KR101231936B1 - Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use - Google Patents

Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use Download PDF

Info

Publication number
KR101231936B1
KR101231936B1 KR1020067004924A KR20067004924A KR101231936B1 KR 101231936 B1 KR101231936 B1 KR 101231936B1 KR 1020067004924 A KR1020067004924 A KR 1020067004924A KR 20067004924 A KR20067004924 A KR 20067004924A KR 101231936 B1 KR101231936 B1 KR 101231936B1
Authority
KR
South Korea
Prior art keywords
semifinished product
cube
nickel
texture
semifinished
Prior art date
Application number
KR1020067004924A
Other languages
Korean (ko)
Other versions
KR20060119955A (en
Inventor
요르그 에이케메이어
디에트마르 셀브만
랄프 오피츠
버나드 홀차펠
Original Assignee
레이베니츠-인스티투트 푸어 페스트코르페르 운트 베르크스토프포르숭 드레스덴 에.파우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 레이베니츠-인스티투트 푸어 페스트코르페르 운트 베르크스토프포르숭 드레스덴 에.파우 filed Critical 레이베니츠-인스티투트 푸어 페스트코르페르 운트 베르크스토프포르숭 드레스덴 에.파우
Publication of KR20060119955A publication Critical patent/KR20060119955A/en
Application granted granted Critical
Publication of KR101231936B1 publication Critical patent/KR101231936B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Abstract

본원 발명은 큐브 재결정 집합조직을 가지는 니켈-기초 반제품 및 이들의 제조 방법과 용도에 관계한다. 반제품은 예컨대, 고도의 마이크로 구조 배열을 가지는 물리화학적 코팅을 위한 서포트로서 사용될 수 있다. 이러한 서포트는 예컨대, 고온 초전도체 분야에서 사용되는 것과 같은 세라믹 코팅을 위한 기판으로서 적절하다. 이러한 경우, 제품은 초전도 자석, 트랜스포머, 모터, 단층촬영기 및 초전도 전류 경로에서 사용된다. 본원 발명의 목적은 고도의 마이크로 구조 배열을 가지는 물리화학적 코팅을 위한 서포트로서 사용될 때 개선된 성능 특성을 가지는 니켈-기초 반제품을 제공하는 것이다. 특히 반제품은 실질적으로 결정 입도 그루빙의 형성을 저해하면서, 고급의, 열적으로 보다 안정한 큐브 구조를 가져야 한다. 이를 위하여, 마이크로합금 범위의 Ag가 반제품 재료에 첨가되고, 상기 첨가된 Ag는 0.3 원자% 이하이다. 본원 발명의 반제품은 예컨대, 고도의 마이크로 구조 배열을 가지는 물리화학적 코팅을 위한 서포트로서 적합하다. The present invention relates to nickel-based semifinished products having a cube recrystallized texture, and methods and uses for their preparation. Semifinished products can be used, for example, as a support for physicochemical coatings having a high microstructural arrangement. Such a support is suitable as a substrate for ceramic coatings, for example as used in the field of high temperature superconductors. In these cases, the product is used in superconducting magnets, transformers, motors, tomography and superconducting current paths. It is an object of the present invention to provide a nickel-based semifinished product having improved performance characteristics when used as a support for physicochemical coatings having a high microstructural arrangement. In particular, the semifinished product should have a higher, thermally more stable cube structure, substantially inhibiting the formation of grain size grooving. For this purpose, Ag in the microalloy range is added to the semifinished material, and the added Ag is 0.3 atomic% or less. The semifinished products of the invention are suitable, for example, as supports for physicochemical coatings having a high microstructural arrangement.

Description

큐브 재결정 집합조직을 갖는 니켈-기초 반제품 및 그 제조와 용도{NICKEL-BASED SEMIFINISHED PRODUCT HAVING A CUBE RECRYSTALLIZATION TEXTURE, CORRESPONDING METHOD OF PRODUCTION AND USE}NICKEL-BASED SEMIFINISHED PRODUCT HAVING A CUBE RECRYSTALLIZATION TEXTURE, CORRESPONDING METHOD OF PRODUCTION AND USE}

본 발명은 큐브 재결정 집합조직을 갖는 니켈-기초 반제품 및 그것의 제조 방법에 관한 것이다.The present invention relates to a nickel-based semifinished product having a cube recrystallized texture and a method for producing the same.

반제품은 예컨대 고도의 마이크로 조직구조로 정렬된 물리 화학적 코팅을 위한 베이스로 이용될 수 있다. 상기 베이스는 예를 들어 고온 초전도 분야에서 사용되는 것과 같은 세라믹 코팅용 기판으로 적합하다. 이러한 경우에 상기 반제품은 초전도 자석, 트랜스포머, 모터, 단층촬영기(tomograph) 또는 초전도 전류 경로에서 사용된다. Semifinished products can be used, for example, as a base for physicochemical coatings arranged in highly microstructured structures. The base is suitable as a substrate for ceramic coating, for example as used in high temperature superconducting applications. In this case the semifinished product is used in superconducting magnets, transformers, motors, tomographs or superconducting current paths.

큐브 표면 센터링된 그리드를 포함하는 다결정 금속, 즉 니켈, 구리 및 알루미늄 등은 롤링에 의해 선행하는 강한 냉간 단조 후 후속 재결정시 큐브 상태를 갖는 집합조직을 형성할 수 있음이 공지되어 있다(G. Wassermann: 금속 재료의 집합조직, Springer 출판사, 베를린, 1939). 상기 방식으로 집합조직된 금속 스트립, 특히 니켈 스트립은 금속 코팅, 세라믹 완충층(buffer layer) 및 세라믹 초전도층용 베이스로 이용된다. 상기 금속 스트립의 기판 재료로서 적합성은 주로 집합조직의 달성 정도 및 코팅 과정을 실행하는 온도 범위 내에서 집합조직의 안정성에 의존한다.It is known that polycrystalline metals comprising cube surface centered grids, ie nickel, copper and aluminum, etc., can form an aggregate with a cube state upon subsequent recrystallization after a strong cold forging preceded by rolling (G. Wassermann : Aggregation of Metallic Materials, Springer Press, Berlin, 1939. Metal strips assembled in this manner, in particular nickel strips, are used as bases for metal coatings, ceramic buffer layers and ceramic superconducting layers. Suitability of the metal strip as a substrate material mainly depends on the degree of achievement of the texture and the stability of the texture within the temperature range in which the coating process is carried out.

고온 초전도체의 제조를 위한 반제품이 공지되어 있으며, 상기 반제품은 Ni-Cr, Ni-Cr-V, Ni-Cu 및 유사한 합금으로 구성된다(US 5, 964, 966; US 6, 106, 615).Semi-finished products for the production of high temperature superconductors are known, which are composed of Ni-Cr, Ni-Cr-V, Ni-Cu and similar alloys (US 5, 964, 966; US 6, 106, 615).

이를 위해 Mo 및 W를 포함하는 Ni 합금도 공지되어 있다(DE 100 05 861 C1).Ni alloys containing Mo and W are also known for this purpose (DE 100 05 861 C1).

공지된 반제품은 하기 단점을 갖는다.Known semifinished products have the following disadvantages.

- 니켈은 냉간 단조 및 재결정 어닐링 후 고도의 큐브 집합조직을 달성하는데 바람직하지 않은 거친 구조를 형성하는 경향이 매우 강하다. Nickel has a very strong tendency to form coarse structures that are undesirable to achieve high cube texture after cold forging and recrystallization annealing.

- 냉간 단조된 Ni 스트립은 재결정 가열 처리 시, 특히 더 높은 온도(800 내지 1500℃)에서 결정 입도(grain boundary) 그래브(grave)가 형성되는 경향이 매우 강하다.Cold forged Ni strips have a very strong tendency to form grain boundary grabs, especially at higher temperatures (800-1500 ° C.) during recrystallization heat treatment.

- 결정 입도 그래브는 고도의 양축방향 큐브 집합조직의 형성을 뚜렷하게 저지할 수 있다.Grain size grabs can significantly prevent the formation of highly biaxial cube textures.

- 결정 입도 그래브를 포함하는 기판 재료는 애피텍셜 층 증착용, 예컨대 완충층 및 초전도층용 베이스로서 그다지 적합하지 않다.Substrate materials comprising grain size grabs are not very suitable as bases for epitaxial layer deposition, such as buffer and superconducting layers.

본 발명의 목적은 마이크로 조직구조로 정렬된 물리 화학적 코팅을 위한 베이스로 사용하기 위한 개선된 사용 특성을 갖는 니켈-기초 반제품을 제공하는 것이다. 특히 반제품은 고도의 그리고 열에 의한 안정된 큐브 집합조직을 가져야하고 결정 입도 그래브의 형성이 가능한 방지 되어야 한다. 상기 반제품의 제조 방법 제공도 상기 목적에 포함된다. It is an object of the present invention to provide a nickel-based semifinished product having improved use properties for use as a base for physicochemical coatings arranged in a microstructure. In particular, the semifinished product shall have a highly and thermally stable cube texture and should be prevented to form grain size grabs. It is also included in the object to provide a method for producing the semifinished product.

상기 목적은 반제품의 재료가 마이크로 합금 범위의 Ag 첨가제를 포함함으로써 달성되고, 이때 Ag 첨가제는 최대 0.3 atom-% 이다.This object is achieved by the material of the semifinished product comprising Ag additives in the microalloy range, wherein the Ag additive is at most 0.3 atom-%.

본 발명의 바람직한 실시예에 따라 Ni 합금은 합금 요소로서 Mo 및/또는 W를 포함할 수 있다. According to a preferred embodiment of the invention the Ni alloy may comprise Mo and / or W as the alloying element.

반제품에는 본 발명에 따라 90%를 넘는 집합조직의 양을 갖는 큐브 집합조직된 NiO 층이 제공될 수 있다. 상기 층은 확산 차단물로 적합하고 특히 산화 조건에서 질적으로 고품질의 코팅층을 형성할 수 있다.The semifinished product may be provided with a cube textured NiO layer having an amount of texture greater than 90% in accordance with the present invention. The layer is suitable as a diffusion barrier and can form a high quality coating layer, especially under oxidizing conditions.

본 발명에 따른 Ag 첨가제에 의해 고도의 큐브 집합조직의 형성이 지지되고 반제품의 Ni 표면에서 결정 입도 그래브의 형성이 방지된다. 또한, Ag 첨가제는 반제품에서 큐브 집합조직을 갖는 NiO 층에 의한 고도의 에피택셜 성장을 가능하게 한다. The Ag additive according to the present invention supports the formation of high cube texture and prevents the formation of grain size grabs on the Ni surface of the semifinished product. Ag additives also allow for high epitaxial growth by NiO layers with cube texture in semi-finished products.

반제품의 제조를 위한 본 발명에 따른 방법은 먼저 기계접 합금법(mechanical alloying)을 고려하여 제련 야금 또는 분말 야금 방법으로 반제품이 제조되는 것을 특징으로 하며, 상기 반제품은 기술적으로 마이크로 합금 범위의 Ag 첨가제가 포함된 순 Ni 또는 Ni 합금으로 구성되고, 상기 첨가제는 최대 0.3 atom-% 이다. 그리고 나서 상기 반제품은 열간 단조를 통해 80%가 넘는 두께 감소의 후속하는 고도의 냉간 단조에 의해 스트립 또는 평면 와이어로 가공된다. 최종적으로 상기 제품은 큐브 집합조직을 달성하기 위해 재결정화 어닐링될 수 있다. The method according to the invention for the production of semifinished products is characterized in that the semifinished products are first produced by smelting metallurgy or powder metallurgy, taking into account mechanical alloying, the semifinished products technically having an Ag additive in the microalloy range. It is composed of a pure Ni or Ni alloy containing, the additive is 0.3 atom-% at the maximum. The semifinished product is then processed into strips or flat wires by subsequent high cold forging with a thickness reduction of more than 80% through hot forging. Finally the product can be recrystallized annealed to achieve a cube texture.

재결정 어닐링 후 또는 중에 상기 제조된 반제품은 본 발명에 따라 큐브 집합조직된 NiO 층의 에피택셜 성장을 위해 산화 분위기에서 열처리될 수 있다. After or during recrystallization annealing, the semifinished product prepared above may be heat treated in an oxidizing atmosphere for epitaxial growth of the cube textured NiO layer according to the present invention.

반제품은 본 발명에 따라, 특히 와이어 또는 스트립 형태의 고온 초전도체를 제조하기 위해 고도의 마이크로 조직구조로 정렬된 물리 화학적 코팅을 위한 베이스로 사용될 수 있다. The semifinished product can be used according to the invention, in particular as a base for physicochemical coatings arranged in highly microstructured structures for the production of high temperature superconductors in the form of wires or strips.

본 발명은 하기에서 실시예에 의해 상세히 설명되고, 상기 실시예는 본 발명의 성공적인 실시를 나타낸다. 실시 결과의 일부는 도 1 및 도 2 및 하기 표 1에 기록되어 있다. The invention is illustrated in detail by the examples which follow, which illustrate the successful implementation of the invention. Some of the implementation results are recorded in FIGS. 1 and 2 and Table 1 below.

실시예 1Example 1

99.9 atom-% Ni의 순도를 갖는 기능상 순 니켈은 0.01 atom-% 은의 합금하에 다이 캐스트에 옮겨 부어진다. 잉곳(ingot)은 1000℃에서 입방체 구조(22 x 22)㎟ 로 롤링되고, 균일화되면서 어닐링되고 야금된다. 후속하여 입방체 재료는, 롤링에 의한 후속 냉간 단조를 위한 결함없는 표면을 얻기 위해 커팅 수정된다. 냉간 롤링은 80% 이상, 이 경우 99.6% 두께 감소의 롤링 정도로 실행된다. 얻어지는 니켈 스트립은 80 ㎛의 두께를 갖고 고도로 롤링된 집합조직을 갖는다. 이어서 550 ℃에서 30 분간 비산화 가스 분위기에서 어닐링 처리된다.Functionally pure nickel with a purity of 99.9 atom-% Ni is transferred to the die cast under an alloy of 0.01 atom-% silver. The ingot is rolled into a cube structure (22 × 22) mm 2 at 1000 ° C., annealed and metallized while homogenized. Subsequently the cube material is cut and modified to obtain a defect free surface for subsequent cold forging by rolling. Cold rolling is carried out to a degree of rolling of at least 80%, in this case 99.6% thickness reduction. The resulting nickel strip has a thickness of 80 μm and has a highly rolled texture. The annealing treatment is then performed at 550 ° C. for 30 minutes in a non-oxidizing gas atmosphere.

결과는 도 1에 따른 스트립에 알 수 있는 바와 같이, 매우 날카로운 큐브 재결정 집합조직이다. 큐브 상태를 갖는 미세결정의 양은 98% 이고 소각 결정 입도의 양은 마찬가지로 98% 이다. X-선 회절시 (111)-극의 강도의 반치폭은 FWHM = 4.4 °이다. The result is a very sharp cube recrystallized texture, as can be seen in the strip according to FIG. 1. The amount of microcrystals with a cube state is 98% and the amount of incinerated crystal grains is 98% as well. The full width at half maximum of the (111) -pole intensity upon X-ray diffraction is FWHM = 4.4 °.

실시예 2Example 2

99.9 atom-% Ni의 순도를 갖는 기능상 순 니켈은 0.01 atom-% 은의 합금하에 진공 유도로에서 용융되고 다이 캐스트에 옮겨 부어진다. 잉곳(ingot)은 1000℃에서 입방체 구조(22 x 22)㎟ 로 롤링되고, 균일 어닐링되고 야금된다. 후속하여 입방체 재료는, 롤링에 의한 후속 냉간 단조를 위한 결함없는 표면을 얻기 위해 커팅 수정된다. 냉간 롤링은 80% 이상, 이 경우 99.6% 두께 감소의 롤링 정도로 실행된다. 얻어지는 니켈 스트립은 80 ㎛의 두께를 갖고 고도로 롤링된 집합조직이다. 이어서 550 ℃에서 30분 동안 감소 가스 분위기에서 어닐링 처리된다.Functionally pure nickel with a purity of 99.9 atom-% Ni is melted in a vacuum induction furnace under an alloy of 0.01 atom-% silver and transferred to the die cast. The ingot is rolled into a cube structure (22 × 22) mm 2 at 1000 ° C., uniformly annealed and metallized. Subsequently the cube material is cut and modified to obtain a defect free surface for subsequent cold forging by rolling. Cold rolling is carried out to a degree of rolling of at least 80%, in this case 99.6% thickness reduction. The resulting nickel strip is a highly rolled texture with a thickness of 80 μm. It is then annealed in a reduced gas atmosphere at 550 ° C. for 30 minutes.

결과는 거의 완전한 큐브 재결정 집합조직이다. 후속하여 스트립은 순 산소 가스에서 1150 ℃에서 5분 동안 산화물에 노출된다. The result is a nearly complete cube recrystallization assembly. The strip is subsequently exposed to the oxide for 5 minutes at 1150 ° C. in pure oxygen gas.

발생되는 산화니켈층은 큐브 집합조직을 갖고, 입자의 97%는 큐브 상태를 갖는다. 상기 집합조직은 니켈 스트립의 집합조직에 대해 45°회전된다(도 2 참조). (111)-극의 반치폭은 6.2 °이다. The nickel oxide layer generated has a cube texture, and 97% of the particles have a cube state. The texture is rotated 45 ° relative to the texture of the nickel strip (see FIG. 2). The half width of the (111) -pole is 6.2 °.

실시예 3Example 3

기능상 순 니켈은 0.1 -% 은의 합금하에 용융되고 다이 캐스트에 옮겨 부어진다. 잉곳(ingot)은 1000℃에서 입방체 구조(22 x 22)㎟ 로 롤링되고, 균일 어닐링되고 야금된다. 후속하여 입방체 재료는, 롤링에 의한 후속 냉간 단조를 위한 결함 없는 표면을 얻기 위해 커팅 수정된다. 냉간 롤링은 85% 두께 감소의 롤링 정도로 실행된다. 얻어지는 니켈 스트립은 3mm 두께를 갖고 후속하여 재결정을 위해 850 ℃에서 30분 동안 어닐링 처리된다. 그리고 나서 표면이 세척되고 스트립은 80㎛ 두께로 냉간 변형된다. 후속하여 큐브 집합조직을 형성하기 위해 850℃에서 45분 이상 감소 분위기에서 어닐링된다. Functionally pure nickel is melted under an alloy of 0.1-% silver and transferred to the die cast. The ingot is rolled into a cube structure (22 × 22) mm 2 at 1000 ° C., uniformly annealed and metallized. Subsequently the cube material is cut and modified to obtain a defect free surface for subsequent cold forging by rolling. Cold rolling is carried out with a rolling degree of 85% thickness reduction. The resulting nickel strip is 3 mm thick and subsequently annealed at 850 ° C. for 30 minutes for recrystallization. The surface is then cleaned and the strip is cold deformed to 80 μm thickness. Subsequently anneal in a reducing atmosphere at 850 ° C. for at least 45 minutes to form a cube texture.

실시예 4Example 4

기능상 순 니켈 분말은 4.0 atom-% 텅스텐 분말 및 0.1 atom-% 은 분말을 첨가하여 분말 야금 공정된다. 가압, 템퍼링 및 열간 단조 후 (12 x 12)㎟의 바아(bar) 재료가 얻어진다. 롤링에 의한 후속 냉간 단조를 위한 결함 없는 표면을 얻기 위해 표면은 커팅 수정된다. 냉간 롤링은 (10 x 10)㎟의 크기로부터 80 ㎛ 두께의 제조크기까지 실행된다. 스트립의 에지 영역은 분리되어 흩어진다. 얻어지는 니켈 스트립은 재결정화를 위해 먼저 550 ℃에서 30분 동안 감소 가스 분위기에서 어닐링 처리된다. 그리고 나서 스트립은 열에 의한 높은 부하를 받을 수 있는 큐브 상태를 얻기 위해 8분 동안 1100 ℃에서 감소 분위기에서 제 2 어닐링 처리된다. Functionally pure nickel powder is a powder metallurgical process by adding 4.0 atom-% tungsten powder and 0.1 atom-% silver powder. After pressing, tempering and hot forging a bar material of (12 × 12) mm 2 is obtained. The surface is cut and modified to obtain a defect free surface for subsequent cold forging by rolling. Cold rolling is carried out from a size of (10 × 10) mm 2 to a manufacturing size of 80 μm thick. The edge regions of the strip are separated and scattered. The resulting nickel strip is first annealed in a reduced gas atmosphere at 550 ° C. for 30 minutes for recrystallization. The strip is then second annealed in a reduced atmosphere at 1100 ° C. for 8 minutes to obtain a cube state that can be subjected to high thermal loads.

하기 표 1에서 기판 5번 및 6번의 값은 선행 기술(기판 1번-4번)과 달리 FWHM(111) 값에 미치는 본 발명에 따른 Ag 첨가제의 긍적적 작용을 보여준다.In Table 1, the values of substrates 5 and 6 show the positive action of the Ag additive according to the present invention on the FWHM (111) value, unlike the prior art (substrate 1-4).

기판

Board

FWHM(111) 값 FWHM (111) value
재결정화Recrystallization 재결정화Recrystallization 550℃, 30분550 ° C, 30 minutes 850℃, 30분850 ° C, 30 minutes 1One NiNi 8.38.3 -- 22 Ni+0.1원자% MoNi + 0.1 Atom% Mo 7.47.4 7.27.2 33 Ni+0.1원자% WNi + 0.1 Atom% W 8.88.8 8.68.6 44 NiNi 7.97.9 6.86.8 55 Ni+0.05원자% Ag Ni + 0.05 Atom% Ag 4.84.8 5.15.1 66 Ni+0.01원자% AgNi + 0.01 Atom% Ag 4.44.4 5.35.3

Claims (6)

순 Ni 또는 Ni 합금으로 구성되는, 큐브 재결정 집합조직을 갖는 니켈-기초 스트립 또는 평면 와이어의 반제품에 있어서, In a semifinished product of a nickel-based strip or flat wire having a cube recrystallization texture composed of pure Ni or Ni alloy, 상기 순 Ni 또는 Ni 합금은 Ag 첨가제를 포함하고, 상기 Ag 첨가제는 0.1 내지 0.3 원자-%인 것을 특징으로 하는 큐브 재결정 집합조직을 갖는 니켈-기초 반제품.The pure Ni or Ni alloy comprises an Ag additive, the Ag additive is a nickel-based semi-finished product having a cube recrystallized texture, characterized in that 0.1 to 0.3 atomic-%. 삭제delete 제 1 항에 있어서, 집합조직된 부분이 90% 이상인 큐브 집합조직의 NiO 층이 상기 반제품에 제공되는 것을 특징으로 하는 큐브 재결정 집합조직을 갖는 니켈-기초 반제품.2. The nickel-based semifinished product with a cube recrystallized texture according to claim 1, wherein a NiO layer of cube texture having a texture portion of 90% or more is provided to the semifinished product. 먼저 기계적 합금법(mechanical alloying)을 포함하는 제련 야금 또는 분말 야금 방법으로 최대 0.3 원자-%인 Ag 첨가제가 포함된 순 Ni 또는 Ni 합금으로 구성된 반제품이 형성되고, 이후 상기 반제품은 80%가 넘는 두께 감소의 후속하는 냉간 단조를 포함하는 열간 단조에 의해 스트립 또는 평면 와이어로 가공되고, 마지막으로 상기 반제품은 큐브 집합조직을 달성하기 위해 재결정 어닐링되는, 제 1 항에 따른 반제품을 제조하는 방법. First, a smelt metallurgy or powder metallurgy method including mechanical alloying forms a semifinished product composed of pure Ni or Ni alloys containing Ag additives up to 0.3 atomic-%, and then the semifinished product has a thickness of more than 80%. A process for producing a semifinished product according to claim 1, wherein the semifinished product is processed into strips or flat wires by hot forging comprising a subsequent cold forging of reduction, and finally the semifinished product is recrystallized annealed to achieve a cube texture. 제 4 항에 있어서, 상기 반제품은 재결정 어닐링 후 또는 어닐링 중에 큐브 집합조직된 NiO 층의 에피택셜 성장을 위해 산화 분위기에서 열처리 되는 것을 특징으로 하는 반제품 제조 방법. The method according to claim 4, wherein the semifinished product is heat-treated in an oxidizing atmosphere for epitaxial growth of the cube textured NiO layer after recrystallization annealing or during annealing. 제 1 항에 있어서, 와이어 또는 스트립 형태의 고온 초전도체의 제조를 위한, 물리 화학적 코팅을 위한 베이스로서 사용되는 것을 특징으로 하는 큐브 재결정 집합조직을 갖는 니켈-기초 반제품.The nickel-based semifinished product with a cube recrystallization texture according to claim 1, which is used as a base for physicochemical coatings for the production of high temperature superconductors in the form of wires or strips.
KR1020067004924A 2003-09-10 2004-09-08 Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use KR101231936B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10342965.4 2003-09-10
DE10342965A DE10342965A1 (en) 2003-09-10 2003-09-10 Nickel-based semifinished product with a recrystallization cube texture and process for its production
PCT/EP2004/052083 WO2005024077A1 (en) 2003-09-10 2004-09-08 Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use

Publications (2)

Publication Number Publication Date
KR20060119955A KR20060119955A (en) 2006-11-24
KR101231936B1 true KR101231936B1 (en) 2013-02-08

Family

ID=34258719

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067004924A KR101231936B1 (en) 2003-09-10 2004-09-08 Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use

Country Status (7)

Country Link
US (1) US20070062613A1 (en)
EP (1) EP1664361A1 (en)
JP (1) JP4886514B2 (en)
KR (1) KR101231936B1 (en)
CN (1) CN100523238C (en)
DE (1) DE10342965A1 (en)
WO (1) WO2005024077A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060900A1 (en) * 2004-12-14 2006-06-29 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Nickel-based semi-finished product with cube texture and process for its production
DE102005013368B3 (en) 2005-03-16 2006-04-13 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Making nickel-based blank with cubic recrystallization structure for use as backing for high temperature superconductor, employs silver micro-alloying and specified thermal and mechanical treatments
KR100691061B1 (en) * 2005-08-30 2007-03-09 엘에스전선 주식회사 Substrate for superconducting wire and fabrication method thereof and superconducting wire
JP5330725B2 (en) * 2008-03-31 2013-10-30 古河電気工業株式会社 Superconducting wire substrate and manufacturing method thereof
DE102008001005B4 (en) 2008-04-04 2011-06-22 Karlsruher Institut für Technologie, 76131 A method for producing a composite layer with epitaxially grown layers of a magnetic shape memory material and composite layer with epitaxial layers of a magnetic shape memory material and its use
CN103194704B (en) * 2013-04-18 2015-04-08 重庆大学 Preparation method of low-cost nickel baseband with high cube texture content
KR101765729B1 (en) 2013-06-07 2017-08-07 파우데엠 메탈스 게엠베하 Method for the production of a metal foil
KR101804132B1 (en) * 2013-06-07 2017-12-04 파우데엠 메탈스 게엠베하 Method for producing a metal film
CN105220017A (en) * 2015-11-13 2016-01-06 无锡清杨机械制造有限公司 A kind of nickel alloy wire and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014953A1 (en) * 1994-11-14 1996-05-23 Sherritt Inc. Micron-sized nickel metal powder and a process for the preparation thereof
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2570355A (en) * 1949-04-09 1951-10-09 Low Sidney Metal alloy
US5741377A (en) * 1995-04-10 1998-04-21 Martin Marietta Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US6120624A (en) * 1998-06-30 2000-09-19 Howmet Research Corporation Nickel base superalloy preweld heat treatment
ES2220430T3 (en) * 1999-04-03 2004-12-16 Leibniz-Institut Fur Festkorper- Und Werkstoffforschung Dresden E.V. NICKEL BASED METAL MATERIAL AND PROCEDURE FOR PRODUCTION.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014953A1 (en) * 1994-11-14 1996-05-23 Sherritt Inc. Micron-sized nickel metal powder and a process for the preparation thereof
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon

Also Published As

Publication number Publication date
EP1664361A1 (en) 2006-06-07
JP4886514B2 (en) 2012-02-29
WO2005024077A1 (en) 2005-03-17
DE10342965A1 (en) 2005-06-02
CN100523238C (en) 2009-08-05
US20070062613A1 (en) 2007-03-22
KR20060119955A (en) 2006-11-24
CN1849403A (en) 2006-10-18
JP2007505215A (en) 2007-03-08
WO2005024077B1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP5064611B2 (en) Nickel-based metal material and method for producing the same
KR20140056003A (en) Cu-ni-co-si based copper alloy sheet materal and method for producing the same
JP2001518681A (en) Substrate with improved oxidation resistance
JP2005532477A (en) Copper alloy containing cobalt, nickel and silicon
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
JP7342957B2 (en) Pure copper plate, copper/ceramic bonded body, insulated circuit board
JP5354906B2 (en) Nickel-based semi-finished product having a cubic texture and its manufacturing method
KR101231936B1 (en) Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use
US8465605B2 (en) Method for the production and use of semi-finished products on the basis of nickel, having a recrystallization cube texture
KR100877760B1 (en) Method for producing metallic strips
CN111286703B (en) Nickel-platinum alloy sputtering target material and preparation method thereof
KR101288592B1 (en) Method of manufacturing an oxide dispersion strengthened platinum-rhodium alloy
KR20140091701A (en) High-purity copper-chromium alloy sputtering target
JP7242996B2 (en) Copper alloy
JP5330725B2 (en) Superconducting wire substrate and manufacturing method thereof
RU2624564C2 (en) Manufacture method of biaxial textured support plate from triple alloy on copper-nickel basis
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JPS6333563A (en) Production of pt-ni alloy for sputtering
KR101419443B1 (en) Method of an oxide dispersion strengthened platinum-gold alloy
WO2014132857A1 (en) High-purity copper-cobalt alloy sputtering target
RU2451766C1 (en) Method for biaxial textured substrate production from binary alloy on basis of nickel for epitaxial application of buffer and high-temperature superconductive layers for ribbon superconductors to substrate
RU2481674C1 (en) Method to manufacture substrate for high-temperature thin-film superconductors and substrate
RU2759146C1 (en) Method for manufacturing biaxially textured substrate in the form of copper-nickel-based triple alloy tape for epitaxial deposition of buffer and high-temperature superconducting layers on it
JPH0593230A (en) Lead frame material
CN114381631A (en) Target material for coating and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee