JPH04360540A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04360540A
JPH04360540A JP3136308A JP13630891A JPH04360540A JP H04360540 A JPH04360540 A JP H04360540A JP 3136308 A JP3136308 A JP 3136308A JP 13630891 A JP13630891 A JP 13630891A JP H04360540 A JPH04360540 A JP H04360540A
Authority
JP
Japan
Prior art keywords
gate electrode
photo resist
photoresist
mask
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3136308A
Other languages
Japanese (ja)
Inventor
Masanobu Saito
雅伸 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3136308A priority Critical patent/JPH04360540A/en
Publication of JPH04360540A publication Critical patent/JPH04360540A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate

Abstract

PURPOSE:To reduce the irregularity of film thickness, by forming high impurity concentration source/drain regions by using photo resist as a mask, making the photo resist narrow and small, and forming low impurity concentration source/drain regions by using the narrow small photo resist as a mask. CONSTITUTION:Polycrystalline silicon 5 is selectively etched by patterning hydrophobic photo resist 4 for working a gate electrode. High concentration source/drain regions 7, 8 are formed by implanting arsenic ions 6 in silicon substrate by using the photo resist 4 as a mask. The surface of photo resist 41 is ashed and eliminated by exposing a P-type silicon substrate 1 to exygen plasma. In this process, the width of photo resist is made narrow and small. Left photo resist is used as a mask, and phosphorus ions 9 are impanted, thereby forming low concentration source/drain regions 10, 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体装置の製造方法
に係わり、特に、逆T字型ゲート電極構造を有するLD
D構造MIS型電界効果トランジスタの製造方法に関す
る。
[Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device.
The present invention relates to a method of manufacturing a D-structure MIS field effect transistor.

【0002】0002

【従来の技術】逆T字型のゲート構造をもつMIS型半
導体装置は、低濃度ドレイン領域がゲート電極とオーバ
ーラップした構造を有するため、電流駆動力が高く、し
かもホットキャリアに対する特性変動が少ないという特
長を有する。しかし、複雑な形状をしたゲート電極を制
御性よく加工するのが困難で、トランジスタ特性がばら
つきホットキャリアの信頼性も低下しやすい。
[Prior Art] A MIS type semiconductor device with an inverted T-shaped gate structure has a structure in which a lightly doped drain region overlaps a gate electrode, so it has high current driving ability and has little characteristic variation with respect to hot carriers. It has the following characteristics. However, it is difficult to process gate electrodes with complex shapes with good controllability, and transistor characteristics vary and hot carrier reliability tends to decrease.

【0003】逆T字型のゲート構造をもつMIS型半導
体装置の製造方法としては、ゲート電極材料のエッチン
グを途中でストップする方法が知られている。この製造
方法を図3に示す工程断面図を使って、説明する。
As a method for manufacturing a MIS type semiconductor device having an inverted T-shaped gate structure, a method is known in which etching of the gate electrode material is stopped midway. This manufacturing method will be explained using process cross-sectional views shown in FIG.

【0004】まず半導体基板1の上に、ゲート絶縁膜2
およびゲート電極材料を形成し、その上にゲート電極3
を加工するためのフォトレジスト4を形成する(図3(
a))。次に上記フォトレジスト4をマスクに、ゲート
電極3をエッチングし、ゲート絶縁膜2に達する前でエ
ッチングを終了することで、薄いゲート電極材料を残す
。 フォトレジスト4を剥離し、厚いゲート電極6部分をマ
スクに、低濃度のソース/ドレイン領域を形成する為の
イオン注入を行う (図3(b))。
First, a gate insulating film 2 is formed on a semiconductor substrate 1.
and a gate electrode material, and a gate electrode 3 is formed thereon.
Form a photoresist 4 for processing (Fig. 3(
a)). Next, using the photoresist 4 as a mask, the gate electrode 3 is etched, and the etching is finished before reaching the gate insulating film 2, leaving a thin gate electrode material. The photoresist 4 is peeled off, and ions are implanted to form low concentration source/drain regions using the thick gate electrode 6 portion as a mask (FIG. 3(b)).

【0005】次にゲート電極の周りに、SiO2 から
成る側壁15を形成する (図3(c))。次にこの側
壁15をマスクに、薄いゲート電極5の部分をエッチン
グし取り除く。そして、ゲート電極及びその側壁15を
マスクに高濃度のソース/ドレイン領域形成の為のイオ
ン注入を行う (図3(d))。
Next, side walls 15 made of SiO2 are formed around the gate electrode (FIG. 3(c)). Next, using this side wall 15 as a mask, a portion of the thin gate electrode 5 is etched and removed. Then, using the gate electrode and its sidewalls 15 as masks, ion implantation is performed to form highly concentrated source/drain regions (FIG. 3(d)).

【0006】[0006]

【発明が解決しようとする課題】以上の様なMIS型半
導体装置の製造方法では以下に示す様な問題点があった
SUMMARY OF THE INVENTION The method for manufacturing an MIS type semiconductor device as described above has the following problems.

【0007】第1に、ゲート電極のエッチング時間の設
定が難しく、両脇の薄いゲート電極の膜厚の制御性が悪
い。したがって、低濃度ソース/ドレイン領域の拡散層
の深さが安定しないため、閾値電圧や相互コンダクタン
ス等のトランジスタ特性がばらつきホットキャリア信頼
性が低下し易い。
First, it is difficult to set the etching time for the gate electrode, and the thickness of the thin gate electrodes on both sides is difficult to control. Therefore, since the depth of the diffusion layer in the lightly doped source/drain region is not stable, transistor characteristics such as threshold voltage and mutual conductance vary and hot carrier reliability tends to decrease.

【0008】第2に、ゲート電極の側壁を使って、薄い
ゲート電極張り出しの長さ、すなわち低濃度ソース/ド
レイン領域の長さを決めているが、側壁幅の抑制が難し
いく不安定な為、同様にトランジスタの特性やホットキ
ャリア信頼性が低下し易い。第3に、厚いゲート電極の
周りに側壁を形成して、薄いゲート電極を加工するので
、ゲートの電極幅はフォトレジストの加工寸法よりも太
くなり、トランジスタの微細化に適さない。本発明は、
この様な課題を解決するMIS型半導体装置の製造方法
を提供することを目的とする。 [発明の構成]
Second, the sidewalls of the gate electrode are used to determine the length of the thin gate electrode overhang, that is, the length of the lightly doped source/drain region, but this is difficult and unstable because it is difficult to suppress the sidewall width. Similarly, transistor characteristics and hot carrier reliability are likely to deteriorate. Third, since a sidewall is formed around a thick gate electrode and a thin gate electrode is processed, the width of the gate electrode becomes wider than the processing dimension of the photoresist, which is not suitable for miniaturization of transistors. The present invention
It is an object of the present invention to provide a method for manufacturing an MIS type semiconductor device that solves such problems. [Structure of the invention]

【0009】[0009]

【課題を解決するための手段】本発明は、上記事情に鑑
みて試されたもので、半導体基板上にゲート絶縁膜を介
して、ゲート電極形成予定域に第1のゲート電極層及び
フォトレジストを積層する工程と、このフォトレジスト
をマスクとしてイオン注入し半導体基板に高濃度ソース
/ドレイン領域を形成する工程と、フォトレジストを第
1のゲート電極の幅に比して狭小化する工程と、この狭
小化されたフォトレジストをマスクとしてイオン注入し
、第1のゲート電極下に低濃度ソース/ドレイン領域を
形成する工程と、半導体基板上に選択的に絶縁膜を形成
する工程と、フォトレジストを除去し溝を形成する工程
と、この溝に電極材料を埋め込み第2のゲート電極を形
成する工程とを具備したことを特徴とする半導体装置の
製造方法を提供する。
[Means for Solving the Problems] The present invention has been tried in view of the above circumstances, and includes a method of forming a first gate electrode layer and a photoresist on a semiconductor substrate through a gate insulating film in an area where a gate electrode is to be formed. a step of laminating the photoresist, a step of implanting ions using the photoresist as a mask to form a highly concentrated source/drain region in the semiconductor substrate, a step of reducing the width of the photoresist compared to the width of the first gate electrode, A step of implanting ions using this narrowed photoresist as a mask to form a low concentration source/drain region under the first gate electrode, a step of selectively forming an insulating film on the semiconductor substrate, and a step of forming a low concentration source/drain region under the first gate electrode. Provided is a method for manufacturing a semiconductor device, comprising the steps of: forming a groove by removing the first gate electrode; and filling the groove with an electrode material to form a second gate electrode.

【0010】0010

【作用】この様に本発明によれば薄いゲート電極の厚さ
を電極材料の成膜量として制御できるので、膜厚のバラ
ツキが小さい。したがって、イオン注入による低濃度ソ
ース/ドレイン領域の深さ方向の濃度分布を正確に制御
できる。
[Operation] As described above, according to the present invention, the thickness of the thin gate electrode can be controlled by controlling the amount of the electrode material deposited, so that variations in the film thickness are small. Therefore, the concentration distribution in the depth direction of the lightly doped source/drain region by ion implantation can be accurately controlled.

【0011】また、薄いゲート電極を加工したフォトレ
ジストを低電力の酸素プラズマでゆっくりと細らせるの
で、薄いゲート電極の張り出し部分の長さを正確に制御
することができる。したがって、ゲート電極とドレイン
領域のオーバーラップ長を正確に制御することができる
。以上の2点により、トランジスタ特性やホットキャリ
ア信頼性が低下しにくい逆T字型MISトランジスタの
製造が可能である。
Furthermore, since the photoresist processed into the thin gate electrode is slowly thinned using low-power oxygen plasma, the length of the overhanging portion of the thin gate electrode can be accurately controlled. Therefore, the overlap length between the gate electrode and the drain region can be accurately controlled. The above two points make it possible to manufacture an inverted T-shaped MIS transistor in which transistor characteristics and hot carrier reliability are unlikely to deteriorate.

【0012】また、エッチングで加工する下部のゲート
電極は薄くてよい為、ゲート絶縁膜をオーバーエッチグ
する可能性が小さく、ゲート絶縁膜を薄膜化するのに適
している。また、ゲート電極の加工に、特殊なエッチン
グ装置を使わずに済み、コストの低減につながる。
Furthermore, since the lower gate electrode to be etched may be thin, there is little possibility of over-etching the gate insulating film, making it suitable for thinning the gate insulating film. Additionally, there is no need to use special etching equipment to process the gate electrode, leading to cost reductions.

【0013】一方、ゲートの電極幅は、はじめに形成し
たフォトレジストの加工寸法と同じになるため、リソグ
ラフィーの限界までゲート電極幅を短くすることができ
、トランジスタの微細化に適している。
On the other hand, since the gate electrode width is the same as the processing dimensions of the photoresist initially formed, the gate electrode width can be shortened to the limit of lithography, which is suitable for miniaturization of transistors.

【0014】[0014]

【実施例】以下、本発明の実施例を図面によって説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be explained with reference to the drawings.

【0015】図1(d)において、MOS型電界効果ト
ランジスタ(以下、MOSFETと略記する)はnチャ
ネル型であり、p型Si基板の主表面に形成されている
。p型Si基板内の素子形成領域上にはゲート酸化膜と
n+ 型多結晶シリコンからなる薄いゲート電極、更に
その上にはタングステンからなる厚いゲート電極が設け
られる。その両脇には液相成長させたシリコン酸化膜が
形成されている。図1は本発明の第1の実施例の半導体
装置の製造方法を工程順に断面図で示したものである。
In FIG. 1(d), a MOS field effect transistor (hereinafter abbreviated as MOSFET) is an n-channel type, and is formed on the main surface of a p-type Si substrate. A thin gate electrode made of a gate oxide film and n+ type polycrystalline silicon is provided on the element formation region in the p-type Si substrate, and a thick gate electrode made of tungsten is further provided thereon. A silicon oxide film grown in a liquid phase is formed on both sides thereof. FIG. 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to a first embodiment of the present invention in the order of steps.

【0016】p型シリコン基板1の主表面に、ゲート酸
化膜2を20nm形成し、その上にn+ 型多結晶シリ
コン5を50nm形成する。リソグラフィ法を用いてゲ
ート電極加工用の疎水性のフォトレジスト4を1.3μ
mの厚さにパターニングし、ゲート長が1.0μmにな
るように多結晶シリコン5(第1のゲート電極)を選択
的にエッチングする。そして、上記フォレジスト4をマ
スクに、砒素イオン6を50kVの加速電圧でシリコン
基板中にイオン注入し、高濃度ソース/ドレイン領域7
,8を形成する (図1(a))。
A gate oxide film 2 is formed to a thickness of 20 nm on the main surface of a p-type silicon substrate 1, and an n+ type polycrystalline silicon 5 is formed thereon to a thickness of 50 nm. A hydrophobic photoresist 4 of 1.3μ for gate electrode processing was created using lithography.
The polycrystalline silicon 5 (first gate electrode) is patterned to a thickness of m and selectively etched so that the gate length becomes 1.0 μm. Then, using the foresist 4 as a mask, arsenic ions 6 are implanted into the silicon substrate at an accelerating voltage of 50 kV.
, 8 (Fig. 1(a)).

【0017】次にp型シリコン基板1を酸素ガス圧50
mTorr、電力50Wの酸素プラズマ中にさらし、フ
ォトレジスト41の表面を200nm灰化して除去する
。ここで、フォトレジストの幅は1.0μmから0.6
μmに狭小化される。残ったフォトレジストをマスクに
して、燐イオン9を45keVの加速電圧でイオン注入
し、低濃度ソース/ドレイン領域10,11を形成する
 (図1(b))。
Next, the p-type silicon substrate 1 is heated to an oxygen gas pressure of 50
The photoresist 41 is exposed to oxygen plasma at mTorr and power of 50 W, and the surface of the photoresist 41 is ashed to 200 nm and removed. Here, the width of the photoresist is from 1.0 μm to 0.6 μm.
Narrowed down to μm. Using the remaining photoresist as a mask, phosphorus ions 9 are implanted at an acceleration voltage of 45 keV to form low concentration source/drain regions 10 and 11 (FIG. 1(b)).

【0018】次にフォトレジスト41の上には成膜され
ない様に、LPD(Liquid PhaseDepo
sition)法を用いて選択的にシリコン酸化膜12
を液相成長させる。即ち、H3 BO3 が添加された
飽和H2 SiF6 液中に基板1を浸漬する。ここで
フォトレジスト41は疎水性のためフォトレジスト41
上にはシリコン酸化膜12は形成されない (図1(c
))。次にフォトレジスト41を除去し、タングステン
13(第2のゲート電極)をn+ 型多結晶シリコンの
ゲート電極5上に選択的に成長させる。
Next, LPD (Liquid Phase Depo) is applied so that no film is formed on the photoresist 41.
The silicon oxide film 12 is selectively formed using the
is grown in liquid phase. That is, the substrate 1 is immersed in a saturated H2 SiF6 solution to which H3 BO3 is added. Here, since the photoresist 41 is hydrophobic, the photoresist 41
The silicon oxide film 12 is not formed thereon (FIG. 1(c)
)). Next, the photoresist 41 is removed, and tungsten 13 (second gate electrode) is selectively grown on the gate electrode 5 of n+ type polycrystalline silicon.

【0019】図2は本発明の実施例第2の実施例の半導
体装置の製造方法を工程順に断面図で示したものである
。図1と同一部分には、同一の番号を付し、詳しい説明
は省略する。第1の実施例では、ソース/ドレイン拡散
層の浅い領域と深い領域を別々のイオン注入で形成して
いたが、第2の実施例では、図2(b)に示すように1
回のイオン注入で同時に形成している点が異なる。
FIG. 2 is a cross-sectional view showing a method for manufacturing a semiconductor device according to a second embodiment of the present invention in the order of steps. Components that are the same as those in FIG. 1 are given the same numbers, and detailed explanations will be omitted. In the first embodiment, the shallow and deep regions of the source/drain diffusion layer were formed by separate ion implantations, but in the second embodiment, as shown in FIG.
The difference is that they are formed simultaneously by multiple ion implantations.

【0020】上述の実施例においては、nチャネル型の
MOSFETの場合についてに説明したが、pチャネル
型のMOSFETについても全く同様な実施が可能であ
る。また、第1,第2のゲート電極の材料もn+ 型多
結晶シリコンやタングステンに限定されない。特に、上
部の厚い第2のゲート電極に関しては、導電材料をウェ
ハ全面に成膜し、エッチバック法によりゲート部分にの
み残す製造方法も可能である。また、本発明は上述の実
施例に限定されず、その要旨を逸しない範囲での種々の
変更が可能であることは言うまでもない。
In the above embodiment, the case of an n-channel type MOSFET has been explained, but the same implementation is also possible for a p-channel type MOSFET. Furthermore, the materials for the first and second gate electrodes are not limited to n+ type polycrystalline silicon or tungsten. In particular, regarding the thick upper second gate electrode, it is also possible to form a conductive material over the entire surface of the wafer and leave it only on the gate portion using an etch-back method. Furthermore, it goes without saying that the present invention is not limited to the above-described embodiments, and that various changes can be made without departing from the spirit of the invention.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、逆
T字型ゲート構造をもつLDD構造MIS型半導体装置
において、両脇の薄いゲート電極の厚み、及び、ソース
/ドレイン領域とゲート電極のオーバーラップ長の制御
性が良く、浅いソース/ドレイン領域の不純物分布を安
定して製造することができる。したがって、トランジス
タ特性やホットキャリア信頼性が低下しにくいMIS構
造半導体を安定して製造することができる。
As explained above, according to the present invention, in an LDD structure MIS type semiconductor device having an inverted T-shaped gate structure, the thickness of the thin gate electrodes on both sides, the source/drain region and the gate electrode can be adjusted. The overlap length can be controlled well, and the impurity distribution in shallow source/drain regions can be manufactured stably. Therefore, it is possible to stably manufacture an MIS structure semiconductor in which transistor characteristics and hot carrier reliability are less likely to deteriorate.

【0022】また、通常の逆T字型ゲート電極構造のト
ランジスタと異なり、薄いゲート電極の幅をリソグラフ
ィー技術の限界まで細らせることができるので、高い電
流駆動力とホットキャリア信頼性を保ったまま、トラン
ジスタを微細化することができる。
Furthermore, unlike transistors with a normal inverted T-shaped gate electrode structure, the width of the thin gate electrode can be reduced to the limit of lithography technology, maintaining high current driving power and hot carrier reliability. However, transistors can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の第1の実施例の半導体装置の製造
方法の工程断面図。
FIG. 1 is a process cross-sectional view of a method for manufacturing a semiconductor device according to a first embodiment of the present invention.

【図2】  本発明の第2の実施例の半導体装置の製造
方法の工程断面図。
FIG. 2 is a process cross-sectional view of a method for manufacturing a semiconductor device according to a second embodiment of the present invention.

【図3】  従来例の半導体装置の製造方法の工程断面
図。
FIG. 3 is a process cross-sectional view of a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1…半導体基板 2…ゲート絶縁膜 3、5…n+ 型多結晶Si 4…フォトレジスト 6…砒素イオン 7、8…n+ 型ソース・ドレイン拡散層9…燐イオン 10、11…n+ 型ソース・ドレイン拡散層12…液
層成長SiO2 膜 13…タングステン 15、16…SiO2 膜
1... Semiconductor substrate 2... Gate insulating film 3, 5... N+ type polycrystalline Si 4... Photoresist 6... Arsenic ions 7, 8... N+ type source/drain diffusion layer 9... Phosphorus ions 10, 11... N+ type source/drain Diffusion layer 12...Liquid layer grown SiO2 film 13...Tungsten 15, 16...SiO2 film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上にゲート絶縁膜を介して
、ゲート電極形成予定域に第1のゲート電極層及びフォ
トレジストを積層する工程と、このフォトレジストをマ
スクとしてイオン注入し前記半導体基板に高不純物濃度
ソース/ドレイン領域を形成する工程と、前記フォトレ
ジストを前記第1のゲート電極の幅に比して狭小化する
工程と、この狭小化されたフォトレジストをマスクとし
てイオン注入し、前記第1のゲート電極下に低不純物濃
度ソース/ドレイン領域を形成する工程と、前記半導体
基板上に選択的に絶縁膜を形成する工程と、前記フォト
レジストを除去し溝を形成する工程と、この溝に電極材
料を埋め込み第2のゲート電極を形成する工程とを具備
したことを特徴とする半導体装置の製造方法。
1. A step of laminating a first gate electrode layer and a photoresist in a region where a gate electrode is to be formed on a semiconductor substrate via a gate insulating film, and using the photoresist as a mask, ions are implanted into the semiconductor substrate. a step of forming a source/drain region with high impurity concentration, a step of narrowing the photoresist in comparison with the width of the first gate electrode, and performing ion implantation using the narrowed photoresist as a mask; a step of forming a low impurity concentration source/drain region under the first gate electrode; a step of selectively forming an insulating film on the semiconductor substrate; a step of removing the photoresist and forming a groove; 1. A method of manufacturing a semiconductor device, comprising the step of burying an electrode material in a groove to form a second gate electrode.
【請求項2】  前記半導体基板上に選択的に絶縁膜を
形成する工程としては、液相成長法を用いることを特徴
とする請求項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein a liquid phase growth method is used in the step of selectively forming an insulating film on the semiconductor substrate.
JP3136308A 1991-06-07 1991-06-07 Manufacture of semiconductor device Pending JPH04360540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136308A JPH04360540A (en) 1991-06-07 1991-06-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136308A JPH04360540A (en) 1991-06-07 1991-06-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04360540A true JPH04360540A (en) 1992-12-14

Family

ID=15172163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136308A Pending JPH04360540A (en) 1991-06-07 1991-06-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04360540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250604A (en) * 1995-03-10 1996-09-27 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250604A (en) * 1995-03-10 1996-09-27 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US6551870B1 (en) Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer
KR100206876B1 (en) Manufacturing method of mos field effect transistors
US6033958A (en) Method of fabricating dual voltage MOS transistors
JP2847490B2 (en) Method for manufacturing transistor
JPH098321A (en) Transistor structure of semiconductor element and its manufacture
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
US6864128B2 (en) Manufacturing method for a semiconductor device
JP3079586B2 (en) High breakdown voltage transistor and method of manufacturing the same
JPH04360540A (en) Manufacture of semiconductor device
KR100298874B1 (en) Method for forming transistor
JPH0738095A (en) Semiconductor device and its manufacturing method
KR100386610B1 (en) Semiconductor device and method for manufacturing the same
KR100252858B1 (en) Semiconductor device and method for manufacturing the same
JPH02137335A (en) Manufacture of field effect transistor
JPS60200572A (en) Manufacture of semiconductor device
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor
KR100588781B1 (en) Semiconductor Device And Method For Manufacturing The Same
US20060105531A1 (en) Method of forming notched gate structure
JPH113996A (en) Semiconductor device and manufacture thereof
JPH025436A (en) Manufacture of field-effect transistor
KR0155301B1 (en) Method for fabricating mosfet
KR20020049934A (en) Method of manufacturing a transistor in a semiconductor device
JPH02265250A (en) Manufacture of semiconductor device
KR20020017725A (en) High voltage Semiconductor device and method for the Same
JPH06204240A (en) Manufacturing method of semiconductor device