JP4426904B2 - Tungsten wire and method for manufacturing the same - Google Patents

Tungsten wire and method for manufacturing the same Download PDF

Info

Publication number
JP4426904B2
JP4426904B2 JP2004167507A JP2004167507A JP4426904B2 JP 4426904 B2 JP4426904 B2 JP 4426904B2 JP 2004167507 A JP2004167507 A JP 2004167507A JP 2004167507 A JP2004167507 A JP 2004167507A JP 4426904 B2 JP4426904 B2 JP 4426904B2
Authority
JP
Japan
Prior art keywords
tungsten
heat treatment
average particle
particle size
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004167507A
Other languages
Japanese (ja)
Other versions
JP2005015917A (en
Inventor
耕司 田上
浩二 藤井
拓司 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2004167507A priority Critical patent/JP4426904B2/en
Publication of JP2005015917A publication Critical patent/JP2005015917A/en
Application granted granted Critical
Publication of JP4426904B2 publication Critical patent/JP4426904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Description

本発明はランプ、放電灯などに用いるタングステン線状材に関する。   The present invention relates to a tungsten wire material used for a lamp, a discharge lamp or the like.

本発明における線状材とは、通常のフィラメントのような金属線状、ロッド状の放電灯用電極用を含め、0.01mm〜20mm程度の径を有する線状材を意味する。   The linear material in the present invention means a linear material having a diameter of about 0.01 mm to 20 mm, including metal linear and rod-shaped discharge lamp electrodes such as filaments.

タングステン材料は高融点であることから、従来よりフィラメント、ランプや放電灯の電極として広く用いられてきた。   Since tungsten materials have a high melting point, they have been widely used as electrodes for filaments, lamps and discharge lamps.

実質的に添加元素を含まない純タングステンは、高温使用時に再結晶を起こし、図3に示す微細な結晶のいわゆる石垣状の結晶状態となる。   Pure tungsten substantially free of additive elements undergoes recrystallization when used at a high temperature, resulting in a so-called stone wall-like crystal state of fine crystals shown in FIG.

この石垣状の組織のタングステンは、靱性及び耐衝撃性が低く、輸送時や取り付け時などに簡単に破壊するという難点がある。また、高温での粒界滑りを起こしやすく、その結果使用時に変形(サグ)が起こりやすいという欠点を有する。以下、この「サグ」が生じ難い性質を「耐サグ性」と称する。   Tungsten having a stone wall-like structure has low toughness and impact resistance, and has a drawback that it is easily broken during transportation or mounting. In addition, there is a disadvantage that the grain boundary slip is likely to occur at a high temperature, and as a result, deformation (sag) is likely to occur during use. Hereinafter, the property in which this “sag” hardly occurs is referred to as “sag resistance”.

耐サグ性の改善は、特許文献1や特許文献2に記載されているように、タングステンにカリウムを代表とするドープ剤を添加することにより実現できることが知られている。   As described in Patent Document 1 and Patent Document 2, it is known that improvement in sag resistance can be realized by adding a dopant typified by potassium to tungsten.

すなわち、ドープ剤を添加することにより石垣状の結晶は生じなくなり、その結果、図4に示すような線状材の長さ方向に長い長大結晶を生じる。この長大結晶は石垣状の微細な結晶に較べて、全容積に対する粒界が小さいために縦断面方向への滑りが起こりにくく耐サグ性が高い。   That is, by adding the dopant, stone wall-like crystals are not generated, and as a result, long crystals that are long in the length direction of the linear material as shown in FIG. 4 are generated. Compared to fine stone-walled crystals, this long crystal has a small grain boundary with respect to the entire volume, and therefore it is less likely to slip in the longitudinal cross-sectional direction and has high sag resistance.

しかしながら、ドープ剤を添加して耐サグ性を高めたタングステン、例えば、Kを添加したWは、Reを添加した場合を除いて、靱性と耐衝撃性が充分ではなく、依然として、製造、運搬時に破壊する問題は解消できない。   However, tungsten to which sag resistance is increased by adding a dopant, for example, W to which K is added, is not sufficient in toughness and impact resistance except when Re is added. The problem of destruction cannot be solved.

ところが、製造、運搬時の破壊に対して最も抵抗性があるReを添加したW合金は、Reが非常に高価であり、その線状材の価格は、通常のW線状材と比較して価格が100倍以上にもなる。
特開2000−106131号公報 特開平05−290802号公報
However, W alloy added with Re, which is most resistant to destruction during manufacturing and transportation, is very expensive, and the price of the linear material is lower than that of ordinary W linear material. The price is more than 100 times.
JP 2000-106131 A Japanese Patent Laid-Open No. 05-290802

放電灯用電極およびフィラメントとしてのタングステン線状材の耐衝撃性を上げるためには、耐サグ性の改善とともに、結晶粒子を大きくして粒子間の粒界を滑りにくくする必要がある。   In order to increase the impact resistance of the tungsten wire material as the electrode for the discharge lamp and the filament, it is necessary to improve the sag resistance and enlarge the crystal grains so that the grain boundaries between the grains are difficult to slip.

この点から云って、単結晶体からなる線状材が最も好ましいが、Wの特性から工業的に単結晶体からなる線状材は製造できず、再結晶後に、前述の図3に示すような好ましくない石垣状の組織を形成することになる。   From this point of view, a linear material made of a single crystal is most preferable. However, a linear material made of a single crystal cannot be manufactured industrially due to the characteristics of W, and after recrystallization, as shown in FIG. An unfavorable stone wall-like structure is formed.

また、単結晶体に準じて好ましいのは、前述のドープ剤を添加したときに生じる図4に示すような長さ方向に成長した長大結晶粒である。しかしながら、この長大結晶粒を得るためには、再結晶熱処理には1273Kの温度で、数時間〜数100時間のような膨大な時間を要するという問題がある。   Also preferred according to the single crystal is a long crystal grain grown in the length direction as shown in FIG. 4 which is produced when the aforementioned dopant is added. However, in order to obtain such long crystal grains, there is a problem that the recrystallization heat treatment requires a huge time such as several hours to several hundred hours at a temperature of 1273K.

本発明の課題は、耐サグ性と、靱性と耐衝撃の機械的特性に優れ、放電灯用電極およびフィラメントに適したW線状材、とくに、長さ方向に成長した長大結晶粒を低価格で得ることにある。   An object of the present invention is to provide a W-wire material excellent in sag resistance, mechanical properties such as toughness and impact resistance, and suitable for discharge lamp electrodes and filaments, in particular, long-sized crystal grains grown in the length direction at low cost. There is to get in.

本発明は、W線状材の表面に、W以外の元素からなる被覆層を形成することによって、熱処理の際、被覆元素の存在によりW元素の粒界への移動が抑制され、線状材表面部の粒成長を抑制されるとともに、内部における2次再結晶粒の成長が促進され、W材料内部には大きなアスペクト比を持つ粒が形成されるという知見に基づく。   In the present invention, the formation of a coating layer made of an element other than W on the surface of the W linear material suppresses the movement of the W element to the grain boundary due to the presence of the coating element during the heat treatment. This is based on the knowledge that the growth of secondary recrystallized grains in the interior is promoted and grains having a large aspect ratio are formed inside the W material while suppressing the grain growth in the surface portion.

このように、W以外の元素からなる被覆層を形成したW線状材を熱処理することにより得られる再結晶組織は、結晶成長は内部でのみ顕著におき、これにより粗大な粒子が長手方向に成長した結晶状態と同等の耐衝撃性、耐サグ性を得ることができる。この結晶組織は塗布した成分と靱性の高い合金を作るために、ドープ剤を添加して耐サグ性が高めたタングステンは、従来のRe以外のドープ材、例えば、Kをドープしたタングステンと比較して、靱性が遥かに高いものが得られる。   Thus, the recrystallized structure obtained by heat-treating the W linear material formed with a coating layer composed of an element other than W has crystal growth noticeable only inside, thereby causing coarse particles to extend in the longitudinal direction. Impact resistance and sag resistance equivalent to the grown crystal state can be obtained. This crystal structure is made of tungsten with enhanced sag resistance by adding a dopant to make a tough alloy with the applied components. Compared with conventional doping materials other than Re, for example, tungsten doped with K Thus, a material with much higher toughness can be obtained.

本発明で使用するW線状材としては、純タングステン、Kを代表とするアルカリ金属、アルカリ土類金属を10〜100PPMドープしたドープタングステン、またはタングステンにC、Re、Ta、Mo、B、Sc、Ti、Cr、Fe、Co、Ni、Ru、Rh、Hf、Gd、Dy、La、Y、Thの高融点元素からなる添加元素の少なくとも1種を数100ppm添加したタングステン系材料を、通電焼結などの手段にて焼結を行い、その後スエージング、ドローイングなどの鍛造加工などを施して所望の断面形状とした0.03mm〜25mm径のタングステン線状材が使用できる。   As the W linear material used in the present invention, pure tungsten, an alkali metal typified by K, a doped tungsten doped with 10-100 PPM of an alkaline earth metal, or tungsten with C, Re, Ta, Mo, B, Sc Tungsten-based material added with several hundred ppm of at least one additive element composed of high melting point elements such as Ti, Cr, Fe, Co, Ni, Ru, Rh, Hf, Gd, Dy, La, Y, and Th. A tungsten wire material having a diameter of 0.03 mm to 25 mm can be used which is sintered by means such as kneading and then subjected to forging such as swaging and drawing to obtain a desired cross-sectional shape.

このW線状材の表面に被覆層を形成する成分元素としては、C、Re、Ta、Mo、B、Sc、Ti、Cr、Fe、Co、Ni、Ru、Rh、Hf、Gd、Dy、La、Y、Thの元素群に属する成分元素を用いることが適当である。 とくに、使用時に蒸発しないために融点が高い方が望ましい。これらの元素はWと合金化し、Wの拡散を抑制する働きがある。また、再結晶時、これらの元素は、熱処理温度や条件によっては、W線状材の表面のWの結晶粒界やWと合金を作ることにより、最終的に存在することになる。   As component elements for forming a coating layer on the surface of the W linear material, C, Re, Ta, Mo, B, Sc, Ti, Cr, Fe, Co, Ni, Ru, Rh, Hf, Gd, Dy, It is appropriate to use component elements belonging to the element group of La, Y, and Th. In particular, a higher melting point is desirable because it does not evaporate during use. These elements alloy with W and have a function of suppressing W diffusion. Further, at the time of recrystallization, depending on the heat treatment temperature and conditions, these elements are finally present by forming an alloy with W grain boundaries and W on the surface of the W linear material.

その被覆層の形成手段としては、塗布、メッキ、粉末の粉をはたき付けなどの任意の手段が適用できる。   As a means for forming the coating layer, any means such as coating, plating, and dusting of powder can be applied.

例えば、塗布の場合には、被覆層を形成する成分の0.1μm〜数10μmに粉砕した粒子を水やアルコールのバインダーに有機物などと混合してスラリー状としたものをハケやスプレーなどで塗布する。また、メッキの場合には、電気メッキ、真空メッキ、溶融メッキなど公知の方法が採用できる。   For example, in the case of coating, particles obtained by pulverizing to 0.1 μm to several tens of μm of the component forming the coating layer are mixed with water or an alcohol binder with an organic substance or the like, and applied in a slurry or spray. To do. In the case of plating, known methods such as electroplating, vacuum plating, and hot dipping can be employed.

この被覆層の厚みは、熱処理時の表面層を通して加えられる熱エネルギーと内部の結晶粒の結晶成長を促進させる被覆層の機能を考慮すると、その被覆の形態で一概には言えないものの、1μmを満たない場合でも効果があるが、通常の場合、数十μm必要である。   The thickness of this coating layer is 1 μm although it cannot be generally stated in the form of the coating, considering the thermal energy applied through the surface layer during heat treatment and the function of the coating layer that promotes crystal growth of the internal crystal grains. Even if it is less than the above, it is effective.

W線状材の表面に被覆層を形成した後の熱処理は、真空中、水素ガス中、窒素ガス中、希ガス中などの非酸化雰囲気中で行う。その際の熱処理温度は1500〜3000Kが適当である。1500K以下では再結晶が起こらないため粗大結晶が形成されず、また、3000K以上では組織の変化が見られない。   The heat treatment after forming the coating layer on the surface of the W linear material is performed in a non-oxidizing atmosphere such as vacuum, hydrogen gas, nitrogen gas, or rare gas. In this case, the heat treatment temperature is suitably 1500 to 3000K. At 1500K or less, recrystallization does not occur, so coarse crystals are not formed, and at 3000K or more, no change in structure is observed.

また、熱処理の昇温速度は100〜10000K/s、特に1000〜8000K/sが適当である。熱処理温度は、最終的に得られる放電灯用電極の粒径を左右する要因となり、また、ランプに使用された時ガス発生の影響もあるために、特に2800K以上が望ましい。また、工業的な意味合いでは、この速度は速いほど望ましい。熱処理後に切断、表面処理などの加工を行い、所望の形状にすることによりタングステン線状材、放電灯用電極、フィラメントを得ることができる。   Moreover, the temperature increase rate of heat processing is 100-10000 K / s, especially 1000-8000 K / s is suitable. The heat treatment temperature is a factor that affects the particle diameter of the finally obtained discharge lamp electrode, and also has an influence of gas generation when used in a lamp. In industrial terms, this speed is preferably as high as possible. By performing processing such as cutting and surface treatment after the heat treatment to obtain a desired shape, a tungsten linear material, a discharge lamp electrode, and a filament can be obtained.

本発明によって、結晶成長を促進させた長大な結晶粒子を有するフィラメントおよび放電灯用電極が得られる。   According to the present invention, a filament having a long crystal particle that promotes crystal growth and an electrode for a discharge lamp can be obtained.

添付図1は、前記の本発明の方法によって得られた結晶粒子組織の断面模式図を示す。同図に示すように本発明のタングステン線状材は、線状材の表面部Aと内部Bを比較した際にその平均結晶粒径が異なっており、表面部が小さく、内部が大きくその比が2以上である。   FIG. 1 shows a schematic cross-sectional view of the crystal grain structure obtained by the method of the present invention. As shown in the figure, the tungsten wire material of the present invention has a different average crystal grain size when the surface portion A and the inside B of the wire material are compared, the surface portion is small, the inside is large and the ratio is large. Is 2 or more.

内部が大きいことにより、単結晶体に準じて好ましい、図4に示すような粗大な粒子が長手方向に成長した結晶状態と耐衝撃性や耐サグ性についてほぼ同等の性能を示す放電灯用電極を得ることができる。また、内部の粒子の長径方向への平均粒子径を短径方向の平均粒子径で割ったL/W2は、耐衝撃性を上げ、耐サグ性を改善するために2以上が必要である。なお、短径および長径の測定は、図5に示すように、線状材断面の組織写真から結晶の外形を抜き出し、線状材の長方向の長さで最も長い部分の長さを長径、線状材の径方向で最も長い部分の長さを短径とした。   The electrode for a discharge lamp which has almost the same performance in terms of impact resistance and sag resistance due to the large inside, which is preferable according to the single crystal, and in which the coarse particles as shown in FIG. 4 grow in the longitudinal direction. Can be obtained. Further, L / W2 obtained by dividing the average particle diameter in the major axis direction of the internal particles by the average particle diameter in the minor axis direction needs to be 2 or more in order to improve impact resistance and improve sag resistance. In addition, as shown in FIG. 5, the measurement of the minor axis and the major axis is to extract the outer shape of the crystal from the structure photograph of the cross section of the linear material, the length of the longest portion of the length in the long direction of the linear material, the major axis, The length of the longest portion in the radial direction of the linear material was defined as the short diameter.

本発明のW線状材は耐サグ性に優れており、靱性が充分に高く、搬送時や組立時に破壊しない。その製造に際して熱処理時の温度制御によって結晶粒子径の制御が容易にできる。製造における熱処理の時間が短く、工業的に充分利用できる。Re−W合金などと比較して、安価に製造できる。   The W linear material of the present invention is excellent in sag resistance, has a sufficiently high toughness, and does not break during transportation or assembly. In the production, the crystal grain size can be easily controlled by controlling the temperature during the heat treatment. The heat treatment time in production is short and can be used industrially. Compared with Re-W alloy etc., it can manufacture at low cost.

以下、本発明の実施例によってその実施の形態を説明する。   Embodiments of the present invention will be described below with reference to examples.

タングステン線状材を図2に示すロッド状の放電灯用電極とした例を示す。   An example in which the tungsten wire material is a rod-shaped electrode for a discharge lamp shown in FIG.

W純度99.999原子%で、直径2.0mm、長さ10mmのタングステンのロッドを準備した。   A tungsten rod having a W purity of 99.999 atomic%, a diameter of 2.0 mm, and a length of 10 mm was prepared.

このロッドにメタノール中に平均粒子径0.5μmのRe粉を分散させたスラリーを塗布し、その後メタノールを乾燥させることにより表面にRe粒子を30μm付着させた。付着したRe粒子を剥離させることなく熱処理炉の中に投入し、水素ガス雰囲気中、昇温速度985K/s、熱処理温度2973Kにて熱処理を行った。冷却後に表面に付着したRe粒子を除去し、断面組織の観察を行った。断面組織は表面に近い部分は平均粒子径約10μm、内部は長径の平均粒子径約80μm、短径は約30μmであった。この組織の模式図を図1に示す。また、ロッド表面を中心としてRe成分が検出された。   A slurry in which Re powder having an average particle size of 0.5 μm was dispersed in methanol was applied to the rod, and then methanol was dried to attach Re particles to the surface by 30 μm. The adhered Re particles were put into a heat treatment furnace without being peeled, and heat treatment was performed in a hydrogen gas atmosphere at a heating rate of 985 K / s and a heat treatment temperature of 2973 K. Re particles adhering to the surface after cooling were removed, and the cross-sectional structure was observed. As for the cross-sectional structure, the average particle size was about 10 μm at the portion close to the surface, the average particle size of the major axis was about 80 μm, and the minor axis was about 30 μm. A schematic diagram of this structure is shown in FIG. Further, Re component was detected around the rod surface.

また、熱処理温度を変えて、同様の実験を行ったところ、熱処理温度は1500K〜3000Kが適当であるということが分かった。1500K以下では再結晶が起こらず粗大結晶が形成されず、また、3000K以上では組織の変化が見られなかった。   Moreover, when the same experiment was conducted by changing the heat treatment temperature, it was found that the heat treatment temperature is suitably 1500K to 3000K. At 1500K or lower, recrystallization did not occur and coarse crystals were not formed, and at 3000K or higher, no change in structure was observed.

次に、タングステン線状材を研削にて図2に示す放電灯用電極形状に加工を行った。得られた電極を放電灯に装着して使用したところ、本発明の電極は電極および装置に大きな衝撃を加えても、電極の破損は起こらなかった。また、製造費用はタングステン線状材と比較して塗布と熱処理にかかる費用増にとどまり、Re−Wなどと比較すると費用を低く押さえることができた。   Next, the tungsten wire material was ground into a discharge lamp electrode shape shown in FIG. When the obtained electrode was mounted on a discharge lamp and used, the electrode of the present invention was not damaged even when a large impact was applied to the electrode and the device. In addition, the manufacturing cost is only an increase in the cost for coating and heat treatment compared to the tungsten wire, and the cost can be kept low compared with Re-W or the like.

Reと同様にC、Ta、Mo、B、Sc、Ti、Cr、Fe、Co、Ni、Ru、Rh、Hf、Gd、Dy、La、Y、Thの各元素について実験を行ったが、いずれもReと同様の効果を得ることができた。また、2種以上の元素を用いた場合も同様であった。   As with Re, experiments were conducted on each element of C, Ta, Mo, B, Sc, Ti, Cr, Fe, Co, Ni, Ru, Rh, Hf, Gd, Dy, La, Y, and Th. Was able to obtain the same effect as Re. The same was true when two or more elements were used.

比較例1
純度99.999原子%で、実質的にドープ剤を添加していないタングステンで、実施例1と同形状の放電灯用電極を作製したが、この放電灯用電極は脆く、衝撃や応力に対して容易に破壊するために実用には適さなかった。また、放電灯用電極が細く長い形状の場合は、サグが起こり、やはり使用できなかった。
Comparative Example 1
A discharge lamp electrode having the same shape as in Example 1 was made of tungsten having a purity of 99.999 atomic% and substantially no added dopant, but this discharge lamp electrode is brittle and is resistant to impact and stress. It was not suitable for practical use because it was easily destroyed. Further, when the discharge lamp electrode was thin and long, sag occurred and it could not be used.

比較例2
実施例1と同原料のものを、電極形状に加工したのちに、再結晶にて粒子の成長のために2273Kにて熱処理を行った。内部が実施例の試料と同様の粒径にするためには500時間程度の熱処理時間が必要であった。また、得られた電極は、特性は実施例の試料と同様に優れていたが、熱処理に時間がかかりすぎるために、工業的には実施できなかった。
Comparative Example 2
The same raw material as in Example 1 was processed into an electrode shape, and then heat treatment was performed at 2273 K for particle growth by recrystallization. In order for the inside to have the same particle size as the sample of the example, a heat treatment time of about 500 hours was required. Moreover, although the obtained electrode had the same characteristics as the sample of the example, it took too much time for the heat treatment, so that it could not be implemented industrially.

比較例3
W−3重量%Reの合金を用いて、実施例1と同様の線状材をロッド形状に加工した。このロッドは、耐衝撃性、靱性、サグ性いずれも本発明のロッドと同等の性能を示したが、製造費用Reが高価であるために本発明品の150倍程度であった。
Comparative Example 3
A wire material similar to that in Example 1 was processed into a rod shape using an alloy of W-3 wt% Re. This rod exhibited the same performance as the rod of the present invention in terms of impact resistance, toughness, and sag, but was about 150 times that of the product of the present invention due to the high manufacturing cost Re.

WにKを40PPMドープしたドープタングステンからなる線径φ0.2の単線巻コイルであるフィラメント用材料を準備した。このフィラメント用材料にメタノール中に平均粒子径0.5μmのTa粉を分散させたスラリーを塗布し、その後メタノールを乾燥させることにより表面にTaを付着させた。付着したTa粒子を剥離させることなく熱処理炉の中に投入し、水素ガス雰囲気中、昇温速度985K/s、熱処理温度2973Kにて熱処理を行った。冷却後に断面組織の観察を行ったところ、断面組織は表面に近い部分は平均粒子径約10μm、内部は平均粒子径約50μmであった。また、外周付近に最も多くTaが検出され、フィラメント中心に向かって減少していた。   A filament material which is a single wire wound coil having a wire diameter of φ0.2 and made of doped tungsten in which W is doped with 40 PPM of K was prepared. A slurry in which Ta powder having an average particle size of 0.5 μm was dispersed in methanol was applied to the filament material, and then the methanol was dried to adhere Ta to the surface. The adhered Ta particles were put into a heat treatment furnace without peeling off, and heat treatment was performed in a hydrogen gas atmosphere at a heating rate of 985 K / s and a heat treatment temperature of 2973 K. When the cross-sectional structure was observed after cooling, the cross-sectional structure was found to have an average particle size of about 10 μm at the portion close to the surface and an average particle size of about 50 μm inside. Further, Ta was detected most in the vicinity of the outer periphery, and decreased toward the center of the filament.

また、熱処理温度を変えて、同様の実験を行ったところ、熱処理温度は1500K〜3000Kが適当であるということが分かった。1500K以下では再結晶が起こらずに粗大結晶が形成されず、また、3000K以上では組織の変化が見られなかった。   Moreover, when the same experiment was conducted by changing the heat treatment temperature, it was found that the heat treatment temperature is suitably 1500K to 3000K. At 1500K or lower, recrystallization did not occur and coarse crystals were not formed, and at 3000K or higher, no change in structure was observed.

得られたフィラメントをランプに装着して使用したところ、本発明のフィラメントは、電極および装置に大きな衝撃を加えても、電極の破損は起こらなかった。靱性が充分に高く、耐衝撃性も充分であるために、輸送時や使用時の環境を選ばない。そのために、自動車用のライトなどにも適したものであった。   When the obtained filament was mounted on a lamp and used, the filament of the present invention did not break the electrode even when a large impact was applied to the electrode and the device. Since the toughness is sufficiently high and the impact resistance is sufficient, the environment during transportation and use is not limited. For this reason, it was also suitable for automobile lights.

Taと同様に元素群1に示したC、Re、Mo、B、Sc、Ti、Cr、Fe、Co、Ni、Ru、Rh、Hf、Gd、Dy、La、Y、Thについての実験を行ったが、いずれもTaと同様の効果を得ることができた。また、2種以上の元素を用いた場合も同様であった。   As with Ta, experiments were performed on C, Re, Mo, B, Sc, Ti, Cr, Fe, Co, Ni, Ru, Rh, Hf, Gd, Dy, La, Y, and Th shown in element group 1 However, in all cases, the same effect as Ta could be obtained. The same was true when two or more elements were used.

実施例1と同材料(W純度99.999%)で、線径φ0.2の単線巻コイルであるフィラメント用材料を準備した。このフィラメント用材料にReを真空メッキ法にてメッキを行った。メッキ層の厚さは約3μmであった。   A filament material which is a single-winding coil having a wire diameter of 0.2 and the same material as in Example 1 (W purity: 99.999%) was prepared. This filament material was plated with Re by vacuum plating. The thickness of the plating layer was about 3 μm.

メッキ層を剥離させることなく、次に熱処理炉の中に投入し、水素ガス雰囲気中、昇温速度200K/s、熱処理温度1550Kにて熱処理を行った。冷却後に断面組織の観察を行った。断面組織は表面に近い部分は平均粒子径約10μm、内部は平均粒子径約50μmであった。   Without peeling off the plating layer, it was then placed in a heat treatment furnace, and heat treatment was performed in a hydrogen gas atmosphere at a heating rate of 200 K / s and a heat treatment temperature of 1550 K. The cross-sectional structure was observed after cooling. As for the cross-sectional structure, the portion close to the surface had an average particle size of about 10 μm and the inside had an average particle size of about 50 μm.

得られたフィラメントをランプに装着して使用したところ、本発明のフィラメントは、電極および装置に大きな衝撃を加えても、電極の破損は起こらなかった。   When the obtained filament was mounted on a lamp and used, the filament of the present invention did not break the electrode even when a large impact was applied to the electrode and the device.

本発明は、高融点金属として専ら、タングステン線状材を例に挙げて説明したが、Wに限らず、Mo、Ta、Rh、Re等の他の高融点金属線状材に適用できる。また、タングステン線状材の場合、ランプ用フィラメント、ハロゲンランプ用電極、冷陰極管用冷陰極、、自動車ほか運輸搬送機器用ランプ、等の、フィラメントおよび放電灯用電極に使用できる。   The present invention has been described by taking a tungsten linear material as an example exclusively as a refractory metal, but is not limited to W, and can be applied to other refractory metal linear materials such as Mo, Ta, Rh, and Re. In the case of a tungsten wire, it can be used for filaments and discharge lamp electrodes, such as lamp filaments, halogen lamp electrodes, cold cathodes for cold cathode tubes, lamps for automobiles and other transportation equipment.

本発明のタングステン線状材の結晶組織の断面模式図を示すThe cross-sectional schematic diagram of the crystal structure of the tungsten wire material of this invention is shown. 本発明の加工された放電灯用電極の模式図を示すThe schematic diagram of the electrode for processed discharge lamps of the present invention is shown. 微細な結晶からなる石垣状の結晶組織の断面模式図を示すA cross-sectional schematic diagram of a stone wall-shaped crystal structure composed of fine crystals is shown. Kをドープした結晶で、粗大な粒子が長手方向に成長した結晶の断面模式図を示すA cross-sectional schematic diagram of a crystal doped with K and having coarse particles grown in the longitudinal direction is shown. 短径、長径の測定箇所を示すIndicates the measurement points of the short diameter and long diameter

符号の説明Explanation of symbols

A 線状材の表面部
B 線状材の内部
A Surface part of wire material B Inside wire material

Claims (3)

タングステン中にReまたはTaが存在する表面部の結晶粒子の平均粒径とこの表面部よりも内部のタングステン結晶粒子の平均粒径が異なり、
内部の結晶粒子の平均粒径が表面部の平均粒径より大きく、
表面部の結晶粒子の短径方向の平均粒径をW1とし、内部の結晶粒子の短径方向への平均粒径をW2としたとき、W1に対するW2の比が2以上であり、かつ、内部の結晶粒子の長径方向の平均粒径をLとしたときのW2に対するLの比が2以上であるタングステン線状材。
The average particle size of the crystal grains in the surface portion where Re or Ta is present in tungsten is different from the average particle size of the tungsten crystal particles inside the surface portion ,
The average particle size of the internal crystal particles is larger than the average particle size of the surface portion,
When the average grain size in the minor axis direction of the crystal grains on the surface is W1, and the average grain size in the minor axis direction of the inner crystal grains is W2, the ratio of W2 to W1 is 2 or more and A tungsten linear material in which the ratio of L to W2 is 2 or more, where L is the average grain size in the major axis direction of the crystal grains.
タングステン線状材が放電灯用電極ロッドまたはフィラメントとして使用される請求項1に記載のタングステン線状材。 The tungsten wire material according to claim 1, wherein the tungsten wire material is used as an electrode rod or filament for a discharge lamp. タングステン線状材の表面に、ReまたはTaを被覆し、100〜10000K/sの昇温速度の下で1500〜3000Kまで昇温したのち、保持し、その後冷却して加工するタングステン線状材の製造方法。 On the surface of the tungsten wire-like material, coated with Re or Ta, After the temperature was raised to 1500~3000K under heating rate of 100~10000K / s, holding, subsequent tungsten wire shaped material cooling and processing Production method.
JP2004167507A 2003-06-05 2004-06-04 Tungsten wire and method for manufacturing the same Expired - Fee Related JP4426904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167507A JP4426904B2 (en) 2003-06-05 2004-06-04 Tungsten wire and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003161348 2003-06-05
JP2004167507A JP4426904B2 (en) 2003-06-05 2004-06-04 Tungsten wire and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005015917A JP2005015917A (en) 2005-01-20
JP4426904B2 true JP4426904B2 (en) 2010-03-03

Family

ID=34196800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167507A Expired - Fee Related JP4426904B2 (en) 2003-06-05 2004-06-04 Tungsten wire and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4426904B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134055A (en) * 2005-11-08 2007-05-31 Koito Mfg Co Ltd Arc tube for discharge lamp apparatus
JP4799132B2 (en) 2005-11-08 2011-10-26 株式会社小糸製作所 Arc tube for discharge lamp equipment
US8072560B2 (en) 2006-09-08 2011-12-06 Kabushiki Kaisha Toshiba Electrode for cold cathode tube, and cold cathode tube and liquid crystal display device using the same
JP4862739B2 (en) * 2007-05-08 2012-01-25 ウシオ電機株式会社 Electrode for ultra high pressure discharge lamp and ultra high pressure discharge lamp
CN102379023B (en) * 2010-03-05 2015-02-18 松下电器产业株式会社 Electrode for discharge lamp, high voltage discharge lamp, lamp unit, and projector-type image display device
JP5024466B1 (en) * 2011-03-10 2012-09-12 ウシオ電機株式会社 Short arc type discharge lamp
JP2013131467A (en) * 2011-12-22 2013-07-04 Stanley Electric Co Ltd Incandescent lamp, and filament
CN104115254B (en) * 2012-02-15 2016-10-19 株式会社东芝 Use for discharge lamp cathode assembly
CN104584185B (en) * 2012-07-31 2016-11-16 东芝高新材料公司 Use for discharge lamp negative electrode, the manufacture method of use for discharge lamp negative electrode, discharge lamp
CN102789954B (en) * 2012-09-05 2016-01-20 佛山宁宇科技有限公司 There is tungsten electrode and the preparation thereof of oriented crystallization large grain size discharge end parts
JP2014063667A (en) * 2012-09-21 2014-04-10 Stanley Electric Co Ltd Incandescent lamp
CN104183459A (en) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 Ceramic halogen lamp electrode
JP2016066447A (en) * 2014-09-24 2016-04-28 日本タングステン株式会社 Light emitting filament for transporting apparatus
JP7313791B2 (en) * 2018-08-23 2023-07-25 株式会社オーク製作所 Discharge lamp and method for manufacturing discharge lamp electrode

Also Published As

Publication number Publication date
JP2005015917A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4426904B2 (en) Tungsten wire and method for manufacturing the same
JP5472353B2 (en) Silver-based cylindrical target and manufacturing method thereof
JP6973680B2 (en) Pure copper plate
JP5457018B2 (en) Platinum iridium alloy and method for producing the same
WO2021177470A1 (en) Pure copper plate
WO2021177469A1 (en) Pure copper plate
JPWO2003031668A1 (en) Tungsten wire and cathode heater and filament for vibration-proof bulb
JP2008523252A (en) Nickel-based semi-finished product having a cubic texture and its manufacturing method
US8465605B2 (en) Method for the production and use of semi-finished products on the basis of nickel, having a recrystallization cube texture
JP4808835B2 (en) Cathode wire filament for X-ray tube applications
JP3764315B2 (en) Tungsten material and manufacturing method thereof
EP0765949A1 (en) Tungsten-lanthana alloy wire for a vibration resistant lamp filament
KR101231936B1 (en) Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use
WO2012132489A1 (en) Molybdenum material
JP6219280B2 (en) Cathode for discharge lamp and method for producing the same
CN108588531B (en) A kind of anode material and preparation method thereof
JP2019163544A (en) Sputtering target, titanium nitride film, wiring layer, and semiconductor device
JP6595188B2 (en) Manufacturing method of sputtering target
JPH03219039A (en) Rhenium-tungsten alloy material excellent in workability and its manufacture
JPH042657B2 (en)
KR101614409B1 (en) A Shape Memory Alloy and Method for Manufacturing the Same
Lassner et al. Tungsten alloys
JP2757203B2 (en) Method for producing large grains or single crystals of chromium
JP2005350709A (en) Seamless pipe made of molybdenum, and manufacturing method therefor
JP5068986B2 (en) Molybdenum material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Ref document number: 4426904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees