JP2019204874A - Film resistor for strain gauge - Google Patents

Film resistor for strain gauge Download PDF

Info

Publication number
JP2019204874A
JP2019204874A JP2018098885A JP2018098885A JP2019204874A JP 2019204874 A JP2019204874 A JP 2019204874A JP 2018098885 A JP2018098885 A JP 2018098885A JP 2018098885 A JP2018098885 A JP 2018098885A JP 2019204874 A JP2019204874 A JP 2019204874A
Authority
JP
Japan
Prior art keywords
chromium
film resistor
resistance
strain
bcc structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018098885A
Other languages
Japanese (ja)
Other versions
JP7025995B2 (en
Inventor
山寺 秀哉
Hideya Yamadera
秀哉 山寺
敬一 島岡
Keiichi Shimaoka
敬一 島岡
横山 賢一
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2018098885A priority Critical patent/JP7025995B2/en
Publication of JP2019204874A publication Critical patent/JP2019204874A/en
Application granted granted Critical
Publication of JP7025995B2 publication Critical patent/JP7025995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a film resistor having a high gauge factor and a low resistance temperature coefficient.SOLUTION: A film resistor disclosed herein comprises chromium (Cr), oxygen (O) and nitrogen (N) and is represented by the general formula CrON, in which the composition ratios x and y satisfy a relation given by 3.0≤x≤15.0 atom% and a relation given by 1.0≤y≤10.0 atom%. In the film resistor, the chromium has a bcc structure which is (110) oriented. The (110) orientation raises a piezoresistance coefficient, and increases a gauge factor. Chromium oxide and nitride as a scatterer serving to prevent metal conduction, are produced at chromium grain boundaries of the bcc structure, which lowers a resistance temperature coefficient.SELECTED DRAWING: Figure 1

Description

本明細書が開示する技術は、歪ゲージ用薄膜抵抗体に関する。   The technology disclosed in this specification relates to a thin film resistor for a strain gauge.

歪ゲージ用薄膜抵抗体は、圧力センサ等に用いられる。歪ゲージ用薄膜抵抗体では、センサの感度を決定する主要因であるゲージ率が重要である。ほとんどの金属でゲージ率は2.0程度であり、より高いゲージ率を有する材料が望まれていた。特許文献1―4には、クロムに他の物質を少量添加することにより、高いゲージ率が得られることが開示されている。   The strain gauge thin film resistor is used for a pressure sensor or the like. In the strain gauge thin film resistor, the gauge factor which is the main factor determining the sensitivity of the sensor is important. For most metals, the gauge factor is about 2.0, and a material having a higher gauge factor has been desired. Patent Documents 1 to 4 disclose that a high gauge factor can be obtained by adding a small amount of another substance to chromium.

特許文献1に、クロム(Cr)を主成分とし、窒素(N)と酸素(O)を含む歪抵抗膜が開示されている。特許文献1によれば、その歪抵抗膜は、一般式Cr100−x−yで表される。x、yは原子%を単位とする組成比を示しており、0.0001≦x≦30、0≦y≦30、0.0001≦x+y≦50の関係を満たす。そして、その歪抵抗膜は、熱処理によるA15型構造のbcc構造への変化により、bcc構造またはbcc構造とA15型構造との混成組織からなるとされている。 Patent Document 1 discloses a strain resistance film containing chromium (Cr) as a main component and containing nitrogen (N) and oxygen (O). According to Patent Document 1, the strain resistance film is represented by the general formula Cr 100-xy N x O y . x and y indicate composition ratios in units of atomic%, and satisfy the relationships of 0.0001 ≦ x ≦ 30, 0 ≦ y ≦ 30, and 0.0001 ≦ x + y ≦ 50. The strain resistance film is said to be composed of a bcc structure or a hybrid structure of a bcc structure and an A15 type structure due to a change of the A15 type structure to a bcc structure by heat treatment.

特許第3642449号公報Japanese Patent No. 3642449 特許第1938853号公報Japanese Patent No. 19388853 特許第2141235号公報Japanese Patent No. 2141235 特許第2562610号公報Japanese Patent No. 2562610

特許文献1に開示された歪抵抗膜は、ゲージ率が一桁台であり、抵抗温度係数(TCR)は数百[ppm/℃]である。本明細書は、従来よりもさらにゲージ率の高い歪抵抗膜(歪みゲージ用薄膜抵抗体)を提供する。   The strain resistance film disclosed in Patent Document 1 has a gauge factor in the single digit range, and a resistance temperature coefficient (TCR) of several hundred [ppm / ° C.]. The present specification provides a strain resistance film (thin film resistor for strain gauge) having a higher gauge factor than conventional ones.

本明細書が開示する歪みゲージ用薄膜抵抗体は、クロム(Cr)と酸素(O)と窒素(N)を含んでおり、一般式Cr100−x−yで表される。その組成比x、yは、原子%において、3.0≦x≦15.0の関係と、1.0≦y≦10.0の関係を満たしている。そして、本明細書が開示する歪みゲージ用薄膜抵抗体は、クロムが(110)配向(優先配向)のbcc構造を有している。(110)配向したCr−O−N膜は、高いゲージ率を有しており、従来よりも高感度な歪抵抗素子を実現することができる。なお、「(110)配向」とは、(110)優先配向を指す。 The thin film resistor for a strain gauge disclosed in the present specification contains chromium (Cr), oxygen (O), and nitrogen (N), and is represented by a general formula Cr 100-xy O x N y . The composition ratios x and y satisfy the relationship of 3.0 ≦ x ≦ 15.0 and the relationship of 1.0 ≦ y ≦ 10.0 in atomic%. And the thin film resistor for strain gauges disclosed in this specification has a bcc structure in which chromium has a (110) orientation (preferential orientation). The (110) oriented Cr—O—N film has a high gauge factor, and can realize a strain resistance element having higher sensitivity than the conventional one. “(110) orientation” refers to (110) preferential orientation.

本明細書が開示する歪ゲージ用薄膜抵抗体の一例は、ゲージ率が10以上である。また、その抵抗温度係数は、±100[ppm/℃]以下である。本明細書が開示する技術の一つによると、高いゲージ率と低い抵抗温度係数を両立した歪ゲージ用薄膜抵抗体を実現することができる。   An example of the strain gauge thin film resistor disclosed in this specification has a gauge factor of 10 or more. The temperature coefficient of resistance is ± 100 [ppm / ° C.] or less. According to one of the technologies disclosed in this specification, a thin film resistor for a strain gauge that achieves both a high gauge factor and a low resistance temperature coefficient can be realized.

本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。   Details and further improvements of the technology disclosed in this specification will be described in the following “DETAILED DESCRIPTION”.

作成したサンプルと比較例のゲージ率と抵抗温度係数とX線回折強度比を比較した表である。It is the table | surface which compared the prepared sample and the gauge factor, resistance temperature coefficient, and X-ray diffraction intensity ratio of a comparative example. 図1の表のグラフである(横軸は酸素含有率)。It is a graph of the table | surface of FIG. 1 (a horizontal axis is oxygen content rate). 図1の表のグラフである(横軸はクロム含有率)。It is a graph of the table | surface of FIG. 1 (a horizontal axis is chromium content rate).

温度特性改善のため、クロム(Cr)に窒素(N)または酸素(O)を添加すると、ゲージ率が低下する。これは、クロムに窒素または酸素Oを添加すると、bcc構造のクロムの結晶性が低下し、本来のbcc構造のクロムが有するピエゾ抵抗効果が十分に発揮されないためであると推定する。即ち、クロムを主成分とする従来の歪ゲージ用薄膜抵抗体では、ゲージ率と抵抗温度係数は背反する特性であった。   When nitrogen (N) or oxygen (O) is added to chromium (Cr) to improve temperature characteristics, the gauge factor decreases. This is presumably because when nitrogen or oxygen O is added to chromium, the crystallinity of the chromium having the bcc structure is lowered and the piezoresistance effect of the original chromium having the bcc structure is not sufficiently exhibited. That is, in the conventional strain gauge thin film resistor mainly composed of chromium, the gauge factor and the temperature coefficient of resistance are contradictory.

発明者らは、クロム(Cr)に酸素(O)と窒素(N)を添加し、かつ、好適な熱処理を施すと、bcc構造のクロムにおいて、(110)配向性が高まることを発見した。すなわち、好適な熱処理を施すと、クロムは、ピエゾ抵抗係数の高い(110)面に優先配向する。その結果、ゲージ率を高めることができることが解った。また、bcc構造のクロムに酸素と窒素を添加し、かつ、良好な熱処理を施すと、bcc構造のクロム粒界に金属伝導を妨げる散乱体であるクロムの酸化物および窒化物が生ずることを発見した。そのため、通常の等方性bcc構造のクロムは高い抵抗温度係数を有するが、(110)配向したクロムでは、抵抗温度係数をゼロ近くまで低下させることができることが判明した。   The inventors have discovered that when oxygen (O) and nitrogen (N) are added to chromium (Cr) and subjected to a suitable heat treatment, the (110) orientation is increased in the bcc structure chromium. That is, when a suitable heat treatment is performed, chromium is preferentially oriented in the (110) plane having a high piezoresistance coefficient. As a result, it has been found that the gauge factor can be increased. In addition, when oxygen and nitrogen are added to bcc-structured chromium and subjected to good heat treatment, it is discovered that chromium oxides and nitrides, which are scatterers that interfere with metal conduction, are produced at the bcc-structured chromium grain boundaries. did. For this reason, it has been found that the usual isotropic bcc structure chromium has a high temperature coefficient of resistance, but (110) oriented chromium can reduce the temperature coefficient of resistance to near zero.

一般に、(110)配向していない等方性のbcc構造のクロムのゲージ率は10以下である。一方、(110)方位に優先配向したbcc構造のクロムでは、高いピエゾ抵抗係数を有するために10以上の高いゲージ率が得られる。   Generally, the gauge factor of chromium with an isotropic bcc structure that is not (110) oriented is 10 or less. On the other hand, the bcc structure chromium preferentially oriented in the (110) orientation has a high piezoresistance coefficient, and thus a high gauge factor of 10 or more can be obtained.

(110)配向のbcc構造のクロムに3乃至15[原子%]の酸素を添加するとともに、1乃至10[原子%]の窒素を添加すると、抵抗温度係数が±100[ppm/℃]以下の、抵抗温度特性に優れた歪ゲージ用薄膜抵抗体を提供できる。上述の組成では、(110)配向のbcc構造のクロムの結晶性を変えることなく、粒界金属伝導を妨げるクロムの酸化物および窒化物の散乱体が適度に生じる。そのため、クロムの高い抵抗温度係数を低下させることができる。   When 3 to 15 [atomic%] oxygen is added to the (110) -oriented bcc structure chromium and 1 to 10 [atomic%] nitrogen is added, the temperature coefficient of resistance is ± 100 [ppm / ° C.] or less. A thin film resistor for a strain gauge having excellent resistance temperature characteristics can be provided. With the above composition, chromium oxide and nitride scatterers that interfere with grain boundary metal conduction are moderately produced without changing the crystallinity of the (110) oriented bcc structure chromium. Therefore, the high temperature coefficient of resistance of chromium can be reduced.

酸素が3[原子%]以下、または、窒素が1[原子%]以下であると、bcc構造のクロムが(110)方位に優先配向することがない。それゆえ、この場合、ゲージ率は10以上に高くならない。また、添加元素が少ないと、純クロム金属に近い、高い抵抗温度係数(+100[ppm/℃]以上)になるため、抵抗温度特性に優れなくなる。   When oxygen is 3 [atomic%] or less or nitrogen is 1 [atomic%] or less, the chromium of the bcc structure is not preferentially oriented in the (110) orientation. Therefore, in this case, the gauge factor does not increase to 10 or more. Further, when the amount of the additive element is small, the resistance temperature coefficient is close to that of pure chromium metal (+100 [ppm / ° C.] or more), so that the resistance temperature characteristics are not excellent.

一方、酸素が15[原子%]以上、または、窒素が10[原子%]以上であると、bcc構造のクロムの結晶性が低下するため、ゲージ率は10以下に低下する。   On the other hand, if oxygen is 15 [atomic%] or more, or nitrogen is 10 [atomic%] or more, the crystallinity of the bcc-structured chromium is lowered, so the gauge factor is lowered to 10 or less.

また、添加元素が多いと、電気伝導が半導体的になり負の抵抗温度係数(−100[ppm/℃]以下)になるため、抵抗温度特性に優れなくなる。   On the other hand, if the amount of additive elements is large, the electrical conductivity becomes semiconducting and a negative temperature coefficient of resistance (−100 [ppm / ° C.] or less) is obtained.

本発明の歪ゲージ用薄膜抵抗体を使用した歪抵抗素子は、以下の方法で製造した。まず基板となるガラス板にアルゴン(Ar)と窒素分子(N)の反応性スパッタリング法により、200[nm]のクロム−酸素−窒素(Cr−O−N)の薄膜を形成した。酸素(O)を導入しないのは、クロムが残留ガス中の酸素(O)と反応するため、導入しなくとも必要な酸素(O)を添加できるためである。 A strain resistance element using the thin film resistor for a strain gauge of the present invention was manufactured by the following method. First by a reactive sputtering method in argon glass plate as a substrate (Ar) and nitrogen molecules (N 2), 200 chromium [nm] - to form a thin film of nitrogen (Cr-O-N) - oxygen. The reason why oxygen (O) is not introduced is that chromium reacts with oxygen (O) in the residual gas, so that necessary oxygen (O) can be added without introduction.

得られた薄膜の組成をXPS法により分析したところ、Cr8510であった。次に歪ゲージの両端に、200[nm]の厚みのニッケル(Ni)と、50[nm]の厚みの金(Au)の2層膜からなる電極を形成し、その後、温度300[℃]の窒素分子(N2)の雰囲気ガスの中で30分間熱処理を施した。この熱処理は、bcc構造のクロムの(110)配向性を高めるためである。この配向性を確認するために、熱処理後の試料を、X線回析により解析した。配向性の評価は、Bcc構造のクロムの最強回折線(110)と第2強回折線(211)の強度比(P=I(110)/I(211))で評価した。なお、無配向のbcc構造のクロムの粉末のX線データでは、P=3.33であった。 The composition of the obtained thin film was analyzed by XPS method was Cr 85 O 10 N 5. Next, an electrode composed of a two-layer film of nickel (Ni) with a thickness of 200 [nm] and gold (Au) with a thickness of 50 [nm] is formed on both ends of the strain gauge, and then a temperature of 300 [° C.]. A heat treatment was performed for 30 minutes in an atmosphere of nitrogen molecules (N2). This heat treatment is for enhancing the (110) orientation of the chromium having the bcc structure. In order to confirm this orientation, the sample after the heat treatment was analyzed by X-ray diffraction. The orientation was evaluated by the intensity ratio (P = I (110) / I (211)) of the strongest diffraction line (110) and the second strong diffraction line (211) of chromium having a Bcc structure. In the X-ray data of the non-oriented bcc structure chromium powder, P = 3.33.

歪抵抗素子の評価は次のように実施した。歪抵抗素子に歪(ε)を0〜10−3のオーダで印加し、歪抵抗素子の抵抗値(R)を測定し、(1)式からゲージ率を算出した。歪量は、既知の歪ゲージで較正した。 The strain resistance element was evaluated as follows. Strain (ε) was applied to the strain resistance element on the order of 0 to 10 −3 , the resistance value (R) of the strain resistance element was measured, and the gauge factor was calculated from the equation (1). The amount of strain was calibrated with a known strain gauge.

K=(R−R)/ε (1) K = (R−R 0 ) / ε (1)

数式(1)において、記号Rは、歪ゼロのときの抵抗値である。次に、同じ抵抗素子を歪量ε=0の状態で、温度(T)を25[℃]から150[℃]の間で変えて、抵抗(R)を測定し、(2)式から抵抗温度係数(TCR)を算出した。
TCR=dR/dT (2)
In the formula (1), the symbol R 0 is a resistance value when the strain is zero. Next, the resistance (R) is measured by changing the temperature (T) between 25 [° C.] and 150 [° C.] in the state where the strain amount ε = 0 in the same resistance element, The temperature coefficient (TCR) was calculated.
TCR = dR / dT (2)

数式(2)において、dRは抵抗変化量を表しており、dTは温度変化量を表している。いくつかのサンプルについての評価結果を、X線回折の解析結果とともに図1−図3に示す。図1−図3には、(110)配向していない比較例についての評価結果も載せている。なお、図2、図3は、図1の表をグラフにしたものである。図2、図3において、黒丸がサンプルの結果を示しており、ばつ印が比較例の結果を示している。縦軸はゲージ率である。図2の横軸は、酸素含有量であり、図3の横軸はクロム含有量である。   In Expression (2), dR represents a resistance change amount, and dT represents a temperature change amount. The evaluation results of some samples are shown in FIGS. 1 to 3 together with the analysis results of X-ray diffraction. 1 to 3 also show the evaluation results for a comparative example that is not (110) oriented. 2 and 3 are graphs of the table of FIG. 2 and 3, black circles indicate the results of the samples, and the cross marks indicate the results of the comparative example. The vertical axis is the gauge factor. The horizontal axis in FIG. 2 is the oxygen content, and the horizontal axis in FIG. 3 is the chromium content.

図1の結果から、サンプル1−5は、いずれも10以上の高いゲージ率と±100[ppm/℃]未満の低い抵抗温度係数を示している。また、X線回折結果では、配向性を表す(110)方位と(211)方位の強度比p=I(110)/I(221)は10以上であり、bcc構造のクロムが(110)方位に配向(優先配向)していることが示された。サンプルが高いゲージ率を示したのは、bcc構造のクロムが(110)に優先配向したために、クロムの(110)面の高いピエゾ抵抗効果が発現されたためであると推定される。特に、図3に示されているように、クロムの含有率が低下しても、ゲージ率は高い値を保持することがわかった。クロムを主成分とする従来の抵抗体では、クロムの含有率が下がるにつれてゲージ率が低下しているのに対して、(110)配向したサンプルでは、クロムの含有率の変化によらず高いゲージ率が得られている。   From the results shown in FIG. 1, Samples 1-5 all show a high gauge factor of 10 or more and a low temperature coefficient of resistance less than ± 100 [ppm / ° C.]. Further, in the X-ray diffraction results, the intensity ratio p = I (110) / I (221) between the (110) azimuth and the (211) azimuth representing the orientation is 10 or more, and the chromium of the bcc structure has the (110) azimuth. It was shown that they were oriented (preferential orientation). It is presumed that the sample showed a high gauge factor because the bcc structure chromium was preferentially oriented to (110), and thus the high piezoresistance effect of the (110) plane of chromium was developed. In particular, as shown in FIG. 3, it was found that the gauge factor maintained a high value even when the chromium content decreased. In the conventional resistor mainly composed of chromium, the gauge factor decreases as the chromium content decreases, whereas in the (110) oriented sample, a high gauge is obtained regardless of the change in the chromium content. The rate is obtained.

また、サンプルが低い抵抗温度係数を示したのは、(110)配向したbcc構造のクロムの結晶粒界に金属伝導を妨げるクロムの酸化物および窒化物の散乱体が適度に生ずるため、クロムの高い抵抗温度係数を低下させることができたからであると推定される。   The sample also showed a low temperature coefficient of resistance because chromium oxide and nitride scatterers that interfere with metal conduction occur moderately at the (110) -oriented chromium grain boundaries of the bcc structure. It is presumed that the high temperature coefficient of resistance could be reduced.

一方、比較例では、10以下の低いゲージ率と、±100[ppm/℃]以上の高い抵抗温度係数しか得られなかった。また、bcc構造のクロムの配向性を示すp=I(110)/I(221)は10以下で、無配向の数値3.3に近かった。比較例のゲージ率が低いのは、bcc構造のクロムが(110)方位に配向していないために、クロムの(110)面の高いピエゾ抵抗効果が発現されなかったためであると推定される。また、比較例1の抵抗温度係数が特に高いのは、その組成が、含有率100[%]の純粋なクロムに近かったためであると推定される。比較例2、3で抵抗温度係数が高いのは、添加元素が多すぎて半導体的な電気伝導になったためであると推定される。   On the other hand, in the comparative example, only a low gauge factor of 10 or less and a high resistance temperature coefficient of ± 100 [ppm / ° C.] or more were obtained. Further, p = I (110) / I (221) indicating the orientation of the chromium of the bcc structure was 10 or less, which was close to the non-oriented value 3.3. It is presumed that the gauge factor of the comparative example is low because the high piezoresistance effect on the (110) plane of chromium was not exhibited because the chromium of the bcc structure was not oriented in the (110) orientation. Moreover, it is estimated that the reason why the temperature coefficient of resistance of Comparative Example 1 is particularly high is that the composition was close to that of pure chromium having a content rate of 100%. The reason why the temperature coefficient of resistance is high in Comparative Examples 2 and 3 is presumed to be because there are too many additive elements and semiconductor electrical conduction occurs.

比較例1は、窒素(N)が1[原子%]未満のケースであり、比較例2、3は、窒素(N)が10[原子%]を超えるケースである。また、比較例2は、酸素(O)が3[原子%]未満のケースでもあり、比較例3は、酸素(O)が15[原子%]を超えるケースでもある。比較例1−3は、いずれも、ゲージ率Kが10.0を下回っている。   Comparative Example 1 is a case where nitrogen (N) is less than 1 [atomic%], and Comparative Examples 2 and 3 are cases where nitrogen (N) exceeds 10 [atomic%]. Comparative Example 2 is also a case where oxygen (O) is less than 3 [atomic%], and Comparative Example 3 is also a case where oxygen (O) exceeds 15 [atomic%]. In all of Comparative Examples 1-3, the gauge factor K is less than 10.0.

以上のことから、クロムを主成分とし、酸素(O)を3乃至15[原子%]、かつ、窒素(N)を1乃至10[原子%]含有し、クロムが(110)配向のbcc構造の薄膜抵抗体は、10以上のゲージ率と、±100[ppm/℃]以下の特性を示す。この薄膜抵抗体(歪ゲージ用薄膜抵抗体)を歪ゲージに適用することで、従来よりもさらに高感度かつ温度特性に優れた歪抵抗素子を実現することができる。   From the above, a bcc structure containing chromium as a main component, oxygen (O) in an amount of 3 to 15 [atomic%], nitrogen (N) in an amount of 1 to 10 [atomic%], and chromium in a (110) orientation. This thin film resistor exhibits a gauge factor of 10 or more and characteristics of ± 100 [ppm / ° C.] or less. By applying this thin film resistor (strain gauge thin film resistor) to a strain gauge, it is possible to realize a strain resistance element with higher sensitivity and superior temperature characteristics than in the past.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

Claims (3)

クロム(Cr)と酸素(O)と窒素(N)を含んでおり、一般式Cr100−x−yで表され、組成比x、yは、原子%において、3.0≦x≦15.0の関係と、1.0≦y≦10.0の関係を満たしており、前記クロムが(110)配向のbcc構造を有している、歪ゲージ用薄膜抵抗体。 It contains chromium (Cr), oxygen (O), and nitrogen (N) and is represented by the general formula Cr 100-xy O x N y , and the composition ratio x, y is 3.0 ≦ A thin film resistor for a strain gauge, which satisfies a relationship of x ≦ 15.0 and a relationship of 1.0 ≦ y ≦ 10.0, and wherein the chromium has a (110) -oriented bcc structure. ゲージ率が10以上である、請求項1に記載の歪ゲージ用薄膜抵抗体。   The thin film resistor for strain gauges according to claim 1, wherein the gauge factor is 10 or more. 抵抗温度係数が±100[ppm/℃]以下である、請求項1又は2に記載の歪ゲージ用薄膜抵抗体。   The thin film resistor for a strain gauge according to claim 1 or 2, wherein the temperature coefficient of resistance is ± 100 [ppm / ° C] or less.
JP2018098885A 2018-05-23 2018-05-23 Thin film resistor for strain gauge Active JP7025995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098885A JP7025995B2 (en) 2018-05-23 2018-05-23 Thin film resistor for strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098885A JP7025995B2 (en) 2018-05-23 2018-05-23 Thin film resistor for strain gauge

Publications (2)

Publication Number Publication Date
JP2019204874A true JP2019204874A (en) 2019-11-28
JP7025995B2 JP7025995B2 (en) 2022-02-25

Family

ID=68727302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098885A Active JP7025995B2 (en) 2018-05-23 2018-05-23 Thin film resistor for strain gauge

Country Status (1)

Country Link
JP (1) JP7025995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092033A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Strain sensor, functional film, and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300649A (en) * 1993-04-12 1994-10-28 Sumitomo Electric Ind Ltd Thin film strain resistance material, fabrication thereof and thin film strain sensor
JPH10270201A (en) * 1997-03-21 1998-10-09 Res Inst Electric Magnetic Alloys Cr-n-based strained resistance film, manufacture therefor and strain sensor
KR20090081195A (en) * 2008-01-23 2009-07-28 대양전기공업 주식회사 A pressure measuring sensor and manufacturing process
JP2015031633A (en) * 2013-08-05 2015-02-16 公益財団法人電磁材料研究所 Strain sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300649B2 (en) 2014-06-04 2018-03-28 山洋電気株式会社 Fan motor inventory management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300649A (en) * 1993-04-12 1994-10-28 Sumitomo Electric Ind Ltd Thin film strain resistance material, fabrication thereof and thin film strain sensor
JPH10270201A (en) * 1997-03-21 1998-10-09 Res Inst Electric Magnetic Alloys Cr-n-based strained resistance film, manufacture therefor and strain sensor
KR20090081195A (en) * 2008-01-23 2009-07-28 대양전기공업 주식회사 A pressure measuring sensor and manufacturing process
JP2015031633A (en) * 2013-08-05 2015-02-16 公益財団法人電磁材料研究所 Strain sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092033A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Strain sensor, functional film, and method for manufacturing same

Also Published As

Publication number Publication date
JP7025995B2 (en) 2022-02-25

Similar Documents

Publication Publication Date Title
Ries et al. WITHDRAWN: Chemical composition and electronic structure of passive films formed on Alloy 600 in acidic solution
JP4436064B2 (en) Thermistor material and manufacturing method thereof
Habazaki et al. Nanoscale enrichments of substrate elements in the growth of thin oxide films
Häussler Evidence for a new Hume-Rothery phase with an amorphous structure
JPH06300649A (en) Thin film strain resistance material, fabrication thereof and thin film strain sensor
JP2790451B2 (en) Soft magnetic alloy film containing nitrogen
EP3295139A1 (en) High gage factor strain gage
JP2019204874A (en) Film resistor for strain gauge
US4100524A (en) Electrical transducer and method of making
JP6908554B2 (en) Strain resistance film and strain sensor, and their manufacturing method
Lyubimov et al. A mass spectrometric determination of the thermodynamic characteristics of binary metallic systems
JP2763165B2 (en) Manufacturing method of magnetic recording medium
JP6708538B2 (en) Thin film alloy for strain sensors with excellent thermal stability
Lood Electrical Properties of Cr‐SiO Cermet Films
JP6585679B2 (en) Thin film alloy for strain sensors with excellent thermal stability and high strain gauge factor
US10619227B2 (en) Thin film resistor
US1896193A (en) Constant resistivity alloy
JPS5999243A (en) Gas sensitive element
Daou et al. The effect of hydrogen in solid solution on the magnetic transitions in thulium
CA1048303A (en) Precision resistors using amorphous alloys
JP4238689B2 (en) Metal resistor and manufacturing method thereof
JP2018091705A (en) Strain resistance film and strain sensor for high temperature, and manufacturing method of them
JP2001281076A (en) Thin-film sensor
JP2019074452A (en) Thin film strain sensor material and thin film strain sensor
Belu-Marian et al. Conductivity of rf-sputtered Ni 100− x− Si x thin films with 33⩽ x⩽ 77 at.%

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7025995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150