US20070062613A1 - Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use - Google Patents

Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use Download PDF

Info

Publication number
US20070062613A1
US20070062613A1 US10/571,245 US57124504A US2007062613A1 US 20070062613 A1 US20070062613 A1 US 20070062613A1 US 57124504 A US57124504 A US 57124504A US 2007062613 A1 US2007062613 A1 US 2007062613A1
Authority
US
United States
Prior art keywords
semi
finished product
nickel
base
grade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/571,245
Inventor
Joerg Eickemeyer
Dietmar Selbmann
Ralph Opitz
Bernhard Holzapfel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Original Assignee
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV filed Critical Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Assigned to LEIBNIZ-INSTITUT FUER FESTKOERPER-UND WERKSTOFFFORSCHUNG DRESDEN E.V. reassignment LEIBNIZ-INSTITUT FUER FESTKOERPER-UND WERKSTOFFFORSCHUNG DRESDEN E.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SELBMANN, DIETMAR, OPITZ, RALPH, HOLZAPFEL, BERNHARD, EICKEMEYER, JOERG
Publication of US20070062613A1 publication Critical patent/US20070062613A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention relates to a semi-finished product on a nickel basis with a cubic recrystallization texture and a method for its production.
  • the semi-finished product can be used, for example, as a base for physical, chemical coatings with a high-grade microstructural alignment.
  • bases are suitable, for example, as substrates for ceramic coatings, as used in the field of high-temperature superconduction.
  • such bases are used in superconducting magnets, transformers, motors, tomographs or superconducting current paths.
  • Nickel alloys with molybdenum and tungsten are also known for these purposes (DE 100 05 861 C1).
  • the semi-finished product is to have a higher grade, thermally more stable cubic texture and the formation of rifts at grain boundaries is to be largely avoided.
  • the development of a method for the preparation of this semi-finished product is included in this task.
  • This objective is accomplished owing to the fact that the material of the semi-finished product contains an addition of silver in the micro-alloying range, the addition of silver not exceeding 0.3 atom percent.
  • the nickel alloy may contain molybdenum and/or tungsten as alloying elements.
  • a cubic textured nickel oxide layer with a textured portion of more than 90% on the inventive semi-finished product may be a cubic textured nickel oxide layer with a textured portion of more than 90% on the inventive semi-finished product.
  • This layer is suitable as a diffusion barrier and enables qualitatively high-grade coatings to be produced, especially under oxidizing conditions.
  • the formation of a high-grade cubic texture is favored and the thermal formation of grain boundary rifts on the nickel surface of the semi-finished product is hindered by the inventive addition of silver. Moreover, the addition of silver enables a high-grade nickel oxide layer, which is provided with a cubic texture, to be grown on the semi-finished product.
  • a feature of the inventive method of preparing the semi-finished product is that, initially, by melt metallurgical or powder metallurgical means, including mechanical alloying, a semi-finished product is prepared, which consists of technically pure nickel or a nickel alloy, in which a silver addition in the micro-alloying range is contained in an amount of less than 0.3 atom percent. Subsequently, the semi-finished product is processed by means of hot working, followed by a high-grade cold working involving a more than 80% reduction in thickness to a strip or flat wire. Finally, this semi-finished product is subjected to a recrystallizing annealing in order to achieve a cubic texture.
  • the semi-finished product, so prepared may be heat treated pursuant to the invention in an oxidizing atmosphere for the purpose of growing a cubic textured nickel oxide layer.
  • the semi-finished product may be used as a base for physical, chemical coatings with a high-grade microstructural alignment, especially for the production of wire-shaped or strip-shaped, high-temperature superconductors.
  • FIG. 1 is a photograph depicting sharp recrystallization cubic texture
  • FIGS. 2 ( a ) and 2 ( b ) are photographs rotated 45° with respect to the texture of the nickel strip.
  • the resulting nickel oxide layer has a cubic texture, 97% of the grains having the cubic state. This texture is rotated through 45° with respect to the texture of the nickel strip (see FIGS. 2 ( a ) and 2 ( b )).
  • the FWHM value of the (111) pole is of the order of 6.2°.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A nickel-based semifinished product has a cube recrystallization texture and the semifinished product can e.g. be used as a support for physicochemical coatings having a highly microstructured orientation. Such supports are e.g. suitable as substrates for ceramic coatings such as are used in the field of high-temperature supraconductivity. In this case, the product is used in supraconducting magnets, transformers, motors, tomographs and supraconducting current paths. There is provided a nickel-based semifinished product that has improved performance characteristics when used as a support for physicochemical coatings having a highly microstructured orientation. Especially the semifinished product should have a higher-grade, thermally more stable cube texture while substantially preventing the formation of grain boundary grooving. For this purpose, Ag in the microalloy range is added to the material of the semifinished product, the added Ag being not more than 0.3 atomic percent. The inventive semifinished product is e.g. suitable as a support for physicochemical coatings having a highly microstructured orientation.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates to a semi-finished product on a nickel basis with a cubic recrystallization texture and a method for its production.
  • The semi-finished product can be used, for example, as a base for physical, chemical coatings with a high-grade microstructural alignment. Such bases are suitable, for example, as substrates for ceramic coatings, as used in the field of high-temperature superconduction. In this case, such bases are used in superconducting magnets, transformers, motors, tomographs or superconducting current paths.
  • It is known that polycrystalline metals with a cubic, face-centered lattice, such as nickel, copper and aluminum, after a prior high-grade cold working by rolling, can develop a pronounced texture with a cubic layer during the subsequent recrystallization (G. Wasserman: Texturen metallischer Werkstoffe (Textures of Metallic Materials), Springer, Berlin, 1939). Metallic strip textured in this way, especially nickel strips, are also used as a base for metallic coatings, ceramic buffer layers and ceramic superconducting layers (U.S. Pat. No. 5,741,377). The suitability of such metal strip as a substrate material depends primarily on the achievable degree of texturing and on the stability of the texture in the region of the temperatures, at which the collecting processes are carried out.
  • Semi-finished products for the preparation of high-temperature superconductors are already known and consist of Ni—Cr, Ni—Cr—V, Ni—Cu and similar alloys (U.S. Pat. Nos. 5,964,966 and 6,106,615).
  • Nickel alloys with molybdenum and tungsten are also known for these purposes (DE 100 05 861 C1).
  • The known semi-finished products have the following disadvantages:
      • after a cold working process and recrystallization annealing, nickel has a great tendency to form a coarse grain structure, which is disadvantageous for achieving the high-great cubic texture;
      • during the recrystallization heat treatment, especially at higher temperatures (800° to 1150° C.) cold worked nickel strip has a great tendency to form rifts at grain boundaries;
      • the rifts at grain boundaries may represent an appreciable impediment to the formation of a high-grade, biaxial cubic texture; and
      • substrate material with rifts at grain boundaries is less suitable as a base for epitaxial layer depositions, for example, for buffer layers and superconducting layers.
    SUMMARY OF THE INVENTION
  • It is an object of the invention to develop a semi-finished product on a nickel basis, which has improved use properties for use as a base for physical, chemical coatings with a high-grade microstructural alignment. In particular, the semi-finished product is to have a higher grade, thermally more stable cubic texture and the formation of rifts at grain boundaries is to be largely avoided. The development of a method for the preparation of this semi-finished product is included in this task.
  • This objective is accomplished owing to the fact that the material of the semi-finished product contains an addition of silver in the micro-alloying range, the addition of silver not exceeding 0.3 atom percent.
  • In accordance with an appropriate development of the invention, the nickel alloy may contain molybdenum and/or tungsten as alloying elements.
  • There may be a cubic textured nickel oxide layer with a textured portion of more than 90% on the inventive semi-finished product. This layer is suitable as a diffusion barrier and enables qualitatively high-grade coatings to be produced, especially under oxidizing conditions.
  • The formation of a high-grade cubic texture is favored and the thermal formation of grain boundary rifts on the nickel surface of the semi-finished product is hindered by the inventive addition of silver. Moreover, the addition of silver enables a high-grade nickel oxide layer, which is provided with a cubic texture, to be grown on the semi-finished product.
  • A feature of the inventive method of preparing the semi-finished product is that, initially, by melt metallurgical or powder metallurgical means, including mechanical alloying, a semi-finished product is prepared, which consists of technically pure nickel or a nickel alloy, in which a silver addition in the micro-alloying range is contained in an amount of less than 0.3 atom percent. Subsequently, the semi-finished product is processed by means of hot working, followed by a high-grade cold working involving a more than 80% reduction in thickness to a strip or flat wire. Finally, this semi-finished product is subjected to a recrystallizing annealing in order to achieve a cubic texture.
  • Subsequently or during the recrystallizing annealing, the semi-finished product, so prepared, may be heat treated pursuant to the invention in an oxidizing atmosphere for the purpose of growing a cubic textured nickel oxide layer.
  • Pursuant to the invention, the semi-finished product may be used as a base for physical, chemical coatings with a high-grade microstructural alignment, especially for the production of wire-shaped or strip-shaped, high-temperature superconductors.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a photograph depicting sharp recrystallization cubic texture; and
  • FIGS. 2(a) and 2(b) are photographs rotated 45° with respect to the texture of the nickel strip.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The invention is explained in greater detail below, by means of examples, which show the successful testing of the invention. A portion of the test results is documented in FIGS. 1 and 2 and in Table 1 below.
  • Example 1
  • Technically pure nickel, which has a degree of purity of 99.9 atom percent and has been alloyed with 0.01 atom percent of silver, is cast in a mold. The ingot is rolled at 1000° C. into the square dimension (22×22 mm2), annealed to homogenize it and quenched. Subsequently, the square material is reworked with chip removal in order to obtain a defect-free surface for the subsequent cold working by rolling. The cold working is carried out with a reduction in thickness by rolling of more than 80%, in this case, 99.6%. The resulting nickel strip has a thickness of 80 mm and a high-grade, rolled texture. It is subsequently subjected to a 30-minute annealing treatment at 550° C. in a non-oxidizing gas atmosphere.
  • The result is an exceptionally sharp recrystallization cubic texture, as is evident from the photograph of FIG. 1. The proportion of crystallites with a cubic state is 98% and the proportion of small angle grain boundaries also is 98%. The half value width of the intensity of the (111) pole in X-ray diffraction is FWHM=4.4°.
  • Example 2
  • Technically pure nickel, which has a degree of purity of 99.9 atom percent and has been alloyed with 0.01 atom percent of silver, is melted in a vacuum induction furnace and poured into a mold. The ingot is rolled at 1000° C. to the square dimension (22×22 mm2), annealed to homogenize it and quenched. Subsequently, the square material is reworked with chip removal in order to obtain a defect-free surface for the subsequent cold working by rolling. The cold working is carried out with a reduction in thickness by rolling of more than 80%, in this case, 99.6%. The resulting nickel strip has a thickness of 80 mm and a high-grade, rolled texture. It is subsequently subjected to a 30-minute annealing treatment at 550° C. in a reducing gas atmosphere.
  • The result is an almost complete recrystallization cubic texture. Subsequently, the strip is exposed to a 5-minute oxidation in pure oxygen gas at 1150° C.
  • The resulting nickel oxide layer has a cubic texture, 97% of the grains having the cubic state. This texture is rotated through 45° with respect to the texture of the nickel strip (see FIGS. 2(a) and 2(b)). The FWHM value of the (111) pole is of the order of 6.2°.
  • Example 3
  • Technically pure nickel, which has been alloyed with 0.01 atom percent of silver, is melted and cast in a mold. The ingot is rolled at 1000C into the square dimension (22×22 mm2), annealed to homogenize it and quenched. Subsequently, the square material is reworked with chip removal in order to obtain a defect-free surface for the subsequent cold working by rolling. The cold working is carried out with a reduction in thickness by rolling of 85%. The resulting nickel strip has a thickness of 3 mm and is subsequently subjected to a 30-minute annealing treatment at 850° C. for recrystallization. After that, the surface is cleaned and the strip is worked further cold to a thickness of 80 mm. Finally, it is annealed at 850° C. for 45 minutes in a reducing atmosphere in order to produce the cubic texture.
  • Example 4
  • Technically pure nickel, with the addition of 4.0 atom percent of tungsten powder and 0.1 atom percent of silver powder, is processed by powder metallurgical means. After compression, tempering and hot working, a rod material (12×12 mm2) is obtained. The surface is reworked with chip removal, in order to obtain a defect-free surface for the following cold working by rolling. Starting from dimensions of 10×10 mm2, the cold rolling is carried out until the finished product has a thickness of 80 mm. The edge regions of the strip are severed and discarded. The nickel strip obtained is subsequently subjected to a 30 minute annealing at 550° C. in a reducing atmosphere for the recrystallization. Subsequently, the strip is annealed a second time for 8 minutes at 1100° C. in a reducing atmosphere, in order to obtain a thermally highly stressable cubic state.
  • With the values of the substrates Nos. 5 and 6, the Table 1 below shows the positive effect of the inventive addition of silver on the FWHM (111) values in comparison with the state of the art (substrates Nos. 1 to 4).
    TABLE 1
    FWHM (111) Value
    Recrystallized Recrystallized
    Substrate at 550° C. for 30 minutes at 850° C. for 30 minutes
    1 Ni 8.3°
    2 Ni + 0.1 7.4° 7.2°
    atom % of Mo
    3 Ni + 0.1 8.8° 8.6°
    atom % of W
    4 Ni 7.9° 6.8°
    5 Ni + 0.95 4.8° 5.1°
    atom % of Ag
    6 Ni + 0.01 4.4° 5.3°
    atom % of Ag

Claims (17)

1.-6. (canceled)
7. A semi-finished product on a nickel basis, comprising:
a nickel-based material including one of technically pure nickel and a nickel alloy; and
silver added to said nickel-based material in a micro-alloying range not exceeding 0.3 atom percent, said semi-finished product having a cubic recrystallization texture.
8. A semi-finished product according to claim 7, wherein:
said nickel-based material is said nickel alloy; and
said nickel alloy contains at least one of molybdenum and tungsten as alloying elements.
9. A semi-finished product according to claim 7, wherein a cubic textured nickel oxide layer with a textured portion of more than 90% is present on said semi-finished product.
10. A semi-finished product according to claim 8, wherein a cubic textured nickel oxide layer with a textured portion of more than 90% is present on said semi-finished product
11. A semi-finished product according to claim 7, wherein said semi-finished product serves as a base for chemical coatings, said semi-finished product further comprising a physical chemical coating on said base, said chemical coating having a high-grade microstructural alignment.
12. A semi-finished product according to claim 111 wherein said base and coating define, at least in part, one of a flat wire high-temperature superconductor and a strip-shaped high-temperature superconductor.
13. A semi-finished product according to claim 8, wherein said semi-finished product serves as a base for chemical coatings, said semi-finished product further comprising a physical chemical coating on said base, said chemical coating having a high-grade microstructural alignment.
14. A semi-finished product according to claim 13 wherein said base and coating define, at least in part, one of a flat wire high-temperature superconductor and a strip-shaped high-temperature superconductor.
15. A semi-finished product according to claim 9, wherein said semi-finished product serves as a base for chemical coatings, said semi-finished product further comprising a physical chemical coating on said base, said chemical coating having a high-grade microstructural alignment.
16. A semi-finished product according to claim 15 wherein said base and coating define, at least in part, one of a flat wire high-temperature superconductor and a strip-shaped high-temperature superconductor.
17. A method for the production of a semi-finished product, comprising:
adding silver to a nickel-based material in a micro-alloying range which does not exceed 0.3 atom %, said nickel-based material including one of technically pure nickel and a nickel alloy;
processing said semi-finished product by hot working;
carrying out high-grade cold working of more than an 80% reduction in thickness of said semi-finished product; and
subjecting said semi-finished product to a recrystallizing annealing to achieve a substantially cubic texture.
18. A method according to claim 17, wherein said step of adding includes one of melt metallurgical and powder metallurgical processes.
19. A method according to claim 17, wherein said step of carrying out high-grade cold working results in forming of said semi-finished product into one of a strip and flat wire.
20. A method according to claim 17, further comprising heat treating the semi-finished product in an oxidizing atmosphere one of during and after said step of subjecting said semi-finished product to the recrystallizing annealing, for the purpose of growing a cubic textured nickel oxide layer.
21. A method according to claim 17, further comprising:
forming the semi-finished product into a base; and
coating said base with a physical chemical coating having a high-grade microstructural alignment.
22. A method according to claim 21, wherein said step of forming creates a shape of said base suitable for use as at least one of a flat wire high-temperature superconductor and a strip-shaped high-temperature superconductor.
US10/571,245 2003-09-10 2004-09-08 Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use Abandoned US20070062613A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10342965A DE10342965A1 (en) 2003-09-10 2003-09-10 Nickel-based semifinished product with a recrystallization cube texture and process for its production
DE10342965.4 2003-09-10
PCT/EP2004/052083 WO2005024077A1 (en) 2003-09-10 2004-09-08 Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use

Publications (1)

Publication Number Publication Date
US20070062613A1 true US20070062613A1 (en) 2007-03-22

Family

ID=34258719

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/571,245 Abandoned US20070062613A1 (en) 2003-09-10 2004-09-08 Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use

Country Status (7)

Country Link
US (1) US20070062613A1 (en)
EP (1) EP1664361A1 (en)
JP (1) JP4886514B2 (en)
KR (1) KR101231936B1 (en)
CN (1) CN100523238C (en)
DE (1) DE10342965A1 (en)
WO (1) WO2005024077A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008000A1 (en) * 2005-03-16 2009-01-08 Leibniz-Institut Für Festkörper-Und Werkstoffforsc Method for the Production and Use of Semi-Finished Products on the Basis of Nickel, Having a Recrystallization Cube Texture
DE102008001005A1 (en) 2008-04-04 2009-10-22 Forschungszentrum Karlsruhe Gmbh Method for the production of layered composite with epitactically grown layer made of magnetic shape-memory material, comprises subjecting a sacrificial layer on one- or multilayered substrate
CN103194704A (en) * 2013-04-18 2013-07-10 重庆大学 Preparation method of low-cost nickel baseband with high cube texture content
US10676808B2 (en) 2013-06-07 2020-06-09 VDM Metals GmbH Method for producing a metal film
US10923248B2 (en) 2013-06-07 2021-02-16 Vdm Metals International Gmbh Method for producing a metal film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060900A1 (en) * 2004-12-14 2006-06-29 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Nickel-based semi-finished product with cube texture and process for its production
KR100691061B1 (en) * 2005-08-30 2007-03-09 엘에스전선 주식회사 Substrate for superconducting wire and fabrication method thereof and superconducting wire
JP5330725B2 (en) * 2008-03-31 2013-10-30 古河電気工業株式会社 Superconducting wire substrate and manufacturing method thereof
CN105220017A (en) * 2015-11-13 2016-01-06 无锡清杨机械制造有限公司 A kind of nickel alloy wire and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2570355A (en) * 1949-04-09 1951-10-09 Low Sidney Metal alloy
US5741377A (en) * 1995-04-10 1998-04-21 Martin Marietta Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584908A (en) * 1994-11-14 1996-12-17 Sherritt Inc. Micron-sized nickel metal powder and a process for the preparation thereof
US6120624A (en) * 1998-06-30 2000-09-19 Howmet Research Corporation Nickel base superalloy preweld heat treatment
JP5064611B2 (en) * 1999-04-03 2012-10-31 インスティトゥート フュア フェストケルパー− ウント ヴェルクシュトッフオルシュング ドレースデン エー ファウ Nickel-based metal material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2570355A (en) * 1949-04-09 1951-10-09 Low Sidney Metal alloy
US5741377A (en) * 1995-04-10 1998-04-21 Martin Marietta Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
US6106615A (en) * 1997-09-19 2000-08-22 Goyal; Amit Method of forming biaxially textured alloy substrates and devices thereon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008000A1 (en) * 2005-03-16 2009-01-08 Leibniz-Institut Für Festkörper-Und Werkstoffforsc Method for the Production and Use of Semi-Finished Products on the Basis of Nickel, Having a Recrystallization Cube Texture
US8465605B2 (en) 2005-03-16 2013-06-18 Leibniz-Institut Für Festkörper-Und Werkstoffforschung Dresden E.V. Method for the production and use of semi-finished products on the basis of nickel, having a recrystallization cube texture
DE102008001005A1 (en) 2008-04-04 2009-10-22 Forschungszentrum Karlsruhe Gmbh Method for the production of layered composite with epitactically grown layer made of magnetic shape-memory material, comprises subjecting a sacrificial layer on one- or multilayered substrate
CN103194704A (en) * 2013-04-18 2013-07-10 重庆大学 Preparation method of low-cost nickel baseband with high cube texture content
US10676808B2 (en) 2013-06-07 2020-06-09 VDM Metals GmbH Method for producing a metal film
US10923248B2 (en) 2013-06-07 2021-02-16 Vdm Metals International Gmbh Method for producing a metal film

Also Published As

Publication number Publication date
EP1664361A1 (en) 2006-06-07
WO2005024077B1 (en) 2005-08-25
CN100523238C (en) 2009-08-05
WO2005024077A1 (en) 2005-03-17
JP4886514B2 (en) 2012-02-29
JP2007505215A (en) 2007-03-08
KR101231936B1 (en) 2013-02-08
KR20060119955A (en) 2006-11-24
DE10342965A1 (en) 2005-06-02
CN1849403A (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP5064611B2 (en) Nickel-based metal material and method for producing the same
JP5355545B2 (en) Metal foil
JP2001518681A (en) Substrate with improved oxidation resistance
JP2002540295A (en) Alloy material
JP2004339585A (en) Ag-Bi-BASED ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR
JP2001518564A (en) Superconductor substrate
WO2021177470A1 (en) Pure copper plate
JP7094151B2 (en) Oxygen-free copper plate and ceramic wiring board
JP5354906B2 (en) Nickel-based semi-finished product having a cubic texture and its manufacturing method
JP7342957B2 (en) Pure copper plate, copper/ceramic bonded body, insulated circuit board
US8465605B2 (en) Method for the production and use of semi-finished products on the basis of nickel, having a recrystallization cube texture
KR100877760B1 (en) Method for producing metallic strips
US20070062613A1 (en) Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use
EP1108796A1 (en) Article based on a metal alloy of nickel, chromium and metalloid elements including microcrystalline precipitates, metal alloy and preparation method
KR20180125484A (en) Copper alloy and manufacturing method thereof
JP2710948B2 (en) Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same
Eickemeyer et al. Textured Ni–7.5 at.% W substrate tapes for YBCO-coated conductors
JP5330725B2 (en) Superconducting wire substrate and manufacturing method thereof
US20070234542A1 (en) Method for Producing Metallic Flat Wires or Strips with a Cube Texture
Cui et al. Effect of different deformation and annealing procedures on non-magnetic textured Cu 60 Ni 40 alloy substrates
RU2481674C1 (en) Method to manufacture substrate for high-temperature thin-film superconductors and substrate
RU2451766C1 (en) Method for biaxial textured substrate production from binary alloy on basis of nickel for epitaxial application of buffer and high-temperature superconductive layers for ribbon superconductors to substrate
JP6537131B2 (en) Iron plate and method of manufacturing the same
JP7120389B1 (en) Copper alloy plastic working materials, copper alloy wire rods, parts for electronic and electrical equipment, terminals

Legal Events

Date Code Title Description
AS Assignment

Owner name: LEIBNIZ-INSTITUT FUER FESTKOERPER-UND WERKSTOFFFOR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EICKEMEYER, JOERG;SELBMANN, DIETMAR;OPITZ, RALPH;AND OTHERS;REEL/FRAME:018010/0858;SIGNING DATES FROM 20060406 TO 20060515

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION