熱と冷却を繰り返しても電気
抵抗の経時変化が少なくなり安定化するばかりでなく合
金素材が軟化して可撓性も良好となる。しかし200℃以
下では電気抵抗が熱的に不安定となりしかも加工硬化に
よる可撓性が悪くまた800℃以上では合金素材間の接触
による融着を起したり極端な軟化による変形を生じさせ
るため高安定性抵抗体あるいは渦電流式変位センサ用合
金の製造法として不適当となるからである。
First, for the composition range of the alloy of the present invention, cobalt is 0.01 to
The reason why 10% and iron were limited to 0.01 to 8% is that, as is clear from each embodiment, FIGS. 7, 9 and 10, the temperature coefficient of electric resistance is 1000 ppm / ° C. or less and the melting point is
Although it shows characteristics of 1055 ° C or less, if the composition exceeds this range, it will be larger than the above value, and it will be unsuitable as a highly stable electric resistor or an alloy for eddy current type displacement sensors which is the object of the present invention. It is. The reason for limiting the temperature range of the heat treatment of the alloy of the present invention to 200 to 800 ° C. is that within this temperature range, the heating time is set to 2 seconds to 100 for all the compositions of the alloy of the present invention.
The temperature coefficient of electric resistance is 1000 ppm / ° C or less by slow cooling after holding for a time, and as can be seen from Examples 1 to 3, change in electric resistance with time even if heating and cooling are repeated. Not only stabilizes, but also the alloy material is softened and the flexibility is improved. However, when the temperature is lower than 200 ° C, the electrical resistance becomes thermally unstable, and the flexibility due to work hardening is poor. When the temperature is higher than 800 ° C, fusion occurs due to contact between alloy materials and deformation due to extreme softening occurs. This is because this method is unsuitable as a method for manufacturing a stable resistor or an alloy for an eddy current displacement sensor.

(発明の効果) 以上実施例1〜実施例3に述べたように本発明合金は
いずれの場合も温度に対する電気抵抗の変化が頗る小さ
い。特に実施例1の合金番号GCF−10の電気抵抗の温度
係数は140ppm/℃で純金属のCu、AgやAuなどのそれに比
べて約1/30またCu−10%Ni合金の約1/3も小さく、また
純金属の可撓性に比べて遜色がないため電気抵抗体ある
いは渦電流式変位センサの熱的安定性が向上し経時変化
も少なくなり巻線作業工程が比較的容易となることが期
待できる。尚また本発明合金の融点が純AuやCu−10%Ni
合金などに比べて低いので特殊な溶解設備を使用する必
要がなくしかも省エネルギー的効果がある。
(Effects of the Invention) As described above in Examples 1 to 3, the alloy of the present invention has a very small change in electric resistance with respect to temperature in each case. Particularly, the temperature coefficient of electric resistance of the alloy number GCF-10 of Example 1 is 140 ppm / ° C., which is about 1/30 of that of pure metals such as Cu, Ag and Au, and about 1/3 of that of Cu-10% Ni alloy. The thermal stability of the electric resistor or the eddy current displacement sensor is improved and the change over time is reduced, making the winding process relatively easy. Can be expected. The melting point of the alloy of the present invention is pure Au or Cu-10% Ni.
Since it is lower than alloys, there is no need to use special melting equipment, and there is an energy saving effect.

要するに本発明のAu−Co−Fe合金は電気抵抗の温度係
数が1000ppm/℃以下および融点が1055℃以下の優れた特
長を有するだけでなく合金素材の可撓性が純Auのそれに
比べても遜色がないので、例えば従来渦電流式変位セン
サコイルに実用されている純Cuや純Agの代替材料として
だけでなく電子機器関連のリードワイヤやボンディング
ワイヤとしても、本発明合金が有する優れた特性をより
一層発揮することが可能である工業上大なる利益があ
る。
In short, the Au-Co-Fe alloy of the present invention has not only the excellent temperature coefficient of electric resistance of 1000 ppm / ° C or less and the melting point of 1055 ° C or less, but also the flexibility of the alloy material as compared with that of pure Au. The superior properties of the alloy of the present invention are not inferior, for example, not only as a substitute material of pure Cu and pure Ag that has been conventionally used for eddy current displacement sensor coils, but also as a lead wire and bonding wire for electronic equipment. Has a great industrial advantage that can be further exerted.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第3図および第5図は加工状態あるいは焼鈍状
態のそれぞれの合金番号GCF−10、GCF−6およびGCF−
4の電気抵抗−温度曲線を示す特性図、 第2図、第4図および第6図は種々の温度で1時間加熱
後焼鈍した場合のそれぞれの合金番号GCF−10、GCF−6
およびGCF−4の比電気抵抗あるいは比電気抵抗の温度
係数と焼鈍温度との関係を示す特性図、 第7図は800℃で焼鈍した金−コバルト−鉄3元系合金
の0〜100℃における電気抵抗の平均温度係数を示す特
性図、 第8図は800℃で焼鈍した金−コバルト−鉄3元系合金
の0℃における比電気抵抗を示す特性図、 第9図は金−コバルト−鉄3元系合金の融点の特性図お
よび 第10図は第7図、第8図および第9図の組成比Fe:Co=
1:1におけるそれぞれの電気抵抗の平均温度係数、比電
気抵抗および融点との〔Co+Fe〕量との関係を示す特性
図である。
1, 3 and 5 show the alloy numbers GCF-10, GCF-6 and GCF-
2, 4 and 6 show the electrical resistance-temperature curves of No. 4, respectively, and show the alloy numbers GCF-10 and GCF-6 when annealed after heating at various temperatures for 1 hour.
FIG. 7 is a characteristic diagram showing the relationship between the specific electric resistance or the temperature coefficient of specific electric resistance of GCF-4 and the annealing temperature, and FIG. 7 shows a gold-cobalt-iron ternary alloy annealed at 800 ° C. at 0 to 100 ° C. FIG. 8 is a characteristic diagram showing an average temperature coefficient of electric resistance, FIG. 8 is a characteristic diagram showing a specific electric resistance at 0 ° C. of a gold-cobalt-iron ternary alloy annealed at 800 ° C., and FIG. 9 is gold-cobalt-iron. FIG. 10 is a characteristic diagram of the melting point of the ternary alloy, and FIG. 10 is a composition ratio of Fe: Co = FIG. 7, FIG. 8 and FIG.
FIG. 3 is a characteristic diagram showing the relationship between the average temperature coefficient, the specific electric resistance, and the melting point of each electric resistance at 1: 1 and the amount of [Co + Fe].

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01C 7/00 H01C 7/00 D 17/00 17/00 Z 17/06 17/06 M ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H01C 7/00 H01C 7/00 D 17/00 17/00 Z 17/06 17/06 M

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%にてコバルト0.01〜10%、鉄0.01〜
8%および残部が実質的に金の組成と、少量の不純物か
らなり、比電気抵抗の温度係数が1000ppm/℃以下および
融点が1055℃以下であることを特徴とする電気抵抗合
金。
(1) Cobalt 0.01 to 10% by weight, iron 0.01 to 10% by weight
An electric resistance alloy comprising 8% and a balance substantially composed of gold and a small amount of impurities, having a temperature coefficient of specific electric resistance of 1000 ppm / ° C. or less and a melting point of 1055 ° C. or less.
【請求項2】重量%にてコバルト0.1〜5.6%、鉄0.1〜
5.3%および残部が実質的に金の組成と、少量の不純物
からなり比電気抵抗の温度係数が200ppm/℃以下および
融点が1050℃以下である特許請求の範囲第1項記載の電
気抵抗合金。
2. Cobalt 0.1-5.6% by weight, iron 0.1-% by weight%
2. The electric resistance alloy according to claim 1, wherein 5.3% and the balance substantially consist of gold and a small amount of impurities, and have a temperature coefficient of specific electric resistance of 200 ppm / ° C. or less and a melting point of 1050 ° C. or less.
【請求項3】重量%にてコバルト0.01〜10%、鉄0.01〜
8%および残部が実質的に金の組成と、少量の不純物か
らなる合金を鋳造及び鍛造後熱間加工あるいは冷間加工
により線材または板材より選ばれた所望の形状となし、
非酸化性雰囲気中または真空中において200〜800℃で2
秒以上100時間以下加熱することを特徴とする電気抵抗
合金の製造法。
3. Cobalt 0.01 to 10% by weight, iron 0.01 to 10% by weight
8% and a balance substantially consisting of gold, and casting and forging an alloy consisting of a small amount of impurities into a desired shape selected from a wire or a sheet by hot working or cold working;
2 at 200-800 ° C in non-oxidizing atmosphere or vacuum
A method for producing an electric resistance alloy, comprising heating for at least one second and at most 100 hours.
【請求項4】重量%にてコバルト0.01〜10%、鉄0.01〜
8%および残部が実質的に金の組成と、少量の不純物か
らなる電気抵抗合金の素材をスパイラル状またはトロイ
ダル状より選ばれた所望の形に成形し、これをそのまま
の状態で無機質あるいは有機質の電気絶縁体に固定する
かまたは該絶縁体内に埋め込むことにより温度に対する
電気抵抗の変化が少なく、比電気抵抗の温度係数が1000
ppm/℃以下および融点が1055℃以下である高安定性電気
抵抗体を得ることを特徴とする渦電流式変位センサの製
造法。
4. Cobalt 0.01 to 10% by weight, iron 0.01 to 10% by weight
An electric resistance alloy material having a composition of 8% and the balance substantially consisting of gold and a small amount of impurities is formed into a desired shape selected from a spiral shape or a toroidal shape, and the material is formed into an inorganic or organic material as it is. By fixing to an electrical insulator or embedded in the insulator, the change in electrical resistance with respect to temperature is small, and the temperature coefficient of specific electrical resistance is 1000
A method for manufacturing an eddy current displacement sensor, characterized in that a highly stable electric resistor having a ppm / ° C or lower and a melting point of 1055 ° C or lower is obtained.
【請求項5】重量%にてコバルト0.01〜10%、鉄0.01〜
8%および残部が実質的に金の組成と、少量の不純物か
らなる電気抵抗合金を、電気絶縁体表面に電着、蒸着ま
たはスパッタリングの何れかの方法により薄膜として被
着した後、エッチング打抜きまたはトリミング加工によ
り所望のパターンとなし、これを別の電気絶縁体に固定
するかあるいは該絶縁体内に埋め込むか、若しくは合金
薄膜の表面に絶縁体を塗布あるいはコーティング処理を
行い、絶縁体ケース内に装填することにより温度に対す
る電気抵抗の変化が少なく、比電気抵抗の温度係数が10
00ppm/℃以下および融点が1055℃以下である高安定性抵
抗体を得ることを特徴とする渦電流式変位センサの製造
法。
5. Cobalt 0.01 to 10% by weight and iron 0.01 to 10% by weight.
An electric resistance alloy consisting of 8% and the balance substantially consisting of gold and a small amount of impurities is applied as a thin film on the surface of an electric insulator by electrodeposition, vapor deposition or sputtering, followed by etching blanking or A desired pattern is formed by trimming, and this is fixed to another electrical insulator, embedded in the insulator, or the insulator is applied or coated on the surface of the alloy thin film, and is loaded into the insulator case. By doing so, the change in electrical resistance with temperature is small, and the temperature coefficient of specific electrical resistance is 10
A method for manufacturing an eddy current displacement sensor, characterized by obtaining a highly stable resistor having a melting point of not more than 00 ppm / ° C and a melting point of not more than 1055 ° C.
【請求項6】重量%にてコバルト0.01〜10%、鉄0.01〜
8%および残部が実質的に金の組成と、少量の不純物か
らなり、比電気抵抗の温度係数が1000ppm/℃以下および
融点が1055℃以下である電気抵抗合金を用いた渦電流式
変位センサ。
6. Cobalt 0.01 to 10% by weight, iron 0.01 to 10% by weight.
An eddy current type displacement sensor using an electric resistance alloy having a temperature coefficient of specific electric resistance of 1000 ppm / ° C. or less and a melting point of 1055 ° C. or less, which is composed of 8% and the balance substantially composed of gold and a small amount of impurities.
JP62192567A 1987-08-03 1987-08-03 Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same Expired - Lifetime JP2659716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62192567A JP2659716B2 (en) 1987-08-03 1987-08-03 Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62192567A JP2659716B2 (en) 1987-08-03 1987-08-03 Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same

Publications (2)

Publication Number Publication Date
JPS6436736A JPS6436736A (en) 1989-02-07
JP2659716B2 true JP2659716B2 (en) 1997-09-30

Family

ID=16293431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62192567A Expired - Lifetime JP2659716B2 (en) 1987-08-03 1987-08-03 Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same

Country Status (1)

Country Link
JP (1) JP2659716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623921B2 (en) * 2002-09-13 2011-02-02 コーア株式会社 Resistive composition and resistor

Also Published As

Publication number Publication date
JPS6436736A (en) 1989-02-07

Similar Documents

Publication Publication Date Title
US4684416A (en) Alloy with small change of electric resistance over wide temperature range and method of producing the same
JP5354906B2 (en) Nickel-based semi-finished product having a cubic texture and its manufacturing method
JP2659716B2 (en) Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same
US5849113A (en) Electrical resistant alloy having a high temperature coefficient of resistance
WO2023276905A1 (en) Copper alloy material, resistive material for resistors using same, and resistor
WO2023276904A1 (en) Copper alloy material, and resistive material for resistor and resistor using same
JPH0427286B2 (en)
JPH02112192A (en) Foil heater
JPH08260077A (en) Electric resistance alloy having high resistance temperature, coefficient, its production and sensor device
JPH036974B2 (en)
JPH08277429A (en) Electric resistance alloy having high resistance temperature coefficient, its production and sensor device
WO2024135787A1 (en) Copper alloy material, resistive material including same for resistor, and resistor
JPS6244526A (en) Manufacture of alloy for sealing glass
JP7354481B1 (en) Copper alloy materials, resistor materials and resistors using copper alloy materials
JPH11195504A (en) Electrical resistance thin-film and manufacture thereof and sensor device
JPH06235034A (en) Silver base low resistance temperature coefficient alloy and its production
WO2023276906A1 (en) Copper alloy material, resistive material for resistor using same, and resistor
JPH0317895B2 (en)
KR20240026278A (en) Copper alloy materials, resistance materials and resistors for resistors using the same
JP4283954B2 (en) Constant temperature resistance alloy for high temperature and high pressure, its manufacturing method and sensor
EP1327694A1 (en) Electric resistance element and raw material for the same and method for preparing the same
JPH11193426A (en) Electric resistance alloy, its production and sensor device
JPH04288803A (en) Low frequency transformer
JPH10280069A (en) Electric resistance alloy having high resistance temperature coefficient, its production and sensor device
JPS61119637A (en) Temperature sensor element material, its production and temperature sensor