JPH0331780B2 - - Google Patents

Info

Publication number
JPH0331780B2
JPH0331780B2 JP58132124A JP13212483A JPH0331780B2 JP H0331780 B2 JPH0331780 B2 JP H0331780B2 JP 58132124 A JP58132124 A JP 58132124A JP 13212483 A JP13212483 A JP 13212483A JP H0331780 B2 JPH0331780 B2 JP H0331780B2
Authority
JP
Japan
Prior art keywords
resistance
thin film
tantalum
chromium
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58132124A
Other languages
Japanese (ja)
Other versions
JPS6024343A (en
Inventor
Yoshio Hara
Masamitsu Saito
Hideyuki Suzuki
Masaru Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEE KK
Original Assignee
TAISEE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEE KK filed Critical TAISEE KK
Priority to JP58132124A priority Critical patent/JPS6024343A/en
Publication of JPS6024343A publication Critical patent/JPS6024343A/en
Publication of JPH0331780B2 publication Critical patent/JPH0331780B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はタンタル(Ta)、クロム(Cr)および
アルミニウム(Al)の3成分よりなり、抵抗温
度係数を所望の値に設定することができ、しかも
バラツキが小さく安定度の優れた金属薄膜抵抗体
に関する。 近年薄膜抵抗体の進歩は目ざましいものがあり
安定度の高い抵抗体として窒化タンタル薄膜抵抗
体が開発され、また、高い固有抵抗をもつ抵抗体
としてCr−SiOサーメツトが実用化されている。
すなわち窒化タンタル薄膜抵抗体は良好な抵抗温
度係数とすぐれた安定性をもつている。窒化タン
タル薄膜を生成するには通常活性スパツタリング
法が用いられ、真空槽内に微量の活性ガスの導入
とその制御に厳密な管理を必要とする。またCr
−SiOサーメツト抵抗体は比較的高い固有抵抗を
有するがその安定度が低く、再現性が悪いなどの
製造技術上の問題も多い。 ところで、さきに発明されたシリコンと、タン
タル、ニオブ、チタン、ジルコン、モリブデン、
タングステン等の中の1つとの2成分系薄膜抵抗
体は一応上記の欠陥を補い、現状では最もすぐれ
た薄膜抵抗体として高く評価できるものである。
すなわち、熱処理温度を調整することにより広い
固有抵抗範囲に亘り低い抵抗温度係数をもつこと
ができるものである。 しかしながら抵抗体の安定度は熱処理温度に関
係し、高い安定度を求めようとすれば熱処理温度
も高くなり、その時の低い抵抗温度係数に対応す
る組成または固有抵抗は自ら決定されて選択の自
由はなくなる。 こゝでシリコン合金薄膜抵抗体の一例として、
シリコン−タンタル合金薄膜抵抗体の熱処理温度
と安定度の関係を説明する。 第1図の曲線Aはシリコン−タンタル合金薄膜
抵抗体の組成に対する固有抵抗ρ(μΩ・cm)を
示し、同じく曲線Bは抵抗温度係数TCR(ppm/
℃)をあらわしている。なお、横軸はシリコンの
組成比(%)を示し図中のA′、B′はそれぞれ真
空中において650℃で熱処理した後の値を示す曲
線である。第1図からわかるように、シリコン含
有量18〜65原子%のものは適当な熱処理により抵
抗温度係数が殆んど0のものが得られることが示
されている。ここでシリコン含有量と熱処理温度
を変えて抵抗温度係数の小さい試料を第1表のNo.
1〜No.4に示す。なお、No.5は比較のために試料
No.1と同じものを真空中650℃で熱処理したもの
である。
The present invention is a metal thin film resistor that is made of three components: tantalum (Ta), chromium (Cr), and aluminum (Al), and has a resistance temperature coefficient that can be set to a desired value, and has small variations and excellent stability. Regarding. In recent years, there has been remarkable progress in thin film resistors, and tantalum nitride thin film resistors have been developed as highly stable resistors, and Cr-SiO cermets have been put into practical use as resistors with high specific resistance.
That is, tantalum nitride thin film resistors have a good resistance temperature coefficient and excellent stability. The active sputtering method is usually used to produce tantalum nitride thin films, which requires the introduction of a small amount of active gas into a vacuum chamber and strict control of its control. Also Cr
-SiO cermet resistors have relatively high resistivity, but they have low stability and many problems in manufacturing technology, such as poor reproducibility. By the way, silicon, which was invented earlier, tantalum, niobium, titanium, zircon, molybdenum,
A two-component thin film resistor containing one of tungsten or the like compensates for the above-mentioned deficiencies and can be highly evaluated as the most excellent thin film resistor at present.
That is, by adjusting the heat treatment temperature, it is possible to have a low temperature coefficient of resistance over a wide range of resistivity. However, the stability of a resistor is related to the heat treatment temperature, and if you want high stability, the heat treatment temperature will also be high, and the composition or specific resistance that corresponds to the low temperature coefficient of resistance at that time is determined by yourself, and there is no freedom of choice. It disappears. Here, as an example of a silicon alloy thin film resistor,
The relationship between heat treatment temperature and stability of a silicon-tantalum alloy thin film resistor will be explained. Curve A in Figure 1 shows the specific resistance ρ (μΩ cm) for the composition of the silicon-tantalum alloy thin film resistor, and curve B shows the temperature coefficient of resistance TCR (ppm/cm).
℃). The horizontal axis indicates the composition ratio (%) of silicon, and A' and B' in the figure are curves indicating the values after heat treatment at 650° C. in vacuum, respectively. As can be seen from FIG. 1, it has been shown that when the silicon content is 18 to 65 atomic %, a temperature coefficient of resistance of almost 0 can be obtained by appropriate heat treatment. Here, we changed the silicon content and heat treatment temperature to create a sample with a small resistance temperature coefficient as No. 1 in Table 1.
Shown in Nos. 1 to 4. In addition, No. 5 is a sample for comparison.
The same material as No. 1 was heat treated at 650°C in vacuum.

【表】 第1表の試料を150℃の恒温槽つに1000時間放
置した後の抵抗値変化を測定したら第2表のよう
になつた。この表より明らかなように抵抗体の安
定性は熱処理温度に大きく依存しており、組成比
の影響は少ないことがわかる。
[Table] When the samples in Table 1 were left in a constant temperature bath at 150°C for 1000 hours, the changes in resistance values were measured and the results were as shown in Table 2. As is clear from this table, the stability of the resistor largely depends on the heat treatment temperature, and the composition ratio has little influence.

【表】 他のシリコン・金属系薄膜抵抗体についても
ほゞ同様な結果が認められた。すなわち、2成分
系合金薄膜抵抗体においては最も安定な熱処理を
行ない、小さい抵抗温度係数を求めると固有抵抗
と組成は自から定まつてしまい、そのため薄膜集
積回路の設計および個別抵抗器の製造上大きな制
約を受ける欠点があつた。 本発明は、上記従来の欠点に鑑みなされたもの
で、3成分よりなる合金薄膜を用いて構成した抵
抗体であつて、組成比を変え熱処理を施すことに
よつて、バラツキの少ない高い安定度と低い抵抗
温度係数をもち、熱処理温度を変化させることに
より抵抗温度係数を変化させることができる金属
薄膜抵抗体を提供することを目的とする。 このような目的を達成するために本発明者は三
元系の抵抗体用合金について鋭意研究の結果、タ
ンタル・クロム・アルミニウムの三元系合金が、
適当な組成比を選択することによつて熱処理を行
なわなくてもTCRを0±100ppm/℃の範囲とす
ることができることを見出し、本発明に至つたも
のである。 即ち、本発明の金属薄膜抵抗体はタンタル2〜
24原子%、クロム24〜88原子%、アルミニウム3
〜67原子%を含むタンタル・クロム・アルミニウ
ムの三元系合金薄膜により構成されるもので、こ
れら元素の組成比が第2図に示す組成図中、点
ABCDで囲まれた四角形内にあるものである。 第2図は、タンタル・クロム・アルミニウムの
3成分よりなる抵抗体の組成(%)を表わすもの
で(三元合金図)、図中A、B、C、Dの四角形
の領域は、抵抗温度係数が小さく安定度の高い領
域であり、この発明の主要部となるものである。 この四角形の領域は、TCRを±100ppm/℃で
あることが実験的に求められた領域であり、この
領域外の組成比では所期の目的を達成することが
できない。尚、図中の番号1〜12は実施例1〜
7、比較例8〜12に対応する。 第3表に、第2図における三元合金図内の各点
1〜12(実施例1〜7、比較例8〜12)の未処理
時の組成比(原子%)と抵抗温度係数(ppm/
℃)を示す。即ち、点8〜12(A・B・C・D領
域外)では抵抗温度係数TCRは大きいが、点1
〜7(A・B・C・D領域内)ではTCRが小さい
ことを示している。
[Table] Almost similar results were observed for other silicon/metal thin film resistors. In other words, if a two-component alloy thin film resistor is subjected to the most stable heat treatment and a small temperature coefficient of resistance is obtained, the specific resistance and composition will be determined by themselves. There were drawbacks that imposed major restrictions. The present invention has been made in view of the above-mentioned conventional drawbacks, and is a resistor constructed using an alloy thin film consisting of three components, which achieves high stability with little variation by changing the composition ratio and applying heat treatment. It is an object of the present invention to provide a metal thin film resistor which has a low temperature coefficient of resistance and whose temperature coefficient of resistance can be changed by changing the heat treatment temperature. In order to achieve this purpose, the present inventor conducted intensive research on ternary alloys for resistors, and found that a ternary alloy of tantalum, chromium, and aluminum is
The inventors have discovered that by selecting an appropriate composition ratio, it is possible to achieve a TCR in the range of 0±100 ppm/°C without heat treatment, leading to the present invention. That is, the metal thin film resistor of the present invention has tantalum 2 to
24 at%, chromium 24-88 at%, aluminum 3
It is composed of a thin film of a ternary alloy of tantalum, chromium, and aluminum containing ~67 at%, and the composition ratio of these elements is indicated by the dots in the composition diagram shown in Figure 2.
It is within the rectangle surrounded by ABCD. Figure 2 shows the composition (%) of a resistor consisting of three components: tantalum, chromium, and aluminum (ternary alloy diagram). This region has a small coefficient and high stability, and is the main part of this invention. This rectangular region is the region where the TCR was experimentally determined to be ±100 ppm/° C., and the intended purpose cannot be achieved with a composition ratio outside this region. In addition, numbers 1 to 12 in the figure refer to Examples 1 to 1.
7, corresponding to Comparative Examples 8-12. Table 3 shows the untreated composition ratio (atomic %) and temperature coefficient of resistance (ppm) of each point 1 to 12 (Examples 1 to 7, Comparative Examples 8 to 12) in the ternary alloy diagram in /
°C). In other words, the temperature coefficient of resistance TCR is large at points 8 to 12 (outside the A, B, C, and D regions), but at point 1
~7 (in areas A, B, C, and D) indicates that the TCR is small.

【表】 第3図は、タンタルTa18原子%、クロムCr75
原子%、アルミニウム7原子%の場合の(第2図
の4)熱処理温度による面積抵抗値R(Ω/□)、
抵抗温度係数TCR(ppm/℃)およびTCRのバ
ラツキσTCR(ppm/℃)を示す。熱処理温度450
℃〜750℃の範囲で、Rは約24(Ω/□)〜28
(Ω/□)、TCRの変化は約−80〜数(ppm/
℃)、抵抗温度係数のバラツキδTCRは約3〜4
(ppm/℃)の値を示す。したがつて、高温処理
においても変化が少なく高安定性を有しているも
のと云える。また、第3表(第2図の4)と対比
すると明らかなように、熱処理温度を変化させる
ことにより抵抗温度係数を変化させることができ
る。 次にこの発明の試料の作製方法について説明す
る。スパツタリング条件はあらかじめベルジヤ内
を3×10-7Torr.に排気した後、高純度アルゴン
ガスを18〜20×10-3Torr.導入し、陰極電圧−5.7
〜−6.5kV、電流密度0.2〜0.5mA/cm2で2極ス
パツタリングにより行なつた。成膜速度は50〜
150Å/minである。膜組成は、タンタル、クロ
ム、アルミニウムの金属を用い、その面積比を変
えることにより決定した。また、熱処理は大気中
で所定の温度にて3分間加熱した。また、真空中
でも所定の温度にして数分間加熱するかあるいは
スパツタリング中に抵抗基体を加熱することによ
つてほぼ同様な効果を得ることができた。 ここで、上記金属薄膜の抵抗器としての安定性
を示すため、第4図及び第5図に高温放置試験お
よび耐湿負荷寿命試験の結果を示す。 第4図は、Ta12原子%、Cr69原子%、Al19原
子%の組成(第2図の5)における高温で放置し
た場合の時間に対する抵抗値変化率を示す。この
ときの温度を175℃とし無負荷で1000時間行つた
ものである。この結果、1000時間までの抵抗値変
化率は約0.04%〜0.08%である。 第5図は、Ta18原子%、Cr75原子%、Al7原
子%の組成における負荷をかけた場合の湿度によ
る抵抗値変化率を示す(△R/R%)。このとき
の温度を約40℃、湿度を90〜95%RHとし、そし
て負荷を1.5時間オン、0.5時間オフを繰り返えし
て1000時間行つたものである。この結果、1000時
間までの抵抗値変化率は約−0.025%〜0.025%で
ある。 したがつて、これらの試験からも明らかなよう
に諸条件において安定性に優れ、とりわけ耐湿負
荷寿命特性に優れているといえる。 以上、上記実施例からも明らかなように本発明
によれば、タンタル・クロム・アルミニウムの3
成分よりなる合金薄膜を用いて構成した抵抗体で
あつて、組成比を変え熱処理を施すことによつ
て、バラツキの少ない高安定度と抵抗定温度係数
の特性をもつ金属薄膜抵抗を得ることができる。
また、熱処理温度を変化させることによつて、抵
抗温度係数を所望の値にすることができる。
[Table] Figure 3 shows tantalum Ta18 atomic%, chromium Cr75
area resistance value R (Ω/□) depending on the heat treatment temperature (4 in Figure 2) in the case of 7 atomic % of aluminum and 7 atomic % of aluminum,
Temperature coefficient of resistance TCR (ppm/°C) and TCR variation σTCR (ppm/°C) are shown. Heat treatment temperature 450
In the range of °C to 750 °C, R is approximately 24 (Ω/□) to 28
(Ω/□), TCR change is approximately -80 to several (ppm/
°C), the variation in temperature coefficient of resistance δTCR is approximately 3 to 4
(ppm/℃) value is shown. Therefore, it can be said that it has high stability with little change even during high-temperature treatment. Furthermore, as is clear from a comparison with Table 3 (4 in FIG. 2), the temperature coefficient of resistance can be changed by changing the heat treatment temperature. Next, a method for preparing a sample according to the present invention will be explained. The sputtering conditions were as follows: After the inside of the bell gear was evacuated to 3×10 -7 Torr., high-purity argon gas was introduced at 18 to 20×10 -3 Torr., and the cathode voltage was -5.7.
It was carried out by bipolar sputtering at ~-6.5 kV and a current density of 0.2-0.5 mA/ cm2 . Film formation speed is 50~
It is 150 Å/min. The film composition was determined by using tantalum, chromium, and aluminum metals and changing their area ratios. Further, the heat treatment was carried out in the air at a predetermined temperature for 3 minutes. Furthermore, almost the same effect could be obtained by heating the resistive substrate at a predetermined temperature for several minutes even in a vacuum, or by heating the resistive substrate during sputtering. Here, in order to show the stability of the metal thin film as a resistor, FIGS. 4 and 5 show the results of a high temperature storage test and a humidity resistance load life test. FIG. 4 shows the rate of change in resistance value with respect to time when the composition (5 in FIG. 2) having a composition of Ta 12 atomic %, Cr 69 atomic %, and Al 19 atomic % is left at a high temperature. The temperature at this time was 175°C and the test was carried out for 1000 hours with no load. As a result, the resistance value change rate up to 1000 hours is approximately 0.04% to 0.08%. FIG. 5 shows the rate of change in resistance value due to humidity (ΔR/R%) when a load is applied in a composition of Ta 18 atomic %, Cr 75 atomic %, and Al 7 atomic %. The temperature at this time was approximately 40°C, the humidity was 90-95% RH, and the load was repeatedly turned on for 1.5 hours and off for 0.5 hours for 1000 hours. As a result, the resistance value change rate up to 1000 hours is about -0.025% to 0.025%. Therefore, as is clear from these tests, it can be said that it has excellent stability under various conditions, and particularly has excellent moisture resistance and load life characteristics. As mentioned above, as is clear from the above examples, according to the present invention, three of tantalum, chromium, and aluminum are used.
It is a resistor constructed using an alloy thin film consisting of the following components, and by changing the composition ratio and applying heat treatment, it is possible to obtain a metal thin film resistor with characteristics of high stability with little variation and constant temperature coefficient of resistance. can.
Further, by changing the heat treatment temperature, the temperature coefficient of resistance can be set to a desired value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシリコン・タンタル金属薄膜抵
抗体の組成比と固有抵抗の関係図、第2図は本発
明のタンタル・クロム・アルミニウムの3成分よ
りなる金属薄膜抵抗体の組成比を示した三元合金
図、第3図は本発明の金属薄膜抗抗体の熱処理に
よる抵抗温度計数・面積抵抗値・抵抗温度係数の
バラツキを示したグラフ、第4図は本発明の金属
薄膜抵抗体の高温放置試験結果を示したグラフ、
第5図は本発明の金属薄膜抵抗体の耐湿負荷寿命
試験結果を示したグラフである。 図中ρは固有抵抗、TCRは抵抗温度係数、△
R/Rは抵抗値変化率、tは試験時間である。
Figure 1 shows the relationship between the composition ratio and specific resistance of a conventional silicon/tantalum metal thin film resistor, and Figure 2 shows the composition ratio of the metal thin film resistor of the present invention, which is made of three components: tantalum, chromium, and aluminum. Figure 3 is a graph showing the variation in resistance temperature coefficient, area resistance value, and resistance temperature coefficient due to heat treatment of the metal thin film resistor of the present invention, and Figure 4 is a graph showing the variation in the resistance temperature coefficient of the metal thin film resistor of the present invention at high temperature. A graph showing the results of the neglect test,
FIG. 5 is a graph showing the results of a moisture resistance load life test of the metal thin film resistor of the present invention. In the figure, ρ is specific resistance, TCR is temperature coefficient of resistance, △
R/R is the rate of change in resistance value, and t is the test time.

Claims (1)

【特許請求の範囲】[Claims] 1 タンタル2〜24原子%、クロム24〜88原子
%、アルミニウム3〜67原子%であつて、添付図
面に示すように点A(タンタル2原子%、クロム
88原子%、アルミニウム10原子%)、B(タンタル
9原子%、クロム24原子%、アルミニウム67原子
%)、C(タンタル24原子%、クロム72原子%、ア
ルミニウム4原子%)、D(タンタル19原子%、ク
ロム78原子%、アルミニウム3原子%)で囲まれ
るタンタル・クロム・アルミニウムの3成分より
なる合金薄膜を用いて構成したことを特徴とする
金属薄膜抵抗体。
1 2 to 24 at% tantalum, 24 to 88 at% chromium, 3 to 67 at% aluminum, and as shown in the attached drawing, point A (2 at% tantalum, chromium
88 at%, aluminum 10 at%), B (tantalum 9 at%, chromium 24 at%, aluminum 67 at%), C (tantalum 24 at%, chromium 72 at%, aluminum 4 at%), D (tantalum 19 A metal thin film resistor characterized in that it is constructed using an alloy thin film made of three components: tantalum, chromium, and aluminum, surrounded by chromium (78 at.%, 78 at.% chromium, and 3 at.% aluminum).
JP58132124A 1983-07-20 1983-07-20 Metallic thin film resistor Granted JPS6024343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132124A JPS6024343A (en) 1983-07-20 1983-07-20 Metallic thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132124A JPS6024343A (en) 1983-07-20 1983-07-20 Metallic thin film resistor

Publications (2)

Publication Number Publication Date
JPS6024343A JPS6024343A (en) 1985-02-07
JPH0331780B2 true JPH0331780B2 (en) 1991-05-08

Family

ID=15073966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132124A Granted JPS6024343A (en) 1983-07-20 1983-07-20 Metallic thin film resistor

Country Status (1)

Country Link
JP (1) JPS6024343A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277436A (en) * 1985-09-30 1987-04-09 Susumu Kogyo Kk Chromium-aluminum alloy and thin film element using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153752A (en) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni-cr alloy material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153752A (en) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni-cr alloy material

Also Published As

Publication number Publication date
JPS6024343A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
US4010312A (en) High resistance cermet film and method of making the same
US4298505A (en) Resistor composition and method of manufacture thereof
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
US4498071A (en) High resistance film resistor
JPS5945201B2 (en) Electrical resistance film and its manufacturing method
JPH06158272A (en) Resistance film and production thereof
JPS5955001A (en) Resistor
Van Den Broek et al. Metal film precision resistors: resistive metal films and a new resistor concept
US4323875A (en) Method of making temperature sensitive device and device made thereby
US4338145A (en) Chrome-tantalum alloy thin film resistor and method of producing the same
JPH0331780B2 (en)
US5543208A (en) Resistive film
US3585073A (en) Electric film resistors
JPH045241B2 (en)
JPH02152201A (en) Thin-film resistor for strain gauge
JPH047561B2 (en)
JPH0412601B2 (en)
Thiel et al. TCR control of Ni/Cr resistors
Reddy et al. Ta Al N thin film resistors with improved electrical properties
JPS634322B2 (en)
JP4071458B2 (en) Manufacturing method of resistors
JP2562610B2 (en) Thin film resistor for strain gauge
JPH071722B2 (en) Thin film resistor
JP4742758B2 (en) Thin film resistor and manufacturing method thereof
Huber et al. High Stability Cosputtered Ta-50 At.% Al Alloy Film Resistors