JPH0412601B2 - - Google Patents

Info

Publication number
JPH0412601B2
JPH0412601B2 JP58136366A JP13636683A JPH0412601B2 JP H0412601 B2 JPH0412601 B2 JP H0412601B2 JP 58136366 A JP58136366 A JP 58136366A JP 13636683 A JP13636683 A JP 13636683A JP H0412601 B2 JPH0412601 B2 JP H0412601B2
Authority
JP
Japan
Prior art keywords
thin film
resistance
silicon
tantalum
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58136366A
Other languages
Japanese (ja)
Other versions
JPS6027102A (en
Inventor
Masamitsu Saito
Yoshio Hara
Hideyuki Suzuki
Masaru Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI KOKI KK
Original Assignee
TAISEI KOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI KOKI KK filed Critical TAISEI KOKI KK
Priority to JP58136366A priority Critical patent/JPS6027102A/en
Publication of JPS6027102A publication Critical patent/JPS6027102A/en
Publication of JPH0412601B2 publication Critical patent/JPH0412601B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、クロム(Cr)、タンタル(Ta)、ア
ルミニウム(Al)およびシリコン(Si)の4成
分よりなる合金薄膜を用いた金属薄膜抵抗体に関
する。 近年薄膜抵抗体の進歩は目ざましいものがあり
安定度の高い抵抗体として窒化タンタル薄膜抵抗
体が開発され、また、高い固有抵抗をもつ抵抗体
としてCr−SiOサーメツトが実用化されている。 すなわち窒化タンタル薄膜抵抗体は良好な抵抗
温度係数とすぐれた安定性をもつているが、固有
抵抗は約260μΩ・cmで、実用膜厚における面積抵
抗は20〜100Ω/口にすぎず、薄膜集積回路をさ
らに小型化しようとする場合や、個別抵抗器とし
て大きな抵抗値を得ようとすることは困難であ
る。さらに窒化タンタル薄膜を生成するには通常
活性スパツタリング法が用いられ、真空槽内に微
量の活性ガスの導入とその制御に厳密な管理を必
要とする。またCr−SiOサーメツト抵抗体は比較
的高い固有抵抗を有するがその安定度が低く、再
現性が悪いなどの製造技術上の問題も多い。 ところで、さきに発明されたシリコンと、タン
タル、ニオブ、チタン、ジルコン、モリブデン、
タングステン等の中の1つとの2成分系薄膜抵抗
体は一応上記の欠陥を補い、現状では最もすぐれ
た薄膜抵抗体として高く評価できるものである。
すなわち、熱処理温度を調整することにより広い
固有抵抗範囲に亘り低い抵抗温度係数をもつこと
ができるものである。 しかしながら抵抗体の安定度は熱処理温度に関
係し、高い安定度を求めようとすれば熱処理温度
も高くなり、その時の低い抵抗温度係数に対応す
る組成または固有抵抗は自ら決定されて選択の自
由はなくなる。 こゝでシリコン合金薄膜抵抗体の一例として、
シリコン−タンタル合金薄膜抵抗体の熱処理温度
と安定度の関係を説明する。 第1図の曲線Aはシリコン−タンタル合金薄膜
抵抗体の組成に対する固有抵抗ρ(μΩ・cm)を示
し、同じく曲線Bは抵抗温度係数TCR(ppm/
℃)をあらわしている。なお、横軸はシリコンの
組成比(%)を示し図中のA′,B′はそれぞれ真
空中において650℃で熱処理した後の値を示す曲
線である。第1図からわかるように、シリコン含
有量18〜65原子%のものは適当な熱処理により抵
抗温度係数が殆んど0のものが得られることが示
されている。ここでシリコン含有量と熱処理温度
を変えて抵抗温度係数の小さい試料を第1表のNo.
1〜No.4に示す。なお、No.5は比較のために試料
No.1と同じものを真空中650℃で熱処理したもの
である。
The present invention relates to a metal thin film resistor using an alloy thin film made of four components: chromium (Cr), tantalum (Ta), aluminum (Al), and silicon (Si). In recent years, there has been remarkable progress in thin film resistors, and tantalum nitride thin film resistors have been developed as highly stable resistors, and Cr-SiO cermets have been put into practical use as resistors with high specific resistance. In other words, tantalum nitride thin film resistors have a good resistance temperature coefficient and excellent stability, but their specific resistance is approximately 260μΩ・cm, and the sheet resistance at practical film thickness is only 20 to 100Ω/unit, making it difficult to integrate thin film. It is difficult to further miniaturize the circuit or to obtain a large resistance value as an individual resistor. Furthermore, active sputtering is usually used to produce tantalum nitride thin films, which requires strict management of the introduction and control of a small amount of active gas into the vacuum chamber. Furthermore, although the Cr--SiO cermet resistor has a relatively high resistivity, its stability is low and there are many problems in manufacturing technology such as poor reproducibility. By the way, silicon, which was invented earlier, tantalum, niobium, titanium, zircon, molybdenum,
A two-component thin film resistor containing one of tungsten or the like compensates for the above-mentioned deficiencies and can be highly evaluated as the most excellent thin film resistor at present.
That is, by adjusting the heat treatment temperature, it is possible to have a low temperature coefficient of resistance over a wide range of resistivity. However, the stability of a resistor is related to the heat treatment temperature, and if you want high stability, the heat treatment temperature will also be high, and the composition or specific resistance that corresponds to the low temperature coefficient of resistance at that time is determined by yourself, and there is no freedom of choice. It disappears. Here, as an example of a silicon alloy thin film resistor,
The relationship between heat treatment temperature and stability of a silicon-tantalum alloy thin film resistor will be explained. Curve A in Figure 1 shows the specific resistance ρ (μΩ cm) for the composition of the silicon-tantalum alloy thin film resistor, and curve B shows the temperature coefficient of resistance TCR (ppm/cm).
℃). The horizontal axis indicates the silicon composition ratio (%), and A' and B' in the figure are curves indicating the values after heat treatment at 650° C. in vacuum, respectively. As can be seen from FIG. 1, it has been shown that when the silicon content is 18 to 65 atomic %, a temperature coefficient of resistance of almost 0 can be obtained by appropriate heat treatment. Here, we changed the silicon content and heat treatment temperature to create a sample with a small resistance temperature coefficient as No. 1 in Table 1.
Shown in Nos. 1 to 4. In addition, No. 5 is a sample for comparison.
The same material as No. 1 was heat-treated at 650°C in vacuum.

【表】 第1表の試料を150℃の恒温槽中に1000時間放
置した後の抵抗値変化を測定したら第2表のよう
になつた。この表より明らかなように抵抗体の安
定性は熱処理温度に大きく依存しており、組成比
の影響は少ないことがわかる。
[Table] When the samples in Table 1 were left in a constant temperature bath at 150°C for 1000 hours, the resistance changes were measured and the results were as shown in Table 2. As is clear from this table, the stability of the resistor largely depends on the heat treatment temperature, and the composition ratio has little influence.

【表】 他のシリコン・金属系薄膜抵抗体についても
ほゞ同様な結果が認められた。すなわち、2成分
系合金薄膜抵抗体においては最も安定な熱処理を
行ない、小さい抵抗温度係数を求めると固有抵抗
と組成は自から定まつてしまい、そのため薄膜集
積回路の設計および個別抵抗器の製造上大きな制
約を受ける欠点があつた。 本発明は上記従来の欠点に鑑みなされたもの
で、クロム・タンタル・アルミニウム・シリコン
の4成分よりなる合金薄膜を用いて構成した抵抗
体であつて、適宜熱処理を施すことによつて、抵
抗温度係数(TCR)、三次歪み(THI)、ノイズ
特性、寿命特性の優れた金属薄膜抵抗体を提供す
ることを目的とする。 上記目的を達成するため、本発明によれば、ク
ロム67〜83原子%、タンタル7〜25原子%および
アルミニウム11原子%以下、シリコン5原子%以
下の4成分よりなる合金薄膜を用い、この合金薄
膜を好ましくは300℃〜500℃で熱処理した金属薄
膜抵抗体を構成する。 以下、本発明の一実施例を表および図面により
説明する。 第3表に、未処理時の各組成比(原子%)にお
ける抵抗温度係数TCR(ppm/℃)を示す。これ
からも明らかなように1番〜8番の組成比では
TCRが±100(ppm/℃)の範囲内にあり、9番
〜12番の組成比ではTCRが±100(ppm/℃)の
範囲外である。即ち、クロム67〜83原子%、タン
タル7〜25原子%およびアルミニウム11原子%以
下、シリコン5原子%以下の組成内(第3表1番
〜8番)、が最適の抵抗温度係数値であることを
示している。
[Table] Almost similar results were observed for other silicon/metal thin film resistors. In other words, if a two-component alloy thin film resistor is subjected to the most stable heat treatment and a small temperature coefficient of resistance is obtained, the specific resistance and composition will be determined by themselves. There were drawbacks that imposed major restrictions. The present invention has been made in view of the above-mentioned conventional drawbacks, and is a resistor constructed using a thin alloy film consisting of four components: chromium, tantalum, aluminum, and silicon. The objective is to provide metal thin film resistors with excellent coefficient of coefficient (TCR), third-order distortion (THI), noise characteristics, and life characteristics. In order to achieve the above object, according to the present invention, an alloy thin film consisting of four components, 67 to 83 at% chromium, 7 to 25 at% tantalum, 11 at% or less aluminum, and 5 at% or less silicon, is used. A metal thin film resistor is constructed by heat-treating the thin film preferably at 300°C to 500°C. An embodiment of the present invention will be described below with reference to tables and drawings. Table 3 shows the temperature coefficient of resistance TCR (ppm/°C) at each composition ratio (atomic %) when untreated. As is clear from this, the composition ratio of No. 1 to No. 8 is
The TCR is within the range of ±100 (ppm/°C), and the TCR is outside the range of ±100 (ppm/°C) in the composition ratios of Nos. 9 to 12. In other words, the optimal resistance temperature coefficient value is within the composition range of 67 to 83 at% chromium, 7 to 25 at% tantalum, 11 at% or less aluminum, and 5 at% or less silicon (Nos. 1 to 8 in Table 3). It is shown that.

【表】 第2図は、クロム78原子%、タンタル13原子
%、アルミニウム7原子%、シリコン2原子%の
場合の熱処理温度における抵抗温度係数TCR
(ppm/℃)、ノイズ(db)、三次歪みTHI(db)
および面積抵抗値R(Ω/□)を示したものであ
る。第2図において、抵抗温度係数TCRは
50ppm/℃以下、ノイズ特性は約−40db、三次
歪みTHI特性は約−130db〜−140db、面積抵抗
値Rは約10〜20Ω/□を示す。これらから明らか
なように、上記組成により熱処理を施すことによ
つて、耐環境性が良好となり、三次歪みTHI特
性が優れたものとなる。 次にこの発明の試料の作製方法について説明す
る。スパツタリング条件はあらかじめベルジヤ内
を3×10-7Torr.に排気した後、高純度アルゴン
ガスを18〜20×10-3Torr、導入し、陰極電圧−
5.7〜−6.5kV、電極密度0.2〜0.5mA/cm2で2極
スパツタリングにより行なつた。成膜速度は50〜
150Å/mmである。膜組成は、クロム、タンタル、
アルミニウム、シリコンの金属を用い、その面積
比を変えることにより決定し、熱処理は大気中で
数分間行なつた。 ここで、上記金属薄膜の抵抗器としての安定性
を示すため、第3図および第4図にクロム78.7原
子%、タンタル11.8原子%、アルミニウム7.1原
子%、シリコン2.4原子%の組成における高温放
置試験および耐湿負荷寿命試験を1000時間行つた
結果を示す。この結果、第3図の高温放置試験に
おける抵抗値変化率は0.1以下であり、第4図の
耐湿負荷寿命試験における抵抗値変化率は0.02%
以下であつた。したがつて、これらの試験からも
明らかなように諸条件において安定性に優れ、と
りわけ耐湿負荷寿命特性に優れているといえる。 以上、上記実施例からも明らかなように本発明
によれば、クロム、タンタル、アルミニウム、シ
リコンの4成分よりなる合金薄膜を用いて構成さ
れた抵抗体であつて、適宜熱処理を施すことによ
つて、抵抗温度係数TCR、三次歪みTHI、ノイ
ズ特性、寿命特性の優れた金属薄膜抵抗体を得る
ことができる。
[Table] Figure 2 shows the temperature coefficient of resistance TCR at the heat treatment temperature in the case of 78 at% chromium, 13 at% tantalum, 7 at% aluminum, and 2 at% silicon.
(ppm/℃), noise (db), third-order distortion THI (db)
and areal resistance value R (Ω/□). In Figure 2, the temperature coefficient of resistance TCR is
Below 50 ppm/°C, the noise characteristic is about -40 db, the third-order distortion THI characteristic is about -130 db to -140 db, and the area resistance value R is about 10 to 20 Ω/□. As is clear from these results, by performing heat treatment with the above composition, environmental resistance becomes good and third-order strain THI characteristics become excellent. Next, a method for preparing a sample according to the present invention will be explained. The sputtering conditions were as follows: After the inside of the bell gear was evacuated to 3×10 -7 Torr, high-purity argon gas was introduced at 18 to 20×10 -3 Torr, and the cathode voltage -
It was carried out by bipolar sputtering at 5.7 to -6.5 kV and an electrode density of 0.2 to 0.5 mA/cm 2 . Film formation speed is 50~
It is 150 Å/mm. The film composition is chromium, tantalum,
It was determined by using metals such as aluminum and silicon and changing their area ratio, and heat treatment was performed for several minutes in the air. Here, in order to show the stability of the above metal thin film as a resistor, Figures 3 and 4 show a high temperature storage test with a composition of 78.7 at% chromium, 11.8 at% tantalum, 7.1 at% aluminum, and 2.4 at% silicon. The results of a 1000 hour humidity load life test are shown. As a result, the resistance value change rate in the high temperature storage test shown in Figure 3 is 0.1 or less, and the resistance value change rate in the humidity load life test shown in Figure 4 is 0.02%.
It was below. Therefore, as is clear from these tests, it can be said that it has excellent stability under various conditions, and particularly has excellent moisture resistance and load life characteristics. As is clear from the above embodiments, according to the present invention, the resistor is constructed using a thin alloy film made of four components: chromium, tantalum, aluminum, and silicon, As a result, a metal thin film resistor with excellent temperature coefficient of resistance TCR, third-order strain THI, noise characteristics, and life characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシリコン・タンタル金属薄膜抵
抗体の組成比と固有抵抗との関係図、第2図は本
発明の金属薄膜抵抗体の熱処理による抵抗温度係
数TCR・三次歪みTHI・ノイズ・面積抵抗値を
示したグラフ、第3図は本発明の金属薄膜抵抗体
の高温放置試験結果を示したグラフ、第4図は本
発明の金属薄膜抵抗体の耐湿負荷寿命試験結果を
示したグラフである。 図中ρは固有抵抗、TCRは抵抗温度係数、
THIは三次歪み、ΔR/Rは抵抗値変化率、tは
試験時間である。
Figure 1 shows the relationship between the composition ratio and specific resistance of a conventional silicon/tantalum metal thin film resistor, and Figure 2 shows the resistance temperature coefficient TCR, cubic strain THI, noise, and area of the metal thin film resistor of the present invention due to heat treatment. FIG. 3 is a graph showing the resistance value, FIG. 3 is a graph showing the high temperature storage test results of the metal thin film resistor of the present invention, and FIG. 4 is a graph showing the humidity resistance load life test results of the metal thin film resistor of the present invention. be. In the figure, ρ is specific resistance, TCR is temperature coefficient of resistance,
THI is the third-order strain, ΔR/R is the resistance change rate, and t is the test time.

Claims (1)

【特許請求の範囲】 1 クロム67〜83原子%、タンタル7〜25原子
%、アルミニウム11原子%以下およびシリコン5
原子%以下の4成分よりなる合金薄膜を用いて構
成したことを特徴とする金属薄膜抵抗体。 2 前記合金薄膜を300℃〜500℃の温度で熱処理
したものを用いて構成したことを特徴とする特許
請求の範囲第1項記載の金属薄膜抵抗体。
[Claims] 1 Chromium 67 to 83 atomic%, tantalum 7 to 25 atomic%, aluminum 11 atomic% or less, and silicon 5
A metal thin film resistor characterized in that it is constructed using an alloy thin film consisting of four components of atomic percent or less. 2. The metal thin film resistor according to claim 1, wherein the thin alloy film is heat-treated at a temperature of 300°C to 500°C.
JP58136366A 1983-07-25 1983-07-25 Metal thin film resistor Granted JPS6027102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58136366A JPS6027102A (en) 1983-07-25 1983-07-25 Metal thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136366A JPS6027102A (en) 1983-07-25 1983-07-25 Metal thin film resistor

Publications (2)

Publication Number Publication Date
JPS6027102A JPS6027102A (en) 1985-02-12
JPH0412601B2 true JPH0412601B2 (en) 1992-03-05

Family

ID=15173484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136366A Granted JPS6027102A (en) 1983-07-25 1983-07-25 Metal thin film resistor

Country Status (1)

Country Link
JP (1) JPS6027102A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270480A (en) * 2006-03-31 2007-10-18 Railway Technical Res Inst Rail

Also Published As

Publication number Publication date
JPS6027102A (en) 1985-02-12

Similar Documents

Publication Publication Date Title
KR830001873B1 (en) Resistor composition
JPH0821482B2 (en) High stability laminated film resistor and manufacturing method thereof
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
JPS5955001A (en) Resistor
JPH06158272A (en) Resistance film and production thereof
JPS634321B2 (en)
JPH0412601B2 (en)
US5001454A (en) Thin film resistor for strain gauge
JPH0666162B2 (en) Thin film resistor for strain gauge
US5543208A (en) Resistive film
JPH0331780B2 (en)
US4774491A (en) Metal film resistors
JPH045241B2 (en)
JPH047561B2 (en)
JPS634322B2 (en)
JP2562610B2 (en) Thin film resistor for strain gauge
RU2818204C1 (en) Method of making thin-film precision resistor
JP4752075B2 (en) Resistor and its manufacturing method
JPS63147305A (en) Metal thin-film resistor
JP4238689B2 (en) Metal resistor and manufacturing method thereof
JPH06213612A (en) Distortion resistance material and manufacture thereof and thin film distortion sensor
JPS6236622B2 (en)
JPH0620803A (en) Thin film resistor and manufacture thereof
JPS6024562B2 (en) resistive thin film
SU947919A1 (en) Resistive material