JP5354906B2 - Nickel-based semi-finished product having a cubic texture and its manufacturing method - Google Patents

Nickel-based semi-finished product having a cubic texture and its manufacturing method Download PDF

Info

Publication number
JP5354906B2
JP5354906B2 JP2007546060A JP2007546060A JP5354906B2 JP 5354906 B2 JP5354906 B2 JP 5354906B2 JP 2007546060 A JP2007546060 A JP 2007546060A JP 2007546060 A JP2007546060 A JP 2007546060A JP 5354906 B2 JP5354906 B2 JP 5354906B2
Authority
JP
Japan
Prior art keywords
nickel
cubic texture
finished product
semifinished product
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007546060A
Other languages
Japanese (ja)
Other versions
JP2008523252A (en
Inventor
アイケマイヤー イェルク
ゼルプマン ディートマー
ヴェントロック ホルスト
ホルツアプフェル ベルンハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Original Assignee
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV filed Critical Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Publication of JP2008523252A publication Critical patent/JP2008523252A/en
Application granted granted Critical
Publication of JP5354906B2 publication Critical patent/JP5354906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Abstract

The invention relates to a semifinished product based on nickel and having a cubic texture, and to a method for the production thereof. Said semifinished product enables an insulating nickel oxide layer with a high-grade cubic texture on the surface thereof to develop, said nickel oxide layer acting as a buffer layer between the base material and a coating to be subsequently applied, for example a supraconductor layer. The aim of the invention is to create a semifinished product based on nickel, without the disadvantages of prior art. The inventive semifinished product has a recrystallisation cubic texture and consists of technically pure nickel or nickel alloys with a metal addition from the third subgroup of the periodical table of the elements. A maximum of 600 atoms ppm and a minimum of 10 atoms ppm of the additive are contained in the material. The metallic additive can be preferably yttrium and/or Cer. According to an advantageous embodiment of the invention, a nickel oxide layer with a cubic texture is arranged on the material surface. In order to create the semifinished product, an alloy is produced according to fusion or powder metallurgy or by mechanical alloying, and said alloy is then processed by means of heat forming followed by high-grade cold forming with a >80 % reduction of the thickness in order to form a strip, film or flat wire. The material is then subjected to a recrystallising annealing process in order to obtain the cubic texture.

Description

本発明は、立方体集合組織を有するニッケルベースの半製品及びその製造方法に関する。この半製品は、高度な立方体集合組織を有する絶縁性酸化ニッケル層を、前記半製品の表面上に成長させるという可能性を提供し、前記層は、基礎材料と、後で施与されうるコーティング、例えば超伝導体層との間の緩衝層として作用する。   The present invention relates to a nickel-based semi-finished product having a cubic texture and a method for producing the same. This semi-finished product offers the possibility of growing an insulating nickel oxide layer with a high cubic texture on the surface of the semi-finished product, the layer comprising a base material and a coating that can be applied later For example, it acts as a buffer layer between the superconductor layers.

技術水準
面心立方格子を有する多結晶金属、例えばニッケル及び銅が、圧延による先行する強い冷間成形後に、その後の再結晶の際に立方体層(Wuerfellage)を有する特徴ある集合組織を形成しうることは知られている(G. Wassermann: Texturen metallischer Werkstoffe, Springer, Berlin, 1939)。このようにして集合組織化された金属テープ、特にニッケルテープは、金属被膜、セラミック緩衝層及びセラミック超伝導体層用の支持体(Unterlage)としても利用される(米国特許(US)第5,741,377号明細書)。その場合に、基体原料としてのそのような金属テープの適性は、集合組織の達成可能度及びコーティングプロセスが行われる温度の範囲内で集合組織の安定性に決定的に依存する。
State of the art Polycrystalline metals with face-centered cubic lattice, such as nickel and copper, can form a characteristic texture with a cubic layer (Wuerfellage) upon subsequent recrystallization after strong cold forming by rolling This is known (G. Wassermann: Texturen metallischer Werkstoffe, Springer, Berlin, 1939). The textured metal tape, in particular nickel tape, is also used as a support for metal coatings, ceramic buffer layers and ceramic superconductor layers (US Pat. No. 5,741,377). Specification). In that case, the suitability of such a metal tape as a substrate raw material depends critically on the texture achievability and the texture stability within the temperature range at which the coating process takes place.

Ni−Cr、Ni−Cr−V、Ni−Cu及び類似の合金からなり、高温超伝導体を製造するための立方体集合組織を有する半製品は、既に知られている(米国特許(US)第5,964,966号明細書;米国特許(US)第6,106,615号明細書)。しかしながら、これらのニッケル基合金は、前記合金表面上に、立方体集合組織を有するエピタキシャル酸化ニッケルを成長させるために適していない。同じことは工業用純度のニッケルにあてはまり、前記ニッケル中の化学的不純物が酸化物膜の成長において妨害を引き起こす。百分率範囲内のモリブデン又はタングステンで合金化されているニッケル(独国特許(DE-C1)第100 05 861号明細書)も、酸化ニッケルのエピタキシャル成長に適していない。   Semi-finished products made of Ni-Cr, Ni-Cr-V, Ni-Cu and similar alloys and having a cubic texture for producing high temperature superconductors are already known (US Pat. No. 5,964,966; U.S. Pat. No. 6,106,615). However, these nickel-based alloys are not suitable for growing epitaxial nickel oxide having a cubic texture on the alloy surface. The same applies to industrial purity nickel, where chemical impurities in the nickel cause interference in the growth of oxide films. Nickel alloyed with molybdenum or tungsten in the percentage range (DE-C1 100 05 861) is also not suitable for the epitaxial growth of nickel oxide.

公知の半製品は次の欠点を有する:
工業用純度を有するニッケルは、冷間成形及び再結晶焼きなまし後に、粗大な粒構造を形成する強い傾向があり、前記粒構造は高度な立方体集合組織の達成に不利である。そのうえ、ppm範囲内の不純物は、特に酸化ニッケル形成のより高い温度(850...1200℃)で、粒界溝を形成する強い傾向を引き起こす。粒界溝を有する基体材料は、エピタキシャル層堆積(例えば緩衝層、超伝導体層)用の支持体としてあまり適していない。Ni−Cr、Ni−Cr−V、Ni−Cu、Ni−Mo又はNi−Wからなり、より高度に合金化されたテープ中で、確かに高度な立方体集合組織が達成されることができるが、しかしNiOの膜成長は甚だしく妨げられるので、そのような合金は合金元素の妨害する影響に基づいて酸化の際に不十分にのみ二軸成長し、ひいてはエピタキシャル層堆積(例えば緩衝層、超伝導体層)用の基体材料としてあまり適していない。また、既に、立方体集合組織を有するNi酸化物を成長させる可能性を提供する、ミクロ合金範囲内でAg添加剤を有するNi原料も提案されていた(独国特許出願(DE) 103 42 965.4号)。しかしこの原料は比較的高価である。
Known semi-finished products have the following disadvantages:
Nickel with industrial purity has a strong tendency to form a coarse grain structure after cold forming and recrystallization annealing, which is disadvantageous for achieving a high cubic texture. Moreover, impurities in the ppm range cause a strong tendency to form grain boundary grooves, especially at the higher temperature of nickel oxide formation (850 ... 1200 ° C.). Substrate materials having grain boundary grooves are not well suited as supports for epitaxial layer deposition (eg, buffer layers, superconductor layers). In a more highly alloyed tape consisting of Ni-Cr, Ni-Cr-V, Ni-Cu, Ni-Mo or Ni-W, certainly a high cubic texture can be achieved. However, since the film growth of NiO is severely hindered, such alloys grow biaxially only during oxidation due to the disturbing effects of the alloying elements and thus epitaxial layer deposition (eg buffer layers, superconductivity) It is not very suitable as a base material for the body layer. In addition, a Ni raw material having an Ag additive in the range of microalloys has already been proposed which provides the possibility of growing Ni oxides having a cubic texture (German Patent Application (DE) 103 42 965.4). ). However, this raw material is relatively expensive.

発明の開示
本発明の課題は、技術水準の欠点が取り除かれているニッケルベースの半製品を作り出すことである。
DISCLOSURE OF THE INVENTION An object of the present invention is to create a nickel-based semi-finished product that eliminates the state of the art drawbacks.

この課題は、特許請求の範囲において特徴付けられた特徴を用いて解決される。   This problem is solved with the features characterized in the claims.

本発明による半製品は、再結晶立方体集合組織を有し、かつ元素の周期表の第3副族の金属の添加剤を有する工業用純度のニッケル又はニッケル合金からなる。その場合に、添加剤最大600原子ppm及び最小10原子ppmが原料中に含まれている。   The semi-finished product according to the invention consists of nickel or nickel alloy of industrial purity having a recrystallized cubic texture and having an additive of a metal of the third subgroup of the periodic table of elements. In that case, the additive contains a maximum of 600 atomic ppm and a minimum of 10 atomic ppm in the raw material.

金属添加剤は、好ましくはイットリウム及び/又はセリウムであってよい。   The metal additive may preferably be yttrium and / or cerium.

本発明の有利な一実施態様によれば、原料表面上に立方体集合組織を有する酸化ニッケル層が存在する。   According to one advantageous embodiment of the invention, there is a nickel oxide layer having a cubic texture on the raw material surface.

半製品の製造については、本発明によれば、まず最初に溶融冶金学的又は粉末冶金学的な経路で又は機械的な合金化により合金が製造され、かつこの合金が、その後の高度な冷間成形を伴う熱間成形を用いて、>80%の厚さ減少によりテープ、ホイル又はフラットワイヤーに加工されることが意図されている。最後に、前記原料は、立方体集合組織を達成するために再結晶焼きなましにかけられる。   For the production of semi-finished products, according to the invention, an alloy is first produced by the melt metallurgical or powder metallurgical route or by mechanical alloying, and this alloy is then subjected to a high degree of cooling. It is intended to be processed into tape, foil or flat wire with a thickness reduction of> 80% using hot forming with hot forming. Finally, the raw material is subjected to recrystallization annealing to achieve a cubic texture.

特に有利には、Niベース原料上に酸化雰囲気中で高度な立方体集合組織(>90%)を有する酸化ニッケル層が製造されることができる。   Particularly advantageously, a nickel oxide layer having a high cubic texture (> 90%) in an oxidizing atmosphere on a Ni-based raw material can be produced.

これは、ニッケルへの本発明による合金添加剤により可能になる。そのうえ、前記合金添加剤は、成長条件を改善する粉末度を生じさせる。   This is made possible by the alloy additive according to the invention to nickel. Moreover, the alloy additive produces a fineness that improves the growth conditions.

本発明による半製品は、工業用純度のニッケル及び前記ニッケルをベースとするその他の合金からなる半製品と比較して同価値の又はより良好な立方体集合組織を有し、かつ支持体として物理化学的なコーティングに、例えば層超伝導体に、使用可能である。前記半製品は、好ましくは、高度な立方体集合組織を有する絶縁性酸化ニッケル層を、前記半製品の表面上に成長させるという可能性を提供し、前記層は、基礎材料と、後で施与されうる超伝導体層との間の緩衝層として作用する。この酸化物層は大体において、集合組織化された基体の合金に制約されたより微細な粒構造を引き受け(uebernimmt)、かつそれにより酸化ニッケル成長のための明らかにより好都合な必要条件を得る。   The semi-finished product according to the present invention has a cubic texture equivalent to or better than that of semi-finished products made of industrial purity nickel and other alloys based on said nickel, and has a physical chemistry as support Can be used for typical coatings, for example, layer superconductors. The semi-finished product preferably offers the possibility of growing an insulating nickel oxide layer with a high degree of cubic texture on the surface of the semi-finished product, the layer being applied to the base material and later applied Acting as a buffer layer between the superconductor layers that can be made. This oxide layer generally assumes a finer grain structure constrained by the textured substrate alloy, and thereby obtains a clearly more favorable requirement for nickel oxide growth.

本発明は次に、実施例に基づいてより詳細に説明されている。   The invention will now be described in more detail on the basis of examples.

図の簡単な説明
図1は、以下の例2によるイットリウム添加剤を有するニッケル原料について上方で、EBSD(電子後方散乱回折)を用いて調べられた方位マッピングを示す。その中で、立方体方位に関する粒方位の頻度分布を有する帰属する図表が示されている。図1は、集合組織形成の際のイットリウムの有利な作用の証拠として役立つ。
BRIEF DESCRIPTION OF THE FIGURES FIG. 1 shows an orientation mapping investigated using EBSD (Electron Back Scattering Diffraction) above a nickel source with an yttrium additive according to Example 2 below. Among them, an attached chart having a frequency distribution of the grain orientation with respect to the cube orientation is shown. FIG. 1 serves as proof of the beneficial effects of yttrium during texture formation.

図2は、以下の例2によるイットリウム添加剤を有するニッケル原料について上方で、同様にEBSDを用いて調べられた、ニッケル原料上に存在している酸化ニッケル層の方位マッピングを示す。その中で、酸化ニッケル中の立方体方位に関する粒方位の頻度分布を有する帰属する図表が示されている。図2は、生じた酸化ニッケル中の集合組織へのイットリウムの有利な作用の証拠として役立つ。   FIG. 2 shows the orientation mapping of the nickel oxide layer present on the nickel source, as above, similarly investigated using EBSD for the nickel source with the yttrium additive according to Example 2 below. Among them, an attribution chart having a frequency distribution of grain orientations with respect to the cubic orientation in nickel oxide is shown. FIG. 2 serves as evidence of the beneficial effect of yttrium on the texture in the resulting nickel oxide.

発明の実施態様
例1
例えばニッケル99.9原子%の純度を有する、工業用純度のニッケルを溶融させ、セリウム33原子ppmと合金化しながら鋳型へ流し込む。インゴットを、850℃で正方形寸法(22x22)mm2に圧延し、均一化焼きなましをし、かつ急冷する。引き続いて、正方形材料を、圧延によるその後の冷間成形のための欠陥のない表面を得るために、切削により仕上げる。冷間圧延を、まず最初に85%を上回る厚さ減少の圧延度(Abwalzgrad)で、20mmから出発して80μmの厚さまで実施し、この場合に99.6%の厚さ減少である。その後の550℃で30minにわたる焼もどし処理は、立方体集合組織を有する再結晶を生じさせ、その際に(111)極点図の半値全幅(FWHM)値は、以下に示された表から明らかであるように、6.6°である。この集合組織鮮鋭度は、純度99.9%のニッケルに比較して1°を上回るだけ改善されている。次に、酸素下に1150℃で2分間、短時間酸化させ、かつ冷却する。生じた酸化ニッケル膜は、同様に鮮鋭な立方体集合組織を有する。(111)極点図のFWHM値はそれどころか5.4°であるに過ぎない(表参照)。第1表は、立方体集合組織形成に関してイットリウム及びセリウムの合金作用の証拠として役立つ。
Embodiment 1 of the Invention
For example, nickel of industrial purity having a purity of 99.9 atomic% nickel is melted and poured into a mold while alloying with 33 atomic ppm of cerium. The ingot is rolled to a square dimension (22 × 22) mm 2 at 850 ° C., homogenized, and quenched. Subsequently, the square material is finished by cutting in order to obtain a defect-free surface for subsequent cold forming by rolling. Cold rolling is first carried out at a thickness reduction of more than 85% (Abwalzgrad) starting from 20 mm to a thickness of 80 μm, in this case a thickness reduction of 99.6%. Subsequent tempering at 550 ° C. for 30 min results in recrystallization with a cubic texture, with the full width at half maximum (FWHM) value of the (111) pole figure apparent from the table shown below. Thus, it is 6.6 °. This texture sharpness is improved by more than 1 ° compared to 99.9% pure nickel. Next, it is oxidized for a short time at 1150 ° C. for 2 minutes under oxygen and cooled. The resulting nickel oxide film has a sharp cubic texture as well. On the contrary, the FWHM value of the (111) pole figure is only 5.4 ° (see table). Table 1 serves as evidence of yttrium and cerium alloying with respect to cube texture formation.


工業用純度のニッケル、Y−又はCe−合金化されたニッケル及びY−又はCe−合金化されたニッケル上のNiOの立方体集合組織のFWHM(111)値。
Table FWHM (111) values of cubic texture of NiO on industrial purity nickel, Y- or Ce-alloyed nickel and Y- or Ce-alloyed nickel.

Figure 0005354906
Figure 0005354906

例2
例えばニッケル99.9原子%の純度を有する、工業用純度のニッケルを、イットリウム33原子ppmと合金化しながら真空誘導炉中で溶融させ、鋳型へ流し込む。インゴットを、均一化焼きなましをし、水中で急冷し、850℃で正方形寸法(22×22)mm2に圧延する。引き続いて、正方形材料を、その後の冷間成形のための欠陥のない表面を圧延により得るために、切削により仕上げる。冷間圧延を、85%を上回る厚さ減少の圧延度で実施し、この場合に99.6%である。生じるニッケルテープは80μmの厚さを有する。このニッケルテープを次に550℃で30minにわたり焼もどしする。
Example 2
For example, nickel of industrial purity having a purity of 99.9 atomic% nickel is melted in a vacuum induction furnace while being alloyed with 33 atomic ppm of yttrium and poured into a mold. The ingot is homogenized, quenched in water, and rolled at 850 ° C. to square dimensions (22 × 22) mm 2 . Subsequently, the square material is finished by cutting in order to obtain a defect-free surface by rolling for subsequent cold forming. Cold rolling is carried out with a rolling reduction with a thickness reduction of more than 85%, in this case 99.6%. The resulting nickel tape has a thickness of 80 μm. The nickel tape is then tempered at 550 ° C. for 30 minutes.

結果は、再結晶立方体集合組織であり(図1参照)、粒方位についての前記再結晶立方体集合組織の分布は、5°を幾分下回る最大を有する。立方体層を有する粒子の割合(<10°偏差)は98%であり、かつ小角度粒界の割合(<9.5°偏差)は92%である。粒度は、純ニッケルの場合の大きさの約半分に過ぎない約42μmを有する。引き続いて、前記テープを純酸素ガス中で1150℃で2分間の酸化にかける。生じた酸化ニッケル層は、立方体層を有する構造を有する。立方体方位を有する粒子の割合は、97%である(図2)。小角度粒界の割合は、96%である。この集合組織は、ニッケルテープの集合組織に対して45°だけ回転している(gedreht)。   The result is a recrystallized cube texture (see FIG. 1) and the distribution of the recrystallized cube texture with respect to grain orientation has a maximum somewhat below 5 °. The proportion of particles with a cubic layer (<10 ° deviation) is 98% and the proportion of small angle grain boundaries (<9.5 ° deviation) is 92%. The particle size has about 42 μm, which is only about half that of pure nickel. Subsequently, the tape is subjected to oxidation in pure oxygen gas at 1150 ° C. for 2 minutes. The resulting nickel oxide layer has a structure with a cubic layer. The proportion of particles having a cubic orientation is 97% (FIG. 2). The proportion of small angle grain boundaries is 96%. This texture is rotated by 45 ° with respect to the texture of the nickel tape (gedreht).

例3
工業用純度のニッケル粉末を、セリウム100原子ppmを添加しながら粉末冶金的に加工する。プレス、熱処理及び押出と圧延とによる熱間成形後に、(22x22)mm2のロッド材料が得られる。均一化焼きなまし後に、圧延又は圧延引抜(Walzziehen)によるその後の冷間成形のための欠陥のない表面を得るために、表面を切削により仕上げる。冷間成形を、約(20×20)mm2から出発して3mmの厚さまで実施する。次に850℃で15minにわたり焼もどしする。その後、厚さ80μmの完成寸法に冷間圧延する。テープの縁部領域は分離され、かつ反る(verworfen)。得られたニッケルテープを、引き続いて、まず最初に、還元雰囲気中で再結晶化のために850℃で30分間の焼きなまし処理にかける。その後、テープを、高度な立方体集合組織を有する酸化ニッケル膜を製造するために、第二の焼きなましにおいて酸化雰囲気中で1150℃で5分にわたり処理する。
Example 3
Industrial purity nickel powder is processed in powder metallurgy while adding 100 atomic ppm of cerium. After hot forming by pressing, heat treatment and extrusion and rolling, a rod material of (22 × 22) mm 2 is obtained. After uniform annealing, the surface is finished by cutting in order to obtain a defect-free surface for subsequent cold forming by rolling or rolling (Walzziehen). Cold forming is carried out starting from about (20 × 20) mm 2 to a thickness of 3 mm. Then temper at 850 ° C. for 15 min. Then, it cold-rolls to the finished dimension of thickness 80micrometer. The edge area of the tape is separated and verworfen. The nickel tape obtained is subsequently subjected to an annealing treatment at 850 ° C. for 30 minutes for recrystallization in a reducing atmosphere. The tape is then treated for 5 minutes at 1150 ° C. in an oxidizing atmosphere in a second annealing to produce a nickel oxide film with a high degree of cubic texture.

例2によるイットリウム添加剤を有するニッケル原料について上方で、EBSD(電子後方散乱回折)を用いて調べられた方位マッピング図。Orientation mapping diagram, investigated above using nickel raw material with yttrium additive according to example 2, using EBSD (electron backscatter diffraction). 例2によるイットリウム添加剤を有するニッケル原料について上方で、同様にEBSDを用いて調べられた、ニッケル原料上に存在している酸化ニッケル層の方位マッピングを示す図。The figure which shows the azimuth | direction mapping of the nickel oxide layer which exists on the nickel raw material investigated by using EBSD above similarly about the nickel raw material which has the yttrium additive by Example 2. FIG.

Claims (4)

ニッケルベースの半製品であって、この半製品が再結晶立方体集合組織を有し、かつ元素の周期表の第3副族の金属の添加剤として、イットリウム及び/又はセリウム、及び工業用純度99.9原子%のニッケルからなり、その際、添加剤最大600原子ppm及び最小10原子ppmが原料中に含まれていることを特徴とする、ニッケルベースの半製品。 Nickel-based semi-finished product, the semi-finished product having a recrystallized cubic texture, and yttrium and / or cerium as an additive for metals of the third subgroup of the periodic table of elements , and an industrial purity of 99 Nickel-based semi-finished product, characterized in that it consists of 9 atomic% nickel, with a maximum of 600 atomic ppm and a minimum of 10 atomic ppm of additive in the raw material. 原料表面上に立方体集合組織を有する酸化ニッケル層が存在する、請求項1記載の半製品。   The semi-finished product according to claim 1, wherein a nickel oxide layer having a cubic texture exists on the surface of the raw material. まず最初に溶融冶金学的又は粉末冶金学的な経路で又は機械的な合金化により合金を製造し、かつこの合金を、その後の高度な冷間成形を伴う熱間成形を用いて、>80%の厚さ減少によりテープ、ホイル又はフラットワイヤーに加工し、かつ最後に立方体集合組織の達成のための再結晶焼きなましにかける、請求項1記載の半製品の製造方法。   An alloy is first produced by a melt metallurgical or powder metallurgical route or by mechanical alloying, and this alloy is then subjected to> 80 using hot forming with a high degree of cold forming. The process for producing a semi-finished product according to claim 1, wherein the thickness is reduced to a thickness of 10%, which is processed into tape, foil or flat wire and finally subjected to recrystallization annealing to achieve a cubic texture. 原料上に酸化雰囲気中で90%を上回る(>90%)高度な立方体集合組織を有する酸化ニッケル層を製造する、請求項3記載の方法。   4. The method according to claim 3, wherein a nickel oxide layer having a high cubic texture (> 90%) in the oxidizing atmosphere on the raw material is produced.
JP2007546060A 2004-12-14 2005-12-14 Nickel-based semi-finished product having a cubic texture and its manufacturing method Expired - Fee Related JP5354906B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004060900.4 2004-12-14
DE200410060900 DE102004060900A1 (en) 2004-12-14 2004-12-14 Nickel-based semi-finished product with cube texture and process for its production
PCT/EP2005/056799 WO2006064030A1 (en) 2004-12-14 2005-12-14 Semifinished product based on nickel and having a cubic texture, and method for the production thereof

Publications (2)

Publication Number Publication Date
JP2008523252A JP2008523252A (en) 2008-07-03
JP5354906B2 true JP5354906B2 (en) 2013-11-27

Family

ID=36177885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007546060A Expired - Fee Related JP5354906B2 (en) 2004-12-14 2005-12-14 Nickel-based semi-finished product having a cubic texture and its manufacturing method

Country Status (4)

Country Link
EP (1) EP1828425A1 (en)
JP (1) JP5354906B2 (en)
DE (1) DE102004060900A1 (en)
WO (1) WO2006064030A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001005B4 (en) 2008-04-04 2011-06-22 Karlsruher Institut für Technologie, 76131 A method for producing a composite layer with epitaxially grown layers of a magnetic shape memory material and composite layer with epitaxial layers of a magnetic shape memory material and its use
DE102010031058A1 (en) * 2010-07-07 2012-01-12 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Metallic profile wire with recrystallization cube texture and process for its production
DE102014008136B4 (en) 2013-06-07 2016-08-04 VDM Metals GmbH Process for producing a metal foil
DE102014008137B4 (en) 2013-06-07 2016-08-04 VDM Metals GmbH Process for producing a metal foil
CN107884429B (en) * 2017-10-16 2020-05-26 首钢集团有限公司 Cold-rolled steel plate texture measuring method
CN111378872A (en) * 2018-12-28 2020-07-07 中国钢铁股份有限公司 High nickel alloy and method for producing same
CN111893446B (en) * 2020-07-05 2022-07-15 河南师范大学 Preparation method of metal composite base band with strong texture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3452335B2 (en) * 1994-08-19 2003-09-29 関東特殊製鋼株式会社 NiTi-based alloy
FR2745298B1 (en) * 1996-02-27 1998-04-24 Imphy Sa IRON-NICKEL ALLOY AND COLD-ROLLED TAPE WITH CUBIC TEXTURE
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
DE10148889A1 (en) * 2001-09-21 2003-06-26 Leibniz Inst Fuer Festkoerper Nickel-based carrier material and process for its production
DE10342965A1 (en) * 2003-09-10 2005-06-02 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Nickel-based semifinished product with a recrystallization cube texture and process for its production

Also Published As

Publication number Publication date
DE102004060900A1 (en) 2006-06-29
JP2008523252A (en) 2008-07-03
EP1828425A1 (en) 2007-09-05
WO2006064030A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP7380550B2 (en) pure copper plate
JP5064611B2 (en) Nickel-based metal material and method for producing the same
JP5354906B2 (en) Nickel-based semi-finished product having a cubic texture and its manufacturing method
JP5355545B2 (en) Metal foil
JPWO2005012591A1 (en) Sputtering target and manufacturing method thereof
JP5420609B2 (en) Titanium target for sputtering
JP7020595B2 (en) Pure copper plate
WO2021177469A1 (en) Pure copper plate
JP6984799B1 (en) Pure copper plate, copper / ceramic joint, insulated circuit board
JP4522675B2 (en) Ultrafine grain copper sputter target
JP4415303B2 (en) Sputtering target for thin film formation
JP7342957B2 (en) Pure copper plate, copper/ceramic bonded body, insulated circuit board
JP5074375B2 (en) Method for producing and using nickel-based semi-finished product with recrystallized cubic texture
CN111286703B (en) Nickel-platinum alloy sputtering target material and preparation method thereof
JP4426904B2 (en) Tungsten wire and method for manufacturing the same
JP4886514B2 (en) Nickel-based semi-finished product having a cubic recrystallized texture, its production method and use
JP2017150015A (en) Sputtering target, and production method of sputtering target
KR102396215B1 (en) Single crystal metal foil, and method of manufacturing the same
US20240043986A1 (en) Sputtering target
RU2481674C1 (en) Method to manufacture substrate for high-temperature thin-film superconductors and substrate
RU2451766C1 (en) Method for biaxial textured substrate production from binary alloy on basis of nickel for epitaxial application of buffer and high-temperature superconductive layers for ribbon superconductors to substrate
WO2022004789A1 (en) Plastic copper alloy working material, copper alloy wire material, component for electronic and electrical equipment, and terminal
JP2016145384A (en) Production method of sputtering target and sputtering target
TW202245018A (en) Hot-rolled copper alloy sheet and sputtering target
TW202300668A (en) Hot-rolled copper alloy sheet and sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120627

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120724

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees