JP4752075B2 - Resistor and its manufacturing method - Google Patents

Resistor and its manufacturing method Download PDF

Info

Publication number
JP4752075B2
JP4752075B2 JP35149698A JP35149698A JP4752075B2 JP 4752075 B2 JP4752075 B2 JP 4752075B2 JP 35149698 A JP35149698 A JP 35149698A JP 35149698 A JP35149698 A JP 35149698A JP 4752075 B2 JP4752075 B2 JP 4752075B2
Authority
JP
Japan
Prior art keywords
resistor
thin film
alloy
manufacturing
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35149698A
Other languages
Japanese (ja)
Other versions
JP2000182802A (en
Inventor
一弘 大内
直樹 本多
清志 山川
牧夫 佐藤
明 大石
佐々木  洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP35149698A priority Critical patent/JP4752075B2/en
Publication of JP2000182802A publication Critical patent/JP2000182802A/en
Application granted granted Critical
Publication of JP4752075B2 publication Critical patent/JP4752075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、絶縁基板の表面に蒸着やスパッタリングなどによって薄膜抵抗体を形成した薄膜抵抗器に関するものである。またこの抵抗器の製造方法に関するものである。
【0002】
【従来の技術】
ガラスやアルミナなどの絶縁基板に薄膜抵抗材料を蒸着またはスパッタリングすることにより薄膜抵抗体を形成し、この薄膜抵抗体にフォトエッチングやレーザー加工などによってパターンを形成して作った薄膜抵抗器が公知である。
【0003】
この種の抵抗器ではできるだけ広い温度範囲に亘って抵抗値が安定していることが必要であり、この安定性を示すものとして抵抗温度係数(Temperature Coefficient of Resistance、以下TCRという)を用いる。ここにTCRは、例えば25℃を基準温度とし、この温度での抵抗値をR(25)、温度tでの抵抗値をR(t)とした時に、次の式で定義される。
TCR(ppm/℃)={R(t)−R(25)}/R(25)
×[1/(t−25)]×106
【0004】
抵抗薄膜や金属箔を作る時には、一般にこの抵抗温度係数TCRをゼロにしたいものである。そのため蒸着条件やスパッタ条件をいろいろ変えたり、厚さや基板の種類を変えて検討するのが普通である。薄膜抵抗器では、現在最も安定な抵抗体の一つとしてTa(タンタル)を用いたものが知られている。またNi−Cr(ニッケル・クローム)系合金にAl(アルミニウム)やSi(シリコン)を添加してTCRをゼロに近付けることも従来より行われている。
【0005】
【従来の技術の問題点】
しかし従来の抵抗体は抵抗値温度変化の非直線性のために、広い温度範囲でTCRを微小にしたりあるいはゼロに近付けることが困難であった。
【0006】
【発明の目的】
この発明はこのような事情に鑑みなされたものであり、抵抗温度係数TCRを広い温度範囲でゼロに近付けることができる抵抗器を提供することを第1の目的とする。またこの抵抗器の製造方法を提供することを第2の目的とする。
【0007】
【発明の構成】
この発明によれば第1の目的は、絶縁基板表面に抵抗体を有する抵抗器において、
前記抵抗体は、Ni−Crの組成比Ni/Crが83/17〜60/40であり、Alの含有量が3〜10at%、Mnの含有量が3〜10at%であるNi−Cr系合金からなる薄膜抵抗体であり、抵抗温度係数TCRが±2ppm/℃以内であることを特徴とする抵抗器、により達成される。
【0008】
ここにAl(アルミニウム)含有量が3〜10at%、同じくMn(マンガン)の含有量が3〜10at%とする。ここにat%は、原子数比をパーセント表示したもの(atomic percent)であり、モル%と同義である。
【0009】
絶縁基板としては、ガラス、アルミナ、チタン酸カルシウム、サファイアなどが適する。抵抗体は蒸着またはスパッタリングで形成した薄膜抵抗体とすることができる。
【0010】
第2の目的は、請求項の抵抗器の製造方法であって、薄膜抵抗体を基板表面に蒸着またはスパッタリングで形成する一方、前記薄膜抵抗体の形成中および形成後の少なくとも一方の工程中に真空中熱処理を行うことを特徴とする抵抗器の製造方法、により達成される。この場合にMnを含む薄膜とAlを含む薄膜とを重ねて形成し、一体化して薄膜抵抗体とすることもできる。
【0014】
【実施態様】
高周波(RF、Radio Frequency)スパッタリングによってNi−Cr合金にAlとMnを加えた薄膜抵抗体を形成した。この時の雰囲気はAr(アルゴン)ガス圧力0.5Paとし、絶縁基板をアルミナとし、RF電力300Wとし、薄膜厚を0.3μmとした。またNi−Cr合金の組成比Ni/Cr(at%)は、77/23であり、AlおよびMnの添加量は9.5at%および5at%である。熱処理は、抵抗体の形成後に真空中で300℃以上、好ましくは約500℃に約3時間放置することによる。
【0015】
図1はこの結果を示すグラフであり、ここには比較のためにMnを添加しないものの結果も併せて示した。すなわちこの比較例は、組成比Ni/Cr(at%)が80/20のNi−Cr合金に、Alを12at%添加したものである。この場合の雰囲気、基板材料、熱処理などの他の条件は前記の実施態様と同一とした。この図1からも明らかなように、本発明の実施態様によれば、抵抗値変化率(R(t)−R(25))/R(25)は広い温度範囲に亘って極めて小さくなることが判明した。
【0016】
また図2は従来より市販されているものの一例について測定した結果を示す。なおこの製品の成分はNi−Cr合金にSiを添加したものと思われ、熱処理などの他の条件は不明である。この図2と図1を比較すれば明らかなように、本発明によるものではTCRを広い温度範囲で小さくすることが可能であることが明らかになった。
【0017】
なお発明者は、Ni−Cr合金をベースの合金とした場合に添加する元素がTCRに及ぼす影響について解析した。すなわち抵抗値変化率(R(t)−R(25))/R(25)を次の二次式で近似し、一次温度係数α(ppm/℃)と二次温度係数β(ppm/℃2)にそれぞれ主として寄与する元素を選定した。 [R(t)−R(25)]/R(25)=α(Δt)+β(Δt)2
但しΔt=t−25
【0018】
一次温度係数αに主として寄与する元素(第1のグループという)としてはAl、Si、Be、Mg、Ti、Mnがあることが解った。また二次温度係数βに主として寄与する元素(第2のグループという)としては、Mn、Fe、Co、Ti、Vがあることが解った。なおMn、Tiは両方のグループに含まれているが、これらはα、βの両方に効果があるからである。
【0019】
発明者はまず第1のグループの元素としてAlを選び、一次係数αを十分に小さくするためのAlの最適添加量を求めた。このためAlの添加量を変えた抵抗器を多数製作し、その中から係数αが十分に小さくなりかつ抵抗値変化率が広い温度範囲に亘ってゼロに接近させるのに最適な添加量として10at%を求めた。図3はこのAlの添加が抵抗値変化率に及ぼす影響を示す図である。なおこの図3には組成比Ni/Cr(at%)が77/23でAlを添加しないものを比較例として示した。またここでの薄膜形成条件は前記した図1の場合と同じである。
【0020】
次にこのNi−Cr合金にAlを10at%加えたものに、さらに第2のグループから選んだMnを加え、二次係数βを小さくするのに最適な添加量を求めた。図4はこのMnの添加が抵抗値変化率に及ぼす影響を示す図である。この図4では図3の縦軸目盛を約15倍に拡大して示す。
【0021】
この図4には、Alを10at%含んだNi−Cr合金にMnの添加量を0,10,5at%とした3つの測定例A、B、Cが示されている。すなわちAはMnを添加しないものであり図3に示したものと同じである。BはMnを10at%加えたものであり、抵抗値変化率はAの場合と逆に大きく曲がったことから、Mnの添加量が多過ぎることが解る。CはAとBの中間の添加量すなわちMnを5at%としたものであり、この結果からTCRは±2ppm/℃以内となることが解った。すなわちMnの添加量は5at%が最適であることが解った。
【0022】
なおこれらの測定に用いた抵抗体は前記図1で用いた薄膜抵抗体と同じ条件で製作されたものである。また図1、2には、それぞれの抵抗体に対して求めた一次係数αおよび二次係数βが記載されている。これらの係数α、βを比較すれば、図1に示した(本発明)による抵抗器のα、βが他の(比較例)および(従来品)の抵抗器に比べて著しく小さくなり、TCRも極めて広い温度範囲に亘ってゼロに近付くことが解る。
【0023】
前記第1のグループおよび第2のグループの元素は、例えば次のようにして決めることができる。図5は組成比Ni/Crが77/23(at%)の合金に、Al、Si、Mn、Feをそれぞれ別々に10at%ずつ添加した薄膜を形成し、それぞれの薄膜に対して一次温度係数αを求めた図である。図6は同じく二次温度係数βを求めた図である。
【0024】
図5から、Ni−Cr合金だけではαは約+55ppm/℃であるのに対し、Alを10at%添加したものでは約−70、Siを10at%添加したものでは約0となることから、一次係数αの改善にはAlが適することが解る。
【0025】
同様に図6からはNi−Cr合金ではβが約−0.04(ppm/℃2)であるのに対し、Mn、Feを添加したものでβが+0.03位になるから、これらMn、Feが二次係数βの改善に適することが解る。以上のような実験を種々の元素に対して行うことにより第1のグループおよび第2のグループの元素を求めたものである。なお図5、6で用いる抵抗器も前記図1のものと同じ条件で製作した薄膜抵抗器である。
【0027】
【発明の効果】
請求項1の発明は以上のように、Ni/Cr合金の組成比Ni/Crが83/17〜60/40であり、Alの含有量が〜10at%、Mnの含有量が〜10at%であるNi/Cr形合金からなる薄膜抵抗体であり、抵抗温度係数TCRが±2ppm/℃以内であるから、広い温度範囲に亘ってゼロに近付けることが可能になる。
【0029】
この抵抗体は、蒸着またはスパッタリングで形成した薄膜抵抗体とし、この形成中および形成後の少なくとも一方の工程中に真空中熱処理を施すことにより抵抗値の安定性を一層向上させることができる(請求項)。蒸着またはスパッタリングは1回の処理で抵抗体を形成してよいのは勿論であるが、成分が異なる薄膜を複数回に分けて重ねて形成してもよい(請求項)。
【図面の簡単な説明】
【図1】 本発明の一実施態様の抵抗値変化率を示す図
【図2】 従来品の抵抗値変化率を示す図
【図3】 Ni−Cr合金に添加したAlの寄与を示す図
【図4】 Ni/Cr・Alに添加したMnの寄与を示す図
【図5】 第1の元素の係数αへの寄与を示す図
【図6】 第2の元素の係数βへの寄与を示す図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film resistor forming the thin film resistor such as by vapor deposition or sputtering on the surface of the insulating substrate. Further it relates to the production how this resistor.
[0002]
[Prior art]
A thin film resistor is known in which a thin film resistor is formed by vapor deposition or sputtering of a thin film resistor material on an insulating substrate such as glass or alumina, and a pattern is formed on the thin film resistor by photoetching or laser processing. Oh Ru.
[0003]
In this type of resistor, it is necessary that the resistance value be stable over as wide a temperature range as possible, and a temperature coefficient of resistance (hereinafter referred to as TCR) is used to indicate this stability. Here, TCR is defined by the following equation, for example, when 25 ° C. is a reference temperature, a resistance value at this temperature is R (25), and a resistance value at temperature t is R (t).
TCR (ppm / ° C.) = {R (t) −R (25)} / R (25)
× [1 / (t−25)] × 10 6
[0004]
When making a resistance thin film or a metal foil, it is generally desired to make this temperature coefficient of resistance TCR zero. For this reason, it is usual to study by changing various deposition conditions and sputtering conditions, or changing the thickness and type of substrate. As the thin film resistor, one using Ta (tantalum) is known as one of the most stable resistors at present. In addition, it has been conventionally performed to add T1 to zero by adding Al (aluminum) or Si (silicon) to a Ni-Cr (nickel-chrome) alloy.
[0005]
[Problems of conventional technology]
However, because of the non-linearity of the resistance value temperature change, it has been difficult for the conventional resistor to make the TCR minute or close to zero in a wide temperature range.
[0006]
OBJECT OF THE INVENTION
This invention is made | formed in view of such a situation, and makes it the 1st objective to provide the resistor which can make resistance temperature coefficient TCR approach zero in a wide temperature range. Also to provide a method of manufacturing the resistor and the second object.
[0007]
[Structure of the invention]
According to the present invention, a first object is to provide a resistor having a resistor on the surface of an insulating substrate.
The resistor has a Ni—Cr composition ratio of Ni / Cr of 83/17 to 60/40, an Al content of 3 to 10 at% , and an Mn content of 3 to 10 at%. Ri thin film resistor der of an alloy, the temperature coefficient of resistance TCR is a resistor, characterized in der Rukoto within ± 2 ppm / ° C., it is achieved by.
[0008]
Here, the Al (aluminum) content is 3 to 10 at%, and the Mn (manganese) content is 3 to 10 at%. Here, “at%” is an atomic percent of the atomic ratio and is synonymous with “mol%”.
[0009]
As the insulating substrate, glass, alumina, calcium titanate, sapphire, and the like are suitable. Resistor Ru can be a thin film resistor formed by vapor deposition or sputtering.
[0010]
The second object is a method of manufacturing a resistor according to claim 1 , wherein the thin film resistor is formed on the surface of the substrate by vapor deposition or sputtering, while the thin film resistor is being formed or during at least one step after the formation. This is achieved by a method for manufacturing a resistor, characterized by performing a heat treatment in a vacuum . In this case, a thin film containing Mn and a thin film containing Al can be formed by being overlapped and integrated to form a thin film resistor.
[0014]
Embodiment
A thin film resistor in which Al and Mn were added to a Ni—Cr alloy was formed by radio frequency (RF) sputtering. The atmosphere at this time was an Ar (argon) gas pressure of 0.5 Pa, the insulating substrate was alumina, the RF power was 300 W, and the thin film thickness was 0.3 μm. The composition ratio Ni / Cr (at%) of the Ni—Cr alloy is 77/23, and the addition amounts of Al and Mn are 9.5 at% and 5 at%. The heat treatment is performed by leaving the resistor at 300 ° C. or higher, preferably about 500 ° C. for about 3 hours in a vacuum.
[0015]
FIG. 1 is a graph showing the results. For comparison, the results for the case where Mn is not added are also shown. That is, in this comparative example, 12 at% Al is added to a Ni—Cr alloy having a composition ratio Ni / Cr (at%) of 80/20. Other conditions such as atmosphere, substrate material, and heat treatment in this case were the same as in the above embodiment. As apparent from FIG. 1, according to the embodiment of the present invention, the resistance value change rate (R (t) −R (25)) / R (25) becomes extremely small over a wide temperature range. There was found.
[0016]
Moreover, FIG. 2 shows the result measured about an example of what is marketed conventionally. In addition, the component of this product seems to have added Si to the Ni-Cr alloy, and other conditions, such as heat processing, are unknown. As is clear from a comparison between FIG. 2 and FIG. 1, it has become clear that the TCR can be reduced over a wide temperature range according to the present invention.
[0017]
The inventor analyzed the influence of the added element on the TCR when the Ni—Cr alloy was used as the base alloy. That is, the resistance value change rate (R (t) −R (25)) / R (25) is approximated by the following quadratic equation, and the primary temperature coefficient α (ppm / ° C.) and the secondary temperature coefficient β (ppm / ° C.). Elements that mainly contribute to 2 ) were selected. [R (t) −R (25)] / R (25) = α (Δt) + β (Δt) 2
However, Δt = t−25
[0018]
It was found that Al, Si, Be, Mg, Ti, and Mn are elements that mainly contribute to the primary temperature coefficient α (referred to as the first group). Further, it was found that there are Mn, Fe, Co, Ti, and V as elements mainly contributing to the secondary temperature coefficient β (referred to as the second group). Mn and Ti are included in both groups because these are effective for both α and β.
[0019]
The inventor first selected Al as the element of the first group, and obtained the optimum addition amount of Al for sufficiently reducing the primary coefficient α. For this reason, a large number of resistors with different amounts of Al are manufactured, and among them, the coefficient α is sufficiently small and the rate of change in resistance value is 10 at as an optimum amount to bring it close to zero over a wide temperature range. %. FIG. 3 is a diagram showing the effect of the addition of Al on the resistance value change rate. FIG. 3 shows a comparative example in which the composition ratio Ni / Cr (at%) is 77/23 and no Al is added. The thin film formation conditions here are the same as in the case of FIG.
[0020]
Next, Mn selected from the second group was further added to this Ni—Cr alloy with 10 at% added Al, and the optimum addition amount for reducing the secondary coefficient β was determined. FIG. 4 is a diagram showing the influence of the addition of Mn on the resistance value change rate. In FIG. 4, the vertical scale of FIG. 3 is enlarged about 15 times.
[0021]
FIG. 4 shows three measurement examples A, B, and C in which the amount of Mn added is 0, 10, and 5 at% to a Ni—Cr alloy containing 10 at% Al. That is, A does not contain Mn and is the same as that shown in FIG. B is obtained by adding 10 at% of Mn, and the rate of change in resistance value is greatly bent contrary to the case of A, so that it is understood that the amount of Mn added is too large. C is an intermediate addition amount between A and B, that is, Mn is 5 at%. From this result, it was found that TCR is within ± 2 ppm / ° C. That is, it was found that the optimum amount of Mn was 5 at%.
[0022]
The resistors used for these measurements are manufactured under the same conditions as the thin film resistors used in FIG. 1 and 2 show a primary coefficient α and a secondary coefficient β obtained for each resistor. Comparing these coefficients α and β, α and β of the resistor according to the present invention shown in FIG. 1 are remarkably smaller than those of the other (comparative example) and (conventional product) resistors. It can also be seen that it approaches zero over a very wide temperature range.
[0023]
The elements of the first group and the second group can be determined as follows, for example. FIG. 5 shows the formation of thin films obtained by adding 10 at% each of Al, Si, Mn, and Fe to an alloy having a composition ratio Ni / Cr of 77/23 (at%), and the primary temperature coefficient for each thin film. It is the figure which calculated | required (alpha). FIG. 6 is a diagram in which the secondary temperature coefficient β is similarly obtained.
[0024]
From FIG. 5, α is about +55 ppm / ° C. for Ni—Cr alloy alone, whereas it is about −70 for Al added at 10 at% and about 0 for Si added at 10 at%. It can be seen that Al is suitable for improving the coefficient α.
[0025]
Similarly, from FIG. 6, β is about −0.04 (ppm / ° C. 2 ) in the Ni—Cr alloy, whereas β is +0.03 in the case where Mn and Fe are added. It can be seen that Fe is suitable for improving the secondary coefficient β. The elements of the first group and the second group are obtained by conducting the above experiment on various elements. The resistors used in FIGS. 5 and 6 are thin film resistors manufactured under the same conditions as those in FIG.
[0027]
【The invention's effect】
As described above, the composition ratio Ni / Cr of the Ni / Cr alloy is 83/17 to 60/40 , the Al content is 3 to 10 at% , and the Mn content is 3 to 3 . It is a thin film resistor made of a Ni / Cr alloy of 10 at% , and the resistance temperature coefficient TCR is within ± 2 ppm / ° C., so that it can approach zero over a wide temperature range.
[0029]
This resistor is a thin film resistor formed by vapor deposition or sputtering, the stability of the resistance value can be further improved by applying a vacuum during heat treatment in at least one of the steps after the formation during and formation ( Claim 2 ). In the vapor deposition or sputtering, it is a matter of course that the resistor may be formed by a single treatment, but thin films having different components may be formed by being divided into a plurality of times (claim 3 ).
[Brief description of the drawings]
FIG. 1 is a diagram showing a resistance value change rate of an embodiment of the present invention. FIG. 2 is a diagram showing a resistance value change rate of a conventional product. FIG. 3 is a diagram showing a contribution of Al added to a Ni—Cr alloy. FIG. 4 shows the contribution of Mn added to Ni / Cr · Al. FIG. 5 shows the contribution of the first element to the coefficient α. FIG. 6 shows the contribution of the second element to the coefficient β. Figure

Claims (3)

絶縁基板表面に抵抗体を有する抵抗器において、
前記抵抗体は、Ni/Crの組成比Ni/Crが83/17〜60/40であり、Alの含有量が3〜10at%、Mnの含有量が3〜10at%であるNi−Cr系合金からなる薄膜抵抗体であり、抵抗温度係数TCRが±2ppm/℃以内であることを特徴とする抵抗器。
In a resistor having a resistor on the surface of an insulating substrate,
The resistor has a Ni / Cr composition ratio of Ni / Cr of 83/17 to 60/40, an Al content of 3 to 10 at% , and a Mn content of 3 to 10 at%. Ri thin film resistor der of an alloy, resistor temperature coefficient of resistance TCR is characterized der Rukoto within ± 2 ppm / ° C..
請求項1の抵抗器の製造方法であって、薄膜抵抗体を基板表面に蒸着またはスパッタリングで形成する一方、前記薄膜抵抗体の形成中および形成後の少なくとも一方の工程中に真空中熱処理を行うことを特徴とする抵抗器の製造方法。  2. The method of manufacturing a resistor according to claim 1, wherein the thin film resistor is formed on the surface of the substrate by vapor deposition or sputtering, and heat treatment in vacuum is performed during the formation of the thin film resistor and at least one step after the formation. A method for manufacturing a resistor. Mnを含むNi−Cr合金の薄膜とAlを含むNi−Cr合金の薄膜とを重ねて形成することにより薄膜抵抗体を形成する請求項の抵抗器の製造方法。 3. The method of manufacturing a resistor according to claim 2 , wherein the thin film resistor is formed by forming a Ni-Cr alloy thin film containing Mn and a Ni-Cr alloy thin film containing Al on top of each other.
JP35149698A 1998-12-10 1998-12-10 Resistor and its manufacturing method Expired - Lifetime JP4752075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35149698A JP4752075B2 (en) 1998-12-10 1998-12-10 Resistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35149698A JP4752075B2 (en) 1998-12-10 1998-12-10 Resistor and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2000182802A JP2000182802A (en) 2000-06-30
JP4752075B2 true JP4752075B2 (en) 2011-08-17

Family

ID=18417697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35149698A Expired - Lifetime JP4752075B2 (en) 1998-12-10 1998-12-10 Resistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4752075B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321206C (en) * 2003-11-04 2007-06-13 住友金属矿山株式会社 Metal resistor material, sputtering target material, resistor film and their manufactures

Also Published As

Publication number Publication date
JP2000182802A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
JPS6323305A (en) Highly stable metal film and manufacture of the same
KR830001873B1 (en) Resistor composition
JPH06300649A (en) Thin film strain resistance material, fabrication thereof and thin film strain sensor
JP2018091848A (en) Strain resistance film and strain sensor, and manufacturing method of them
EP0220926A2 (en) Thin film chromium-silicon-carbon resistor and method of manufacture thereof
JP6908554B2 (en) Strain resistance film and strain sensor, and their manufacturing method
JP4752075B2 (en) Resistor and its manufacturing method
JPS634321B2 (en)
US4709243A (en) Thermal head and method for manufacture thereof
JPH01291401A (en) Thin film resistor and manufacture thereof
JP3229460B2 (en) Strain gauge
JP4083900B2 (en) Thin film resistor and manufacturing method thereof
JP4083956B2 (en) Resistor
JPH06213613A (en) Distortion resistance material and manufacture thereof and thin film distortion sensor
JPH1038727A (en) Film element and method for manufacturing the same
JP2019074454A (en) Thin-film alloy for strain sensors with superior thermal stability and high strain gauge factor
JP3664655B2 (en) High resistivity material and manufacturing method thereof
JPS63147305A (en) Metal thin-film resistor
JPH06213612A (en) Distortion resistance material and manufacture thereof and thin film distortion sensor
JPH0821502B2 (en) Thin film permanent magnet
JPH0620803A (en) Thin film resistor and manufacture thereof
JP2005294612A5 (en)
JP3288241B2 (en) Resistive material and resistive material thin film
JPS6024562B2 (en) resistive thin film
JP2024128686A (en) Strain resistance film and strain sensor, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080421

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term