JP2005069685A - Pressure sensor integrated with pressure receiving pipe - Google Patents

Pressure sensor integrated with pressure receiving pipe Download PDF

Info

Publication number
JP2005069685A
JP2005069685A JP2003187041A JP2003187041A JP2005069685A JP 2005069685 A JP2005069685 A JP 2005069685A JP 2003187041 A JP2003187041 A JP 2003187041A JP 2003187041 A JP2003187041 A JP 2003187041A JP 2005069685 A JP2005069685 A JP 2005069685A
Authority
JP
Japan
Prior art keywords
pressure
thin film
receiving pipe
pressure receiving
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003187041A
Other languages
Japanese (ja)
Other versions
JP4284508B2 (en
Inventor
Toshinori Nosaka
俊紀 野坂
Yoshiharu Kakehi
芳治 筧
Mikio Sawamura
幹雄 沢村
Hiroshi Takenaka
宏 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Nippon Liniax Co Ltd
Original Assignee
Osaka Prefecture
Nippon Liniax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture, Nippon Liniax Co Ltd filed Critical Osaka Prefecture
Priority to JP2003187041A priority Critical patent/JP4284508B2/en
Publication of JP2005069685A publication Critical patent/JP2005069685A/en
Application granted granted Critical
Publication of JP4284508B2 publication Critical patent/JP4284508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure sensor integrated with a pressure receiving pipe which shows a stable output without requiring temperature compensation even in an especially high temperature condition. <P>SOLUTION: This pressure sensor integrated with the pressure receiving pipe equipped with the pressure receiving pipe, and a pressure receiving pipe diaphragm is constituted so that a strain sensor element comprising a compound thin film having a composition formula (1) Cr<SB>1-(A+B)</SB>Si<SB>A</SB>C<SB>B</SB>(1) (In the formula, A is 0.01-0.9, B is 0.01-0.9, and A+B≤0.9) is formed on the diaphragm surface through a silicon oxide thin film and/or silicon nitride thin film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、受圧管一体型圧力センサに関する。
【0002】
【従来の技術】
近年、半導体Si単結晶の歪み抵抗変化を利用した拡散型圧力センサが広く使用されている。このセンサは、感度が高い、モノリシックに作製したICにより温度依存性が補正できる、ICプロセスにより小型センサを大量に作製できるので比較的安価である等の利点を有している。しかしながら、この構造のセンサは500kg/cm程度以上の高圧用センサとして使用する場合には、センサ部であるSiと流体圧力をセンサに導入する支持台との接続部で剥離を生ずるという問題が発生する。
【0003】
現行の高圧用圧力センサは、測定圧力とバランスする受圧装置の変位量を読み取る“変位式”と、圧力によってセンサ材料に誘起された歪による物性変化を電気信号として読み取る“ひずみ式”とに大別できる。
【0004】
より具体的に、変位式は、ブルドン管、ベローズ、ダイアフラムなどの変位を読み取るタイプの装置であり、高圧力の測定に適しているが、装置自体が大きくなるため、センサを小型化しようという要求には合致しない。
【0005】
一方、ひずみ式は、ダイアフラムの変形をひずみセンサを利用して測定する方式が主流である。この方式の装置は、小型化が可能であり、ひずみ抵抗を測定しているので、測定回路が簡単であるという利点を有している。この技術に関連して、例えば、特許文献1には、半導体式歪み検知素子、高温用半導体式圧力センサ等として使用できる半導体式検知素子が開示されている。具体的には、絶縁基板上に有機ケイ素原料からなる炭化ケイ素薄膜が形成され、該炭化ケイ素薄膜の電気抵抗値の変化を検出する半導体式検知素子において、前記炭化ケイ素薄膜が膜中に5mol%以上30mol%以下の酸素原子を含んでいる半導体式検知素子が開示されている。ところが、上記のように、高感度の故に、近年広く利用されている半導体Siを使用する圧力センサには、センサと受圧管との接合部分が高圧に十分に耐えられないという難点がある。
【0006】
これに対して、金属ひずみゲージ(センサ)をダイアフラム(受圧部)に張り合わせたタイプの装置は、その様な問題点がないため、高圧用センサに適しており、温度依存性が少ないという利点も備えている。従来、このタイプの装置は出力が小さく、センサとダイアフラムの接着状態が素子特性に大きな影響を与えるために素子特性の再現性が不十分とされていたが、例えば、特許文献2には、この点を改良した小型且つ素子特性の再現性に優れた受圧管一体型圧力センサが開示されている。具体的には、引用文献2には、受圧管と受圧管ダイアフラムを備えた受圧管一体型圧力センサにおいて、ダイアフラム表面に酸化ケイ素薄膜を介して酸化クロム薄膜からなるひずみセンサ素子を形成した受圧管一体型圧力センサが開示されている。
【0007】
しかしながら、酸化クロム薄膜からなるひずみセンサ素子を形成した受圧管一体型圧力センサは、150℃以上、特に250℃以上の高温条件下では、出力に温度依存性があるために温度補償をする必要があり、また出力の低下も認められる。近年、自動車用エンジン等の内燃機関の燃料圧制御、高温下で使用される産業用機械の圧力制御等の必要性から、高温条件下でも容易且つ安定に圧力測定ができる圧力センサの開発が望まれている。即ち、高温条件下でも温度補償をする必要がなく、安定な出力を発揮できる改良された受圧管一体型圧力センサの開発が期待されている。
【0008】
【特許文献1】
特開平11−195792号公報
【0009】
【特許文献2】
特開平7−335911号公報
【0010】
【発明が解決しようとする課題】
本発明は、特に高温条件下でも温度補償をする必要がなく、安定な出力を発揮できる受圧管一体型圧力センサを提供することを主な目的とする。
【0011】
【課題を解決するための手段】
本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、受圧管ダイアフラム表面に酸化ケイ素薄膜および/または窒化ケイ素薄膜を介して、特定の化合物薄膜からなるひずみセンサ素子を形成することにより、上記目的を達成できることを見出し、本発明を完成するに至った。
【0012】
即ち、本発明は下記の受圧管一体型圧力センサに係るものである。
1.受圧管と受圧管ダイアフラムを備えた受圧管一体型圧力センサにおいて、ダイアフラム表面に酸化ケイ素薄膜および/または窒化ケイ素薄膜を介して、下記組成式(1)
Cr1−(A+B)Si (1)
〔式中、Aは0.01〜0.9、Bは0.01〜0.9である:ただし、A+B≦0.9である〕
で示される化合物薄膜からなるひずみセンサ素子が形成されていることを特徴とする受圧管一体型圧力センサ。
【0013】
【発明の実施の形態】
本発明の受圧管一体型圧力センサ(以下「圧力センサ」とも言う)は、ダイアフラム表面に酸化ケイ素薄膜および/または窒化ケイ素薄膜を介して、下記組成式(1)
Cr1−(A+B)Si (1)
〔式中、Aは0.01〜0.9、Bは0.01〜0.9である:ただし、A+B≦0.9である〕
で示される化合物薄膜からなるひずみセンサ素子が形成されていることを特徴とする。
【0014】
組成式(1)において、Aは0.01〜0.9であればよいが、0.1〜0.7程度が好ましく、0.2〜0.4程度がより好ましい。Bは0.01〜0.9であればよいが、0.1〜0.7程度が好ましく、0.2〜0.4程度がより好ましい。
【0015】
組成式(1)において、Crに対するSiCの濃度は20〜90mol%程度であれば好ましく、40〜80mol%程度がより好ましい。より詳細には、Crに対するSiの濃度は10〜70mol%程度であれば好ましく、20〜40mol%程度がより好ましい。Crに対するCの濃度は10〜70mol%程度であれば好ましく、20〜40mol%程度がより好ましい。
【0016】
図1は、Cr、Si及びCの濃度に関して、組成式(1)で示される範囲、好ましい範囲およびより好ましい範囲を三元系図として示す。
組成式(1)で示される化合物薄膜からなるひずみセンサ素子は、ダイアフラム表面に酸化ケイ素薄膜および/または窒化ケイ素薄膜(絶縁層)を介して形成されている。かかるひずみセンサ素子を用いることにより、特に350〜400℃という高温条件下においても出力の安定した圧力センサが得られる。即ち、かかるひずみセンサ素子を用いる本発明の受圧管一体型圧力センサは、上記の高温条件下においても、温度補償をすることなく、安定な出力を発揮する。
【0017】
ひずみセンサ素子は、絶縁層としての酸化ケイ素薄膜または窒化ケイ素薄膜の上に直接形成してもよく、或いは酸化ケイ素薄膜上に窒化ケイ素薄膜を形成した後、その上に形成してもよい。後者の場合には、窒化ケイ素薄膜は、酸化ケイ素薄膜の保護層(応力緩和層)としての役割を果たす。さらに、窒化ケイ素薄膜上に酸化ケイ素薄膜を形成した後、ひずみセンサ素子を形成してもよい。保護層としては、窒化ケイ素薄膜以外にも、AlN、Al、TiAlN、ZrAlN、ZrO、DLC等からなる薄膜が使用できる。保護層の厚みは特に限定されないが、通常0.5〜1μm程度、好ましくは0.6〜0.8μm程度である。
【0018】
ひずみセンサ素子の上には、電極層としてAu/Ni層(積層膜)、Pt/Ni層(積層膜)等を積層できる。電極層の上にさらに保護層(センサ保護層)を設けてもよい。センサ保護層としては、例えば、Si、AlN、Al、TiAlN、ZrAlN、ZrO、DLCからなる層が挙げられる。これらセンサ保護層の厚みも特に限定されないが、通常0.5〜1μm程度、好ましくは0.6〜0.8μm程度である。
【0019】
本発明の圧力センサの一態様を示す断面図を図2に示す。図2では、受圧管1のダイアフラム2の表面に、絶縁層であるSiO層3、応力緩和層であるSi層4、組成式(1)で示される化合物薄膜からなるひずみセンサ素子5、電極層としてのAu/Ni積層膜6、及びセンサ保護層としてのSi層7、が順に積層されている。
【0020】
以下、本発明の圧力センサにおける各層の形成方法を例示して説明する。
【0021】
絶縁層であるSiO層は、例えば、ターゲットとしてSiOを用いたスパッタリング法(RF法)により形成できる。スパッタリング雰囲気は特に限定されないが、例えば、Ar−O混合ガスが好ましい。混合ガスの圧力は特に限定されないが、通常2〜6×10−1Pa程度が好ましい。スパッタリング電源出力は350〜1000W、好ましくは800〜900W程度である。膜厚は特に限定されないが、通常1〜3μm、好ましくは1〜2μm程度である。成膜時の基板温度は特に限定されないが、通常350〜400℃程度が好ましい。
【0022】
応力緩和層は、例えば、Siであれば、ターゲットとしてSiを用いて、Ar/N混合ガス中においてスパッタリング法(RF法)により成膜できる。混合ガスの圧力は特に限定されないが、通常5〜7×10−1Pa程度が好ましい。スパッタリングの電源出力は350〜1000W、好ましくは800〜900W程度である。膜厚は特に限定的ではないが、通常0.5〜1μm、好ましくは0.6〜0.8μm程度である。成膜時の基板温度は特に限定されないが、通常350〜400℃程度が好ましい。他のターゲット材料を用いて、前記した他の材料からなる応力緩和層を形成する場合にも、同様の条件を採用できるが、必要に応じて、個別的に調整すればよい。
【0023】
ひずみセンサ素子部は、例えば、CrSiCのターゲットからRFスパッタリングにより作製できる。用いるCrSiCターゲットにおけるSiとCの濃度を変化させることにより、ひずみセンサ素子に含まれるCr、Si及びCの濃度を所望の値に調整できる。スパッタリング雰囲気は特に限定されないが、特にAr雰囲気が好ましい。雰囲気ガスの圧力は特に限定されないが、通常2〜5×10−1Pa程度が好ましい。スパッタリングの電源出力は350〜600Wが好ましい。膜厚は特に限定的ではないが、通常0.1〜0.5μm、好ましくは0.2〜0.4μm程度である。成膜時の基板温度は特に限定されないが、通常350〜400℃程度が好ましい。
【0024】
電極層は、例えば、Au/Ni積層膜であれば、先ずNi膜をスパッタリング法(RF法)により形成し、次いでAuをスパッタリング法(DC法)により形成することにより形成できる。雰囲気としては、Arガスが好ましい。Arガスの圧力は特に限定されないが、通常2〜6×10−1Pa程度が好ましい。スパッタリングの電源出力は350〜1000W、好ましくは800〜900W程度である。膜厚は特に限定的ではないが、Ni膜は通常1〜3μm、好ましくは1〜2μm程度である。Au膜は通常0.5〜1μm、好ましくは0.6〜0.8μm程度である。成膜時の基板温度は特に限定されないが、通常350〜400℃程度が好ましい。
【0025】
上記各層を形成する工程では、スパッタリングに先立ち、Arガスによるプレスパッタリングを行って、ターゲット表面を清浄化することが好ましい。
【0026】
従来技術との対比
圧力センサのひずみセンサ素子部としては、金属のように抵抗温度微分係数(TCR)が比較的小さく、Siのようにゲージファクター(抵抗の歪みによる変化)が大きく、また電気抵抗も大きい薄膜材料が最も望ましい。TCRは電気抵抗の温度微分係数であり、測定温度における傾きを示すものである。
TCR=(1/R)dR/dT
〔Rは電気抵抗、Tは温度、単位はppm/K〕の関係である。
【0027】
従来から、薄膜材料を使用する圧力センサ用のセンサ素子としては、アモルファスSi(或いはマイクロクリスタリンSi)薄膜による圧力センサが開発されている(例えば、本間俊男:センサ技術、Vol.5、No.3、p30−36(1985))。このセンサは、ゲージファクターが大きく、比抵抗も高いものの、アモルファスSiの抵抗温度微分係数が大きいという欠点を有している。また、その製造には、高度に管理されたシラン利用設備と高価なクリーンルームなどの設備が必要であり、爆発性のシランガスや有毒なドーピングガスを使用するために、作業上の厳重な注意も必要である。
【0028】
これに対して、本発明における組成式(1)で示される化合物薄膜は、センサ素子部に求められる上記条件を全て具備しており、且つその製造も安全且つ比較的容易に行うことができる。
【0029】
本発明の圧力センサは、特に350〜400℃という高温条件下においても温度補償をすることなく安定した出力を発揮する高温用圧力センサとして特に有用性が高い。勿論、高温用圧力センサとしてのみならず、低温用圧力センサとしても有用である。
【0030】
【発明の効果】
本発明の圧力センサによれば、室温から400℃程度、特に350〜400℃という高温条件下において、温度補償をすることなく安定した出力を発揮、容易に圧力測定をすることができる。また受圧管一体型圧力センサであるため小型であり、出力電圧が高く、リニアリティーに優れている。
【0031】
【実施例】
以下に実施例及び比較例を示し、本発明をより具体的に説明する。但し、本発明は実施例に限定されるものではない。
【0032】
実施例1
SUS630製の受圧管ダイアフラム上にスパッタリング法によりSiO薄膜(約1.5μm)を成膜し、次いでCrSiC薄膜からなるひずみセンサ素子(約300nm)を形成した。ひずみセンサ素子中のSiC含有量を10mol%(Cr0.9Si0.050.05)、20mol%、30mol%、40mol%、50mol%、60mol%に分けて、6種類の圧力センサを作製した。
【0033】
上記6種類の圧力センサについて、SiC量と投入パワーに対するTCRの関係を調べた。その結果を図3に示す。投入電力はターゲットに印加するRF電力のワット数である。
【0034】
図3の結果からは、SiCの含有量が増加すると、TCRが小さくなり温度依存性が減少することが分かる。
【0035】
上記6種類の圧力センサについて、圧力0KPa(無加圧)の場合の温度ドリフト測定データを図4に示す。図4の結果からは、SiC含有量が増加すると温度ドリフトが減少して40〜60mol%の範囲で最も温度ドリフトが小さくなることが分かる。
【0036】
上記6種類の圧力センサについて、圧力500KPaの場合の温度ドリフト測定データを図5に示す。図5の結果からは、SiC含有量が増加すると温度ドリフトが減少して、図4と同様に40〜60mol%の範囲で最も温度ドリフトが小さくなることが分かる。
【0037】
本発明の圧力センサについて、圧力とセンサ出力との関係を図6に示す。図6の結果からは、いずれのデータも出力に対して直線関係にあり、良好なセンサ出力が得られていることが分かる。
【図面の簡単な説明】
【図1】本発明における化合物薄膜中のCr、Si及びCの濃度に関して、組成式(1)で示される範囲、好ましい範囲およびより好ましい範囲を三元系図として示す。
【図2】本発明の受圧管一体型圧力センサの概要を示す断面図である。
【図3】Crに対するSiC含有量とTCRとの関係を示すグラフである。
【図4】圧力0KPa(無加圧)の場合におけるSiC含有量に対する温度ドリフトの測定データを示すグラフである。
【図5】圧力500KPaの場合におけるSiC含有量に対する温度ドリフトの測定データを示すグラフである。
【図6】圧力とセンサ出力との関係を示すグラフである。
【符号の説明】
1…受圧管
2…ダイアフラム
3…SiO(絶縁層)
4…Si(応力緩和層)
5…CrSiC薄膜(ひずみセンサ素子)
6…Ni/Au積層膜(電極層)
7…Si(センサ保護層)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure receiving pipe integrated pressure sensor.
[0002]
[Prior art]
In recent years, a diffusion type pressure sensor using a strain resistance change of a semiconductor Si single crystal has been widely used. This sensor has advantages such as high sensitivity, temperature dependence can be corrected by a monolithically manufactured IC, and a large amount of small sensors can be manufactured by an IC process, so that it is relatively inexpensive. However, when the sensor of this structure is used as a high pressure sensor of about 500 kg / cm 2 or more, there is a problem that peeling occurs at a connection portion between Si as a sensor portion and a support base for introducing fluid pressure into the sensor. Occur.
[0003]
Current high-pressure pressure sensors are largely divided into a “displacement type” that reads the amount of displacement of the pressure receiving device that balances the measured pressure, and a “strain type” that reads changes in physical properties due to strain induced in the sensor material by pressure as electrical signals. Can be separated.
[0004]
More specifically, the displacement type is a device that reads the displacement of a Bourdon tube, bellows, diaphragm, etc., and is suitable for high pressure measurement, but the device itself becomes large, so there is a need to reduce the size of the sensor. Does not match.
[0005]
On the other hand, the strain type is mainly a method of measuring the deformation of the diaphragm using a strain sensor. This type of apparatus can be miniaturized and has the advantage that the measurement circuit is simple because it measures strain resistance. In relation to this technique, for example, Patent Document 1 discloses a semiconductor sensing element that can be used as a semiconductor strain sensing element, a high-temperature semiconductor pressure sensor, or the like. Specifically, in a semiconductor type sensing element in which a silicon carbide thin film made of an organic silicon raw material is formed on an insulating substrate and detects a change in electric resistance value of the silicon carbide thin film, the silicon carbide thin film is 5 mol% in the film. A semiconductor-type sensing element containing 30 mol% or less of oxygen atoms is disclosed. However, as described above, because of high sensitivity, a pressure sensor using semiconductor Si, which has been widely used in recent years, has a drawback that the joint between the sensor and the pressure receiving tube cannot sufficiently withstand high pressure.
[0006]
On the other hand, a device with a metal strain gauge (sensor) bonded to a diaphragm (pressure receiving part) does not have such problems, so it is suitable for high-pressure sensors and has the advantage of low temperature dependence. I have. Conventionally, this type of device has a low output, and the adhesion state between the sensor and the diaphragm has a great influence on the element characteristics, so that the element characteristics are not sufficiently reproducible. A compact pressure sensor integrated with a pressure-receiving pipe and improved in element characteristic reproducibility has been disclosed. Specifically, the cited reference 2 discloses a pressure receiving pipe integrated pressure sensor including a pressure receiving pipe and a pressure receiving pipe diaphragm, in which a strain sensor element made of a chromium oxide thin film is formed on the diaphragm surface via a silicon oxide thin film. An integrated pressure sensor is disclosed.
[0007]
However, a pressure sensor integrated with a pressure receiving tube in which a strain sensor element made of a chromium oxide thin film is formed has a temperature dependency at 150 ° C. or higher, particularly 250 ° C. or higher, and therefore needs to be temperature compensated. There is also a decrease in output. In recent years, the development of a pressure sensor that can measure pressure easily and stably even under high temperature conditions is desired due to the need for fuel pressure control of internal combustion engines such as automobile engines and pressure control of industrial machinery used at high temperatures. It is rare. In other words, it is expected to develop an improved pressure sensor integrated with a pressure-receiving tube that does not require temperature compensation even under high temperature conditions and can exhibit a stable output.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-195792 [0009]
[Patent Document 2]
Japanese Patent Application Laid-Open No. 7-335911
[Problems to be solved by the invention]
A main object of the present invention is to provide a pressure receiving pipe integrated pressure sensor that does not require temperature compensation even under a high temperature condition and can exhibit a stable output.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor has formed a strain sensor element comprising a specific compound thin film on the surface of the pressure-receiving tube diaphragm via a silicon oxide thin film and / or a silicon nitride thin film. The present inventors have found that the above object can be achieved and have completed the present invention.
[0012]
That is, the present invention relates to the following pressure sensor integrated pressure sensor.
1. In a pressure receiving pipe integrated pressure sensor having a pressure receiving pipe and a pressure receiving pipe diaphragm, the following composition formula (1) is applied to the diaphragm surface via a silicon oxide thin film and / or a silicon nitride thin film.
Cr 1- (A + B) Si A C B (1)
[In formula, A is 0.01-0.9, B is 0.01-0.9: However, it is A + B <= 0.9]
A pressure sensor integrated with a pressure receiving tube, wherein a strain sensor element comprising a compound thin film represented by the formula (1) is formed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The pressure sensor integrated with a pressure receiving pipe of the present invention (hereinafter also referred to as “pressure sensor”) has the following composition formula (1) via a silicon oxide thin film and / or a silicon nitride thin film on the diaphragm surface.
Cr 1- (A + B) Si A C B (1)
[In formula, A is 0.01-0.9, B is 0.01-0.9: However, it is A + B <= 0.9]
The strain sensor element which consists of a compound thin film shown by these is formed.
[0014]
In the composition formula (1), A may be 0.01 to 0.9, preferably about 0.1 to 0.7, and more preferably about 0.2 to 0.4. Although B should just be 0.01-0.9, about 0.1-0.7 are preferable and about 0.2-0.4 are more preferable.
[0015]
In the composition formula (1), the concentration of SiC with respect to Cr is preferably about 20 to 90 mol%, and more preferably about 40 to 80 mol%. More specifically, the concentration of Si with respect to Cr is preferably about 10 to 70 mol%, and more preferably about 20 to 40 mol%. The concentration of C relative to Cr is preferably about 10 to 70 mol%, and more preferably about 20 to 40 mol%.
[0016]
FIG. 1 shows a range represented by the composition formula (1), a preferable range, and a more preferable range as a ternary diagram regarding the concentrations of Cr, Si and C.
The strain sensor element comprising the compound thin film represented by the composition formula (1) is formed on the diaphragm surface via a silicon oxide thin film and / or a silicon nitride thin film (insulating layer). By using such a strain sensor element, a pressure sensor having a stable output can be obtained even under a high temperature condition of 350 to 400 ° C. That is, the pressure receiving pipe integrated pressure sensor of the present invention using such a strain sensor element exhibits a stable output without temperature compensation even under the above high temperature conditions.
[0017]
The strain sensor element may be formed directly on the silicon oxide thin film or the silicon nitride thin film as the insulating layer, or may be formed on the silicon oxide thin film after the silicon nitride thin film is formed thereon. In the latter case, the silicon nitride thin film serves as a protective layer (stress relaxation layer) for the silicon oxide thin film. Furthermore, the strain sensor element may be formed after the silicon oxide thin film is formed on the silicon nitride thin film. As the protective layer, in addition to the silicon nitride thin film, a thin film made of AlN, Al 2 O 3 , TiAlN, ZrAlN, ZrO 2 , DLC, or the like can be used. Although the thickness of a protective layer is not specifically limited, Usually, about 0.5-1 micrometer, Preferably it is about 0.6-0.8 micrometer.
[0018]
On the strain sensor element, an Au / Ni layer (laminated film), a Pt / Ni layer (laminated film) or the like can be laminated as an electrode layer. A protective layer (sensor protective layer) may be further provided on the electrode layer. Examples of the sensor protective layer include a layer made of Si 3 N 4 , AlN, Al 2 O 3 , TiAlN, ZrAlN, ZrO 2 , and DLC. Although the thickness of these sensor protective layers is not particularly limited, it is usually about 0.5 to 1 μm, preferably about 0.6 to 0.8 μm.
[0019]
A cross-sectional view showing one embodiment of the pressure sensor of the present invention is shown in FIG. In FIG. 2, a strain sensor element comprising an SiO 2 layer 3 as an insulating layer, an Si 3 N 4 layer 4 as a stress relaxation layer, and a compound thin film represented by the composition formula (1) on the surface of the diaphragm 2 of the pressure receiving tube 1. 5, an Au / Ni laminated film 6 as an electrode layer, and an Si 3 N 4 layer 7 as a sensor protective layer are laminated in order.
[0020]
Hereinafter, a method for forming each layer in the pressure sensor of the present invention will be described as an example.
[0021]
The SiO 2 layer which is an insulating layer can be formed by, for example, a sputtering method (RF method) using SiO 2 as a target. Although the sputtering atmosphere is not particularly limited, for example, an Ar—O 2 mixed gas is preferable. Although the pressure of mixed gas is not specifically limited, Usually, about 2-6 * 10 < -1 > Pa is preferable. The sputtering power output is about 350 to 1000 W, preferably about 800 to 900 W. The film thickness is not particularly limited, but is usually 1 to 3 μm, preferably about 1 to 2 μm. Although the substrate temperature at the time of film-forming is not specifically limited, Usually, about 350-400 degreeC is preferable.
[0022]
For example, if the stress relaxation layer is Si 3 N 4, it can be formed by sputtering (RF method) in an Ar / N 2 mixed gas using Si as a target. Although the pressure of mixed gas is not specifically limited, Usually, about 5-7 * 10 < -1 > Pa is preferable. The power output of sputtering is about 350 to 1000 W, preferably about 800 to 900 W. The film thickness is not particularly limited, but is usually 0.5 to 1 μm, preferably about 0.6 to 0.8 μm. Although the substrate temperature at the time of film-forming is not specifically limited, Usually, about 350-400 degreeC is preferable. The same conditions can be adopted when the stress relaxation layer made of the other material is formed using another target material, but may be individually adjusted as necessary.
[0023]
The strain sensor element portion can be produced by RF sputtering from a CrSiC target, for example. By changing the concentration of Si and C in the CrSiC target to be used, the concentration of Cr, Si and C contained in the strain sensor element can be adjusted to a desired value. The sputtering atmosphere is not particularly limited, but an Ar atmosphere is particularly preferable. Although the pressure of atmospheric gas is not specifically limited, Usually, about 2-5 * 10 < -1 > Pa is preferable. The power output of sputtering is preferably 350 to 600W. The film thickness is not particularly limited, but is usually about 0.1 to 0.5 μm, preferably about 0.2 to 0.4 μm. Although the substrate temperature at the time of film-forming is not specifically limited, Usually, about 350-400 degreeC is preferable.
[0024]
For example, if the electrode layer is an Au / Ni laminated film, it can be formed by first forming a Ni film by a sputtering method (RF method) and then forming Au by a sputtering method (DC method). As an atmosphere, Ar gas is preferable. Although the pressure of Ar gas is not specifically limited, Usually, about 2-6 * 10 < -1 > Pa is preferable. The power output of sputtering is about 350 to 1000 W, preferably about 800 to 900 W. The film thickness is not particularly limited, but the Ni film is usually 1 to 3 μm, preferably about 1 to 2 μm. The Au film is usually about 0.5 to 1 μm, preferably about 0.6 to 0.8 μm. Although the substrate temperature at the time of film-forming is not specifically limited, Usually, about 350-400 degreeC is preferable.
[0025]
In the step of forming each of the above layers, it is preferable to clean the target surface by performing pre-sputtering with Ar gas prior to sputtering.
[0026]
Contrast with the prior art As the strain sensor element part of the pressure sensor, the resistance temperature differential coefficient (TCR) is relatively small like metal, and the gauge factor (change due to resistance strain) is large like Si. A thin film material having a large electric resistance is most desirable. TCR is a temperature differential coefficient of electric resistance, and indicates a slope at a measured temperature.
TCR = (1 / R) dR / dT
[R is electrical resistance, T is temperature, unit is ppm / K].
[0027]
Conventionally, as a sensor element for a pressure sensor using a thin film material, a pressure sensor using an amorphous Si (or microcrystalline Si) thin film has been developed (for example, Toshio Honma: Sensor Technology, Vol. 5, No. 3). P30-36 (1985)). Although this sensor has a large gauge factor and a high specific resistance, it has the disadvantages that amorphous Si has a large resistance temperature differential coefficient. In addition, the production requires highly controlled silane utilization equipment and expensive clean room facilities, and since explosive silane gas and toxic doping gas are used, strict caution is required during operation. It is.
[0028]
On the other hand, the compound thin film represented by the composition formula (1) in the present invention has all of the above conditions required for the sensor element portion, and can be manufactured safely and relatively easily.
[0029]
The pressure sensor of the present invention is particularly useful as a high-temperature pressure sensor that exhibits a stable output without temperature compensation even under a high temperature condition of 350 to 400 ° C. Of course, it is useful not only as a high-temperature pressure sensor but also as a low-temperature pressure sensor.
[0030]
【The invention's effect】
According to the pressure sensor of the present invention, a stable output can be exhibited and temperature measurement can be easily performed without temperature compensation under a high temperature condition of room temperature to about 400 ° C., particularly 350 to 400 ° C. Moreover, since it is a pressure sensor integrated with a pressure receiving tube, it is small, has a high output voltage, and is excellent in linearity.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the examples.
[0032]
Example 1
A SiO 2 thin film (about 1.5 μm) was formed on a pressure-sensitive tube diaphragm made of SUS630 by sputtering, and then a strain sensor element (about 300 nm) made of a CrSiC thin film was formed. The SiC content in the strain sensor element is divided into 10 mol% (Cr 0.9 Si 0.05 C 0.05 ), 20 mol%, 30 mol%, 40 mol%, 50 mol%, and 60 mol%. Produced.
[0033]
With respect to the above six types of pressure sensors, the relationship between the SiC amount and the TCR with respect to the input power was examined. The result is shown in FIG. The input power is the wattage of RF power applied to the target.
[0034]
From the results of FIG. 3, it can be seen that as the SiC content increases, the TCR decreases and the temperature dependence decreases.
[0035]
FIG. 4 shows temperature drift measurement data when the pressure is 0 KPa (no pressurization) for the six types of pressure sensors. From the results of FIG. 4, it can be seen that as the SiC content increases, the temperature drift decreases and the temperature drift becomes the smallest in the range of 40 to 60 mol%.
[0036]
FIG. 5 shows temperature drift measurement data for the above six types of pressure sensors when the pressure is 500 KPa. From the result of FIG. 5, it can be seen that as the SiC content increases, the temperature drift decreases, and the temperature drift becomes the smallest in the range of 40 to 60 mol% as in FIG.
[0037]
FIG. 6 shows the relationship between pressure and sensor output for the pressure sensor of the present invention. From the results of FIG. 6, it can be seen that all the data are linearly related to the output, and a good sensor output is obtained.
[Brief description of the drawings]
FIG. 1 shows a range represented by the composition formula (1), a preferred range, and a more preferred range as a ternary diagram regarding the concentrations of Cr, Si and C in a compound thin film in the present invention.
FIG. 2 is a cross-sectional view showing an outline of a pressure receiving pipe integrated pressure sensor of the present invention.
FIG. 3 is a graph showing the relationship between SiC content relative to Cr and TCR.
FIG. 4 is a graph showing temperature drift measurement data with respect to SiC content when the pressure is 0 KPa (no pressurization).
FIG. 5 is a graph showing temperature drift measurement data with respect to SiC content when the pressure is 500 KPa.
FIG. 6 is a graph showing the relationship between pressure and sensor output.
[Explanation of symbols]
1 ... pressure pipe 2 ... diaphragm 3 ... SiO 2 (insulating layer)
4 ... Si 3 N 4 (stress relaxation layer)
5 ... CrSiC thin film (strain sensor element)
6 ... Ni / Au laminated film (electrode layer)
7 ... Si 3 N 4 (sensor protective layer)

Claims (1)

受圧管と受圧管ダイアフラムを備えた受圧管一体型圧力センサにおいて、ダイアフラム表面に酸化ケイ素薄膜および/または窒化ケイ素薄膜を介して、下記組成式(1)
Cr1−(A+B)Si (1)
〔式中、Aは0.01〜0.9、Bは0.01〜0.9である:ただし、A+B≦0.9である〕
で示される化合物薄膜からなるひずみセンサ素子が形成されていることを特徴とする受圧管一体型圧力センサ。
In a pressure receiving pipe integrated pressure sensor having a pressure receiving pipe and a pressure receiving pipe diaphragm, the following composition formula (1) is applied to the diaphragm surface via a silicon oxide thin film and / or a silicon nitride thin film.
Cr 1- (A + B) Si A C B (1)
[In formula, A is 0.01-0.9, B is 0.01-0.9: However, it is A + B <= 0.9]
A pressure sensor integrated with a pressure receiving tube, wherein a strain sensor element comprising a compound thin film represented by the formula (1) is formed.
JP2003187041A 2003-06-24 2003-06-30 Pressure sensor with integrated pressure tube Expired - Fee Related JP4284508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187041A JP4284508B2 (en) 2003-06-24 2003-06-30 Pressure sensor with integrated pressure tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003179019 2003-06-24
JP2003187041A JP4284508B2 (en) 2003-06-24 2003-06-30 Pressure sensor with integrated pressure tube

Publications (2)

Publication Number Publication Date
JP2005069685A true JP2005069685A (en) 2005-03-17
JP4284508B2 JP4284508B2 (en) 2009-06-24

Family

ID=34425031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187041A Expired - Fee Related JP4284508B2 (en) 2003-06-24 2003-06-30 Pressure sensor with integrated pressure tube

Country Status (1)

Country Link
JP (1) JP4284508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117422A (en) * 2011-12-02 2013-06-13 Asahi Denshi Kenkyusho:Kk Strain resistance element and strain detector including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119901A (en) * 1985-10-30 1987-06-01 アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド Thin film resistor and manufacture of the same
JPH0786004A (en) * 1993-09-13 1995-03-31 Fujitsu Ltd Method of manufacture thin film resistor material and thin film resistor
JPH07335911A (en) * 1994-06-06 1995-12-22 Osaka Prefecture Pressure sensor integrated with pressure receiving pipe
JPH0941100A (en) * 1995-08-03 1997-02-10 Res Inst Electric Magnetic Alloys Iron-chromium-silicon base alloy and its production and strain gauge
JPH10270201A (en) * 1997-03-21 1998-10-09 Res Inst Electric Magnetic Alloys Cr-n-based strained resistance film, manufacture therefor and strain sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119901A (en) * 1985-10-30 1987-06-01 アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド Thin film resistor and manufacture of the same
JPH0786004A (en) * 1993-09-13 1995-03-31 Fujitsu Ltd Method of manufacture thin film resistor material and thin film resistor
JPH07335911A (en) * 1994-06-06 1995-12-22 Osaka Prefecture Pressure sensor integrated with pressure receiving pipe
JPH0941100A (en) * 1995-08-03 1997-02-10 Res Inst Electric Magnetic Alloys Iron-chromium-silicon base alloy and its production and strain gauge
JPH10270201A (en) * 1997-03-21 1998-10-09 Res Inst Electric Magnetic Alloys Cr-n-based strained resistance film, manufacture therefor and strain sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117422A (en) * 2011-12-02 2013-06-13 Asahi Denshi Kenkyusho:Kk Strain resistance element and strain detector including the same

Also Published As

Publication number Publication date
JP4284508B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US4320664A (en) Thermally compensated silicon pressure sensor
US7861597B2 (en) High temperature transducer using SOI electronics
US4622856A (en) Sensor with polycrystalline silicon resistors
KR920001226B1 (en) Semiconductor pressur sensor
JP2890601B2 (en) Semiconductor sensor
US6957584B2 (en) Span and null shift temperature compensated thin film strain gauge bridge by series resistance
US20100199775A1 (en) Method for temperature compensation of a piezoresistive gaged metal diaphragm
US9915578B2 (en) High temperature transducer using SOI, silicon carbide or gallium nitride electronics
JP2002527767A (en) Circuit arrangement for temperature non-linearity compensation of the characteristic curve of a piezoresistive measuring resistor connected in a bridge circuit
Liu et al. Polysilicon nanofilm pressure sensor
JP4284508B2 (en) Pressure sensor with integrated pressure tube
Homma et al. Preparation of polycrystalline SiC films for sensors used at high temperature
KR100528636B1 (en) Pressure sensor and fabricating method thereof
US20200118719A1 (en) Film Resistor and Thin-Film Sensor
US11177059B2 (en) Film resistor and thin-film sensor
JP3030337B2 (en) Cryogenic thermometer
JP2011117971A (en) Temperature-sensitive strain-sensitive composite sensor
JP3546151B2 (en) Distortion detecting element and method for manufacturing distortion detecting element
JP2838361B2 (en) Pressure sensor integrated pressure sensor
JPH0682842B2 (en) Sensitivity Self-temperature compensation strain detector
KR100427430B1 (en) Metal thin film pressure sensor and method for making the same
Chung et al. Characteristics of Chromiun Nitride Thin-film Strain Guges
JPH06244438A (en) Manufacture of silicon semiconductor pressure gage
JPH01183165A (en) Semiconductor pressure sensor
JPH0419494B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4284508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees