JPH04316347A - Method of measuring film thickness of semiconductor device - Google Patents

Method of measuring film thickness of semiconductor device

Info

Publication number
JPH04316347A
JPH04316347A JP8270391A JP8270391A JPH04316347A JP H04316347 A JPH04316347 A JP H04316347A JP 8270391 A JP8270391 A JP 8270391A JP 8270391 A JP8270391 A JP 8270391A JP H04316347 A JPH04316347 A JP H04316347A
Authority
JP
Japan
Prior art keywords
film
layer
film thickness
layers
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8270391A
Other languages
Japanese (ja)
Inventor
Isao Sato
功 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP8270391A priority Critical patent/JPH04316347A/en
Publication of JPH04316347A publication Critical patent/JPH04316347A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of measuring film thickness for enabling a film thickness to be measured accurately without being affected by a forming material of each film-forming layer to be measured and a film-forming process as well as a film-forming state. CONSTITUTION:When laminating film-forming layers 15 and 19 on a high- concentration N-type diffusion region 13 of a semiconductor substrate 11, remaining patterns 14 and 18 are included on the high-concentration N-type diffusion region 13 and at an interface of the film-forming layers 15 and 19. After film formation ends, the film-forming layers 15 and 19 are eliminated in a section circular arc shape with a constant radius of curvature at a depth reaching the high-concentration N-type diffusion region 13 within the remaining patterns 14 and 18. After that, a position of elimination edge of the remaining patterns 14 and 18 is measured in reference to the elimination edge of the uppermost-layer film-forming layer 19. Then, a film thickness of the film-forming layers 15 and 19 is calculated according to geometrical consideration based on the measurement result and the above constant radius of curvature.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体装置の膜厚測定
方法、特に積層状態に形成された複数の成膜層(例えば
半導体基板上に積層された複数のエピタキシャル層等)
のそれぞれについて膜厚測定を行うための膜厚測定方法
に関するものである。
[Industrial Application Field] The present invention relates to a method for measuring the film thickness of a semiconductor device, particularly a plurality of film layers formed in a stacked state (for example, a plurality of epitaxial layers stacked on a semiconductor substrate).
The present invention relates to a film thickness measurement method for measuring the film thickness of each of the above.

【0002】0002

【従来の技術】従来、例えば半導体装置の半導体基板上
に形成されたエピタキシャル層の膜厚を測定する方法と
して、例えばエピタキシャル膜厚計を用いる方法がある
。この膜厚計は、赤外線を応用したものであり、再現性
良くエピタキシャル成長層の膜厚を測定できるので広く
用いられている。
2. Description of the Related Art Conventionally, as a method for measuring the film thickness of an epitaxial layer formed on a semiconductor substrate of a semiconductor device, for example, there is a method using, for example, an epitaxial film thickness meter. This film thickness meter uses infrared rays and is widely used because it can measure the thickness of an epitaxially grown layer with good reproducibility.

【0003】図2(a)〜(d)は、従来の半導体装置
の膜厚測定方法の一例を示すもので、赤外線を応用した
エピタキシャル膜厚計を用いて行う膜厚測定プロセスの
工程図である。
FIGS. 2(a) to 2(d) show an example of a conventional film thickness measurement method for semiconductor devices, and are process diagrams of a film thickness measurement process performed using an epitaxial film thickness meter that applies infrared rays. be.

【0004】以下、図2を参照しつつ、従来の膜厚測定
方法について説明する。
A conventional method for measuring film thickness will be explained below with reference to FIG.

【0005】先ず、図2(a)の工程において、例えば
P形の単結晶シリコンからなる半導体基板1の全表面に
、埋込み層形成のために例えばN形不純物添加の液体を
塗布してアンチモンシリカフィルム2を形成する。
First, in the step shown in FIG. 2A, a liquid doped with N-type impurities, for example, is applied to the entire surface of a semiconductor substrate 1 made of, for example, P-type single crystal silicon, and antimony silica is added to form a buried layer. A film 2 is formed.

【0006】次の工程では、図2(b)に示すように、
アンチモンシリカフィルム2を含む半導体基板1上に熱
処理を施し、アンチモンシリカフィルム2を半導体基板
1中へ拡散させて、その表面付近に高濃度N形拡散領域
3を形成する。
In the next step, as shown in FIG. 2(b),
A heat treatment is performed on the semiconductor substrate 1 including the antimony silica film 2 to diffuse the antimony silica film 2 into the semiconductor substrate 1 and form a high concentration N-type diffusion region 3 near the surface thereof.

【0007】図2(c)の工程では、先ず、前工程で形
成した高濃度N形拡散領域3上にN形エピタキシャル層
4を成長させる。ここで、高濃度N形拡散領域3とN形
エピタキシャル層4との濃度差は、通常例えば1×10
3 cm−2程度の濃度差である。
In the step shown in FIG. 2(c), first, an N-type epitaxial layer 4 is grown on the heavily doped N-type diffusion region 3 formed in the previous step. Here, the concentration difference between the highly doped N-type diffusion region 3 and the N-type epitaxial layer 4 is usually, for example, 1×10
The difference in concentration is about 3 cm-2.

【0008】次いで、図示しないが赤外線を利用したエ
ピタキシャル膜厚計を用いて、N形エピタキシャル層4
の膜厚を計測する。この膜厚計の測定原理は、測定する
膜厚に入射した赤外線の入射波と反射波との位相差を検
出して膜厚測定を行うものである。例えば図2(c)中
に示すように、赤外線L1の入力波が半導体基板1表面
に入射すると、高濃度N形拡散領域3とN形エピタキシ
ャル層4との界面で濃度差があるために、その界面にお
ける高濃度N形拡散領域3表面即ちN形エピタキシャル
層4底部で入力波が反射する。よって、赤外線L1の入
力波とN形エピタキシャル層4底部からの反射波との位
相差を検出すれば、N形エピタキシャル層4の膜厚d1
を計測することができる。
Next, although not shown, the N-type epitaxial layer 4 is measured using an epitaxial film thickness meter that uses infrared rays.
Measure the film thickness. The measurement principle of this film thickness meter is to measure the film thickness by detecting the phase difference between an incident wave and a reflected wave of infrared rays incident on the film thickness to be measured. For example, as shown in FIG. 2(c), when an input wave of infrared rays L1 enters the surface of the semiconductor substrate 1, since there is a concentration difference at the interface between the high concentration N type diffusion region 3 and the N type epitaxial layer 4, The input wave is reflected at the surface of the high concentration N type diffusion region 3 at the interface, that is, at the bottom of the N type epitaxial layer 4. Therefore, if the phase difference between the input wave of the infrared ray L1 and the reflected wave from the bottom of the N-type epitaxial layer 4 is detected, the film thickness d1 of the N-type epitaxial layer 4 can be determined.
can be measured.

【0009】同様の測定方法を用いれば、図2(d)に
示すように、N形エピタキシャル層4上に、P形エピタ
キシャル層5を形成した後、そのP形エピタキシャル層
5の膜厚を測定できる。先ず、N形エピタキシャル層d
1が得られているとする。そしてP形エピタキシャル層
5形成後の半導体基板1上に、赤外線L2を入射する。 すると、その赤外線L2は、赤外線L1の場合と同様に
して、高濃度N形拡散領域3とN形エピタキシャル層4
との界面で濃度差があるために、N形エピタキシャル層
4の底部で反射する。よって、赤外線L2の入力波とN
形エピタキシャル層4底部からの反射波との位相差を検
出すれば、積層されたN形エピタキシャル層4及びP形
エピタキシャル層5のトータル膜厚d2を計測できる。 従って、その計測結果d2から先に求めたN形エピタキ
シャル層4の膜厚d2を引けば、P形エピタキシャル層
5の膜厚d3(=d2−d1)が求まる。
Using a similar measurement method, as shown in FIG. 2(d), a P-type epitaxial layer 5 is formed on an N-type epitaxial layer 4, and then the thickness of the P-type epitaxial layer 5 is measured. can. First, an N-type epitaxial layer d
Suppose that 1 is obtained. Then, infrared rays L2 are incident on the semiconductor substrate 1 after the P-type epitaxial layer 5 has been formed. Then, the infrared ray L2 is transmitted to the high concentration N type diffusion region 3 and the N type epitaxial layer 4 in the same way as the infrared ray L1.
Since there is a concentration difference at the interface with the N-type epitaxial layer 4, it is reflected at the bottom of the N-type epitaxial layer 4. Therefore, the input wave of infrared ray L2 and N
By detecting the phase difference with the reflected wave from the bottom of the N-type epitaxial layer 4, the total film thickness d2 of the laminated N-type epitaxial layer 4 and P-type epitaxial layer 5 can be measured. Therefore, by subtracting the previously obtained thickness d2 of the N-type epitaxial layer 4 from the measurement result d2, the thickness d3 (=d2-d1) of the P-type epitaxial layer 5 can be determined.

【0010】0010

【発明が解決しようとする課題】しかしながら、従来の
半導体装置の膜厚測定方法では、次のような課題があっ
た。
[Problems to be Solved by the Invention] However, the conventional method for measuring film thickness of semiconductor devices has the following problems.

【0011】(A)  従来の赤外線を応用した膜厚測
定方法では、層間の濃度差により赤外線が反射すること
を利用して測定を行う。例えば図2では、高濃度N形拡
散領域3をその反射面としている。ところが、例えばN
形エピタキシャル層4とP形エピタキシャル層5との間
に濃度差がある場合、例えば入射した赤外線L2がエピ
タキシャル層4,5の界面で反射するおそれがある。こ
の場合、赤外線L2がN形エピタキシャル層4下の高濃
度N形拡散領域3で反射しているのか、N形エピタキシ
ャル層4とP形エピタキシャル層5との界面で反射して
いるのかが明確ではなくなり、正確な膜厚測定が行えな
くなってしまう。
(A) In the conventional film thickness measurement method using infrared rays, measurement is performed by utilizing the reflection of infrared rays due to the difference in concentration between layers. For example, in FIG. 2, the high concentration N-type diffusion region 3 is used as its reflective surface. However, for example, N
If there is a concentration difference between the P-type epitaxial layer 4 and the P-type epitaxial layer 5, there is a possibility that, for example, the incident infrared ray L2 may be reflected at the interface between the epitaxial layers 4 and 5. In this case, it is not clear whether the infrared rays L2 are reflected at the high concentration N-type diffusion region 3 under the N-type epitaxial layer 4 or at the interface between the N-type epitaxial layer 4 and the P-type epitaxial layer 5. As a result, accurate film thickness measurements cannot be performed.

【0012】(B)  例えば従来の膜厚測定方法を、
測定専用に形成した成膜層の膜厚測定を行うために用い
るのであれば、N形エピタキシャル層4とP形エピタキ
シャル層5とをそれぞれ別々の基板に成長させてそれぞ
れの膜厚を測定すればよく、上記(A)に述べたような
問題は生じない。しかし、この場合、例えばモニタ用の
基板が2枚必要になってしまう。さらには、別々の基板
で測定を行うと、例えばN形エピタキシャル層4とP形
エピタキシャル層5とを連続成長した場合にその双方の
エピタキシャル成長後に高濃度N形拡散領域3がトータ
ルでどの程度N形エピタキシャル層4に上方拡散してい
るのかを調べることができず、その上方拡散によってず
れたトータル膜厚d3の値を補正できない。そのため、
連続成長時のP形エピタキシャル層5の膜厚を正確に調
べることができない。これは、同一の基板上に積層エピ
タキシャル層を連続成長させた場合にも同様に生じる問
題である。
(B) For example, if the conventional film thickness measurement method is
If it is used to measure the thickness of a film formed specifically for measurement, it is possible to grow the N-type epitaxial layer 4 and the P-type epitaxial layer 5 on separate substrates and measure the thickness of each layer. Often, the problem described in (A) above does not occur. However, in this case, for example, two monitor boards are required. Furthermore, when measurements are performed on separate substrates, for example, when an N-type epitaxial layer 4 and a P-type epitaxial layer 5 are grown consecutively, it is possible to determine how much of the high-concentration N-type diffusion region 3 is in total N-type after the epitaxial growth of both layers. It is not possible to check whether the light has diffused upward into the epitaxial layer 4, and it is not possible to correct the value of the total film thickness d3 that is deviated due to the upward diffusion. Therefore,
It is not possible to accurately examine the thickness of the P-type epitaxial layer 5 during continuous growth. This problem also occurs when laminated epitaxial layers are successively grown on the same substrate.

【0013】(C)  N形エピタキシャル層4とP形
エピタキシャル層5との間に濃度差がある場合、エピタ
キシャル成長中にN形エピタキシャル層4とP形エピタ
キシャル層5との界面が固相拡散により移動し、それぞ
れの膜厚を正確に測定することができない。さらには、
同一の導電形のエピタキシャル層を濃度を変えて積層す
る場合、赤外線方式では、原理的に測定が困難であった
(C) When there is a concentration difference between the N-type epitaxial layer 4 and the P-type epitaxial layer 5, the interface between the N-type epitaxial layer 4 and the P-type epitaxial layer 5 moves due to solid phase diffusion during epitaxial growth. However, it is not possible to accurately measure the thickness of each film. Furthermore,
When epitaxial layers of the same conductivity type are laminated with different concentrations, it is theoretically difficult to measure using the infrared method.

【0014】本発明は、前記従来技術が持っていた課題
として、例えば赤外線方式などのように特定界面での濃
度差を利用して膜厚測定を行う場合に被測定対象である
各成膜層間に濃度差等の反射要因があると正確な膜厚測
定が行えない点、複数の成膜層を連続形成する際に、基
板あるいは既に形成された成膜層によって積層する他の
成膜層の膜厚が変動してしまい正確な膜厚測定を行えな
い点について解決した半導体装置の膜厚測定方法を提供
するものである。
[0014] The present invention solves the problem that the prior art had, for example, when measuring the film thickness by utilizing the concentration difference at a specific interface, such as by using an infrared method. Accurate film thickness measurements cannot be performed if there are reflection factors such as concentration differences in The present invention provides a method for measuring film thickness of a semiconductor device that solves the problem that film thickness fluctuates and accurate film thickness measurement cannot be performed.

【0015】[0015]

【課題を解決するための手段】本発明は、前記課題を解
決するために、半導体装置の基板上に、該半導体装置を
構成する複数の成膜層を積層状態に形成する際に、同一
積層方向に配置され所定形状及び厚みを有する測定パタ
ーンを、該基板上及び該各成膜層間にそれぞれ介在させ
て該各成膜層を積層状態に堆積した後、前記基板上及び
前記各成膜層間のそれぞれにおける前記測定パターン内
において、前記基板に達する深さで、前記各成膜層を一
定曲率の断面円弧状に除去し、最上層の前記成膜層にお
ける前記円弧状部分の除去端を基準にして、前記基板上
及び前記各成膜層間の前記測定パターンのそれぞれにつ
いて前記円弧状部分の除去端の位置を測定し、その測定
結果及び前記一定曲率に基づき前記各成膜層の膜厚を求
めるようにしたものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a method for forming a plurality of film layers constituting a semiconductor device in a laminated state on a substrate of the semiconductor device. After depositing a measurement pattern arranged in a direction and having a predetermined shape and thickness on the substrate and between each of the film formation layers, and depositing the film formation layers in a stacked state, In each of the measurement patterns, each of the deposited layers is removed in an arc-shaped cross section with a constant curvature at a depth that reaches the substrate, and the removal end of the arc-shaped portion of the top deposited layer is referenced. Then, the position of the removal end of the arcuate portion is measured for each of the measurement patterns on the substrate and between each of the deposited layers, and the thickness of each deposited layer is determined based on the measurement result and the constant curvature. This is what I asked for.

【0016】[0016]

【作用】本発明によれば、以上のように半導体装置の膜
厚測定方法を構成したので、半導体装置の基板上に、該
半導体装置を構成する複数の成膜層を積層状態に形成す
る際に、所定形状及び厚みを有する1つまたは複数の測
定パターンを、該基板上及び該各成膜層間に介在させて
該各成膜層を積層状態に堆積する。この時、前記基板上
及び各成膜層間に介在するそれぞれの前記1つまたは複
数の測定パターンは、1つの測定パターンの場合には、
各々が前記基板上及び前記各成膜層間で対応したそれぞ
れの同一の積層方向即ちほぼ同一の積層領域に配置され
、複数の測定パターンの場合には、それぞれの測定パタ
ーンの複数個の各々が、前記基板上及び各成膜層間で同
一の積層方法、即ちほぼ同一の積層領域に配置される。 ここで、前記各測定パターンの形状及び位置は、後の断
面円弧状の除去等を考慮して、その円弧部分が各測定パ
ターン内を通るようにする。また、例えば、測定条件等
に応じて、下層ほどその大きさを小さくするなどの設定
を行う。前記各測定パターンの厚みは、同じでもそれぞ
れ違えてもよい。例えば、それぞれの測定パターン上に
形成される成膜層の膜厚を考慮したり、あるいは各成膜
層が測定パターン上と測定パターン上以外の部分とでど
のような材質でどのような成膜プロセスをとるか(例え
ば積層エピタキシャル層の測定における成長レート等)
などを考慮したりして、成膜層の膜厚測定に対して測定
パターンの膜厚が誤差とならず、かつ成膜時に測定パタ
ーンが損傷を受けたりせず、また後の除去端の確認を精
度良く行うことができるような適切な厚み設定を行う。
[Operation] According to the present invention, since the method for measuring the film thickness of a semiconductor device is configured as described above, when a plurality of film layers constituting the semiconductor device are formed in a stacked state on the substrate of the semiconductor device, Then, one or more measurement patterns having a predetermined shape and thickness are interposed on the substrate and between each of the film formation layers, and the film formation layers are deposited in a stacked state. At this time, if each of the one or more measurement patterns interposed on the substrate and between each deposited layer is one measurement pattern,
In the case of a plurality of measurement patterns, each of the plurality of measurement patterns is arranged in the same lamination direction corresponding to each other on the substrate and between each of the film formation layers, that is, in substantially the same lamination area, and in the case of a plurality of measurement patterns, each of the plurality of measurement patterns is The same lamination method is used on the substrate and each of the film formation layers, that is, they are arranged in substantially the same lamination area. Here, the shape and position of each measurement pattern are determined so that the arc portion passes through each measurement pattern, taking into consideration later removal of the arc-shaped cross section. Further, for example, settings are made such that the size of the lower layer is made smaller depending on the measurement conditions and the like. The thickness of each measurement pattern may be the same or different. For example, consider the thickness of the deposited layer formed on each measurement pattern, or consider the material and type of deposition of each deposition layer on the measurement pattern and on the parts other than the measurement pattern. Process (e.g. growth rate in measurement of laminated epitaxial layers)
In order to ensure that the thickness of the measurement pattern does not cause an error in the thickness measurement of the deposited layer, that the measurement pattern is not damaged during deposition, and to confirm the removal edge afterward. Set the appropriate thickness so that it can be done accurately.

【0017】次に、前記基板上及び前記各成膜層間のそ
れぞれにおける前記測定パターン内において、前記基板
に達する深さで、前記各成膜層を一定曲率の断面円弧状
に除去する。例えば前記測定パターンが1つの場合、こ
の除去により同一積層方向に配置された各測定パターン
は、それぞれの内部に円弧状の断面を有するように除去
される。また、前記測定パターンが例えば2個の場合、
この除去により、対応するそれぞれの同一積層方向に配
置された各測定パターンの2個のパターンは、それぞれ
円弧部分の一方の側及び他方の側で除去される。
Next, within the measurement pattern on the substrate and between each of the film-formed layers, each of the film-formed layers is removed in an arcuate cross-sectional shape with a constant curvature to a depth that reaches the substrate. For example, when there is one measurement pattern, each measurement pattern arranged in the same stacking direction is removed so that each measurement pattern has an arcuate cross section inside. Further, when the number of measurement patterns is two, for example,
As a result of this removal, the corresponding two patterns of each measurement pattern arranged in the same stacking direction are removed on one side and the other side of the arc portion, respectively.

【0018】その後、最上層の前記成膜層における前記
円弧状部分の除去端を基準にして、前記基板上及び前記
各成膜層間の前記測定パターンのそれぞれについて、前
記円弧状部分の除去端の位置を測定し、その測定結果及
び前記一定曲率に基づき前記各成膜層の膜厚を求める。
Thereafter, with reference to the removed end of the arcuate portion in the uppermost deposited layer, the removal end of the arcuate portion is determined for each of the measurement patterns on the substrate and between each of the deposited layers. The position is measured, and the thickness of each of the deposited layers is determined based on the measurement result and the constant curvature.

【0019】従って、前記課題を解決できるのである。[0019] Therefore, the above problem can be solved.

【0020】[0020]

【実施例】図1は、本発明の第1の実施例を示す半導体
装置の膜厚測定方法を説明するためのもので、膜厚を測
定する成膜層及び測定パターンの形成プロセスの工程図
である。
[Embodiment] FIG. 1 is a diagram for explaining a method for measuring film thickness of a semiconductor device according to a first embodiment of the present invention, and is a process diagram of a forming process of a film layer whose film thickness is to be measured and a measurement pattern. It is.

【0021】以下、図1を参照しつつ、本実施例の測定
対象となる複数の成膜層の形成、例えば一層目がN形の
単結晶シリコンで二層目をP形の単結晶シリコンとした
積層エピタキシャル層の形成と、測定パターンとして設
けられる酸化膜からなる残しパターンの形成について説
明する。
Hereinafter, with reference to FIG. 1, the formation of a plurality of film layers to be measured in this example, for example, the first layer is N-type single crystal silicon and the second layer is P-type single crystal silicon. The formation of the laminated epitaxial layer and the formation of a residual pattern made of an oxide film provided as a measurement pattern will be explained.

【0022】先ず、図1(a)に示すように、例えばP
形の単結晶シリコンからなる半導体基板11の全表面に
、埋込み層形成のために例えばN形不純物を添加した液
体を塗布し、例えばアンチモンシリカフィルム12を形
成する。
First, as shown in FIG. 1(a), for example, P
For forming a buried layer, a liquid added with, for example, an N-type impurity is applied to the entire surface of a semiconductor substrate 11 made of single-crystal silicon to form, for example, an antimony silica film 12.

【0023】次に、図1(b)に示すように、アンチモ
ンシリカフィルム12を含む半導体基板11上に熱処理
を施し、半導体基板11の表面付近に例えばシート抵抗
30Ω/□、接合深さ4μm程度の高濃度N形拡散領域
13を形成する。
Next, as shown in FIG. 1B, heat treatment is performed on the semiconductor substrate 11 including the antimony silica film 12, and a sheet resistance of, for example, 30 Ω/□ and a junction depth of about 4 μm is formed near the surface of the semiconductor substrate 11. A high concentration N-type diffusion region 13 is formed.

【0024】その後、図1(c)に示すように、高濃度
N形拡散領域13上に、公知の熱酸化技術により酸化膜
を例えば1000Å程度形成し、公知のホトリソエッチ
ング技術により、その酸化膜をパターニングして、残し
パターン14を選択的に形成する。ここでの残しパター
ン14は、例えば2つのパターンを1組として一箇所で
の膜厚測定を行うように構成されるもので、複数箇所で
膜厚測定を行う場合には、複数組のパターンを用意する
Thereafter, as shown in FIG. 1C, an oxide film of, for example, about 1000 Å is formed on the heavily doped N-type diffusion region 13 by a known thermal oxidation technique, and the oxide film is removed by a known photolithographic etching technique. The film is patterned to selectively form the remaining pattern 14. The remaining patterns 14 here are configured so that, for example, two patterns are set as one set to perform film thickness measurement at one location.When film thickness measurement is performed at multiple locations, multiple sets of patterns are used. prepare.

【0025】次いで、図1(d)に示すように、残しパ
ターン14を含む高濃度N形拡散領域13上にエピタキ
シャル成長処理を施して第1の成膜層15を形成する。 ここで、第1の成膜層15は、残しパターン14上以外
の高濃度N形拡散領域13上では例えば2Ω・cm、厚
さ5μm程度のN形エピタキシャル層16で形成され、
残しパターン14上では、残しパターン14の膜厚を考
慮した上でN形エピタキシャル層16とほぼ同じレート
で成長させた多結晶シリコン層17で形成されている。
Next, as shown in FIG. 1D, a first deposited layer 15 is formed on the heavily doped N-type diffusion region 13 including the remaining pattern 14 by epitaxial growth. Here, the first film formation layer 15 is formed of an N-type epitaxial layer 16 having a thickness of, for example, 2Ω·cm and a thickness of about 5 μm on the high concentration N-type diffusion region 13 other than on the remaining pattern 14.
On the remaining pattern 14, a polycrystalline silicon layer 17 is formed which is grown at approximately the same rate as the N-type epitaxial layer 16, taking into account the thickness of the remaining pattern 14.

【0026】この時、エピタキシャル層16の膜厚は、
従来例と同様に例えば図示しない赤外線を利用したエピ
タキシャル膜厚計を用いて計測することが可能である。
At this time, the thickness of the epitaxial layer 16 is
As in the conventional example, it is possible to measure using, for example, an epitaxial film thickness meter that uses infrared rays (not shown).

【0027】図1(e)では、先に形成した第1の成膜
層15上に、公知の酸化技術により酸化膜を500Å程
度形成し、公知のホトリソエッチング技術により、その
酸化膜をパターニングして、残しパターン18を形成す
る。ここでの残しパターン18は、2つのパターンを1
組として構成され、それぞれの組の各パターンは、残し
パターン14の各組のパターンと対応するそれぞれの同
一積層領域上に配置されている。本実施例において残し
パターン18の各パターンは、対応する残しパターン1
4の各パターンを覆い、即ちそのパターン上の多結晶シ
リコン層17を覆い、かつ一部がN形エピタキシャル層
16上に残るようにその形状を設定している。
In FIG. 1E, an oxide film of about 500 Å is formed on the previously formed first film layer 15 using a known oxidation technique, and the oxide film is patterned using a known photolithography etching technique. Then, a remaining pattern 18 is formed. The remaining pattern 18 here is to combine two patterns into one.
They are configured as a set, and each pattern of each set is arranged on the same laminated area corresponding to the pattern of each set of remaining patterns 14. In this embodiment, each pattern of the remaining patterns 18 corresponds to the corresponding remaining pattern 1.
4, that is, the polycrystalline silicon layer 17 on the pattern, and a portion thereof remains on the N-type epitaxial layer 16.

【0028】図1(f)では、例えば公知のCVD技術
により、N形エピタキシャル層16上及び残しパターン
18上に、第2の成膜層19を形成する。この時、第2
の成膜層19は、残しパターン18上以外のN形エピタ
キシャル層16上ではP形エピタキシャル層20で形成
され、残しパターン18上では、残しパターン18の膜
厚を考慮した上でP形エピタキシャル層20とほぼ同じ
成長レートで成長させた多結晶シリコン層21で形成さ
れる。
In FIG. 1F, a second film formation layer 19 is formed on the N-type epitaxial layer 16 and the remaining pattern 18 by, for example, a known CVD technique. At this time, the second
The film formation layer 19 is formed of a P-type epitaxial layer 20 on the N-type epitaxial layer 16 other than on the remaining pattern 18, and a P-type epitaxial layer 20 is formed on the remaining pattern 18, taking into consideration the film thickness of the remaining pattern 18. It is formed of a polycrystalline silicon layer 21 grown at approximately the same growth rate as 20.

【0029】以上のようにして第1の成膜層15及び第
2の成膜層19と、各残しパターン14,18が形成さ
れる。
In the manner described above, the first deposited layer 15, the second deposited layer 19, and the remaining patterns 14 and 18 are formed.

【0030】次に、例えば2つの同一積層領域(方向)
に配置された2つのパターンの組をもつ残しパターン1
4,18を用い、例えば回転研磨法(グルービング法)
によって行う各成膜層15,19、即ちN形エピタキシ
ャル層16及びP形エピタキシャル層20の膜厚測定の
プロセスを、図3、図4及び図5を参照しつつ説明する
Next, for example, two identical lamination regions (directions)
Remaining pattern 1 with a set of two patterns arranged in
4, 18, for example, the rotary polishing method (grooving method)
The process of measuring the thickness of each of the deposited layers 15 and 19, that is, the N-type epitaxial layer 16 and the P-type epitaxial layer 20, will be described with reference to FIGS. 3, 4, and 5.

【0031】なお、図3は、図1(f)の半導体装置の
部分構成を示す断面図であり、一箇所の膜厚測定に用い
る残しパターン14,18の部分を示したものである。 図3中、回転研磨面を一点鎖線で示してある。図4は、
円板形回転研磨体を持つ回転研磨装置により図3中の回
転研磨面まで半導体装置の一部を研磨する様子を示した
断面図である。図5は、図4の回転研磨装置による研磨
後の半導体装置の研磨状態を示す断面図である。
Note that FIG. 3 is a cross-sectional view showing a partial structure of the semiconductor device shown in FIG. 1(f), and shows the remaining patterns 14 and 18 used for measuring the film thickness at one location. In FIG. 3, the rotary polishing surface is indicated by a chain line. Figure 4 shows
4 is a cross-sectional view showing a state in which a part of a semiconductor device is polished to the rotary polishing surface in FIG. 3 by a rotary polishing device having a disc-shaped rotary polishing body. FIG. FIG. 5 is a cross-sectional view showing the polishing state of the semiconductor device after polishing by the rotary polishing apparatus of FIG.

【0032】先ず、図1のプロセスで形成した図3の半
導体装置において、一点鎖線で示した部分を、図4に示
した回転研磨装置22の半径Rの円板形回転研磨体によ
り研磨する。即ち、図3の半導体装置で、各残しパター
ン14,18内において、第1の成膜層15及び第2の
成膜層19を、半導体基板1の表面即ち、高濃度N形拡
散領域13に達する深さで、半径Rの断面円弧状に除去
する。この除去処理により、半導体装置は、図4に示す
ような断面形状をもつ。
First, in the semiconductor device shown in FIG. 3 formed by the process shown in FIG. 1, the portion indicated by the dashed line is polished by a disk-shaped rotary polishing body having a radius R of the rotary polishing device 22 shown in FIG. That is, in the semiconductor device of FIG. 3, in each of the remaining patterns 14 and 18, the first film formation layer 15 and the second film formation layer 19 are formed on the surface of the semiconductor substrate 1, that is, on the high concentration N-type diffusion region 13. At the depth reached, it is removed in an arcuate cross-section with radius R. As a result of this removal process, the semiconductor device has a cross-sectional shape as shown in FIG.

【0033】次に、図5または図4中に示すように、最
上層の第2の成膜層19の除去端Sを基準にして、例え
ば図中の円弧状に除去された各残しパターン14,18
の底部側の除去端Pa,Pb,Pc,Pdまでの距離L
a、Lb、Lc、Ldを、例えば所定の測長装置を用い
て実測する。
Next, as shown in FIG. 5 or 4, each remaining pattern 14 is removed in the shape of an arc in the figure, for example, with reference to the removal end S of the second deposited layer 19 as the uppermost layer. ,18
Distance L to the removal end Pa, Pb, Pc, Pd on the bottom side of
a, Lb, Lc, and Ld are actually measured using, for example, a predetermined length measuring device.

【0034】その後、測定結果La,Lb,Lc,Ld
及び半径Rを用いれば、幾何学的考察により、第1の成
膜層15の膜厚即ちN形エピタキシャル層16の膜厚D
1と、第2の成膜層19の膜厚即ちP形エピタキシャル
層20の膜厚D2をそれぞれ算出することができる。
After that, the measurement results La, Lb, Lc, Ld
and the radius R, the thickness of the first film-forming layer 15, that is, the thickness of the N-type epitaxial layer 16, can be calculated from geometric considerations.
1 and the film thickness of the second deposited layer 19, that is, the film thickness D2 of the P-type epitaxial layer 20, can be calculated.

【0035】一例として、各測定値La,Lb,Lc,
Ldを用いることにより、膜厚D1,D2を、次式(1
),(2)からそれぞれ求めることができる。           D1={(La・Lb)/2R}
−D2                …(1)  
        D2=(Lc・Ld)/2R    
                      …(2
)本実施例では、次のような利点を有している。
As an example, each measurement value La, Lb, Lc,
By using Ld, the film thicknesses D1 and D2 can be calculated using the following formula (1
) and (2). D1={(La・Lb)/2R}
-D2...(1)
D2=(Lc・Ld)/2R
…(2
) This embodiment has the following advantages.

【0036】(a)  本実施例の膜厚測定方法では、
残しパターン14,18を各エピタキシャル層16,2
0の形成時に各層の下部に介在させておき、後に残しパ
ターン14,18内において、少なくとも高濃度N形拡
散領域13に達する深さで、第1及び第2の成膜層15
,19を除去し、各残しパターン14,18の除去端の
位置を測定し、その測定結果に基づき各成膜層15,1
9の膜厚を幾何学的考察に基づき算出するようにしてい
る。
(a) In the film thickness measurement method of this example,
Leaving patterns 14 and 18 on each epitaxial layer 16 and 2
The first and second film formation layers 15 are interposed at the bottom of each layer at the time of forming 0, and in the patterns 14 and 18 left behind, the first and second film formation layers 15 are formed at a depth reaching at least the high concentration N-type diffusion region 13.
, 19 is removed, and the position of the removed end of each remaining pattern 14, 18 is measured.
The film thickness of No. 9 is calculated based on geometric considerations.

【0037】このため、N形エピタキシャル層16とP
形エピタキシャル層20の濃度差によって界面が移動し
ても、残りパターン14,18があることによって元の
界面は維持できるので、N形エピタキシャル層16のみ
ならず、P形エピタキシャル層20の膜厚も正確に測定
することができる。
Therefore, the N type epitaxial layer 16 and the P
Even if the interface moves due to the concentration difference in the N-type epitaxial layer 20, the original interface can be maintained due to the remaining patterns 14 and 18. Therefore, the thickness of not only the N-type epitaxial layer 16 but also the P-type epitaxial layer 20 can be changed. Can be measured accurately.

【0038】(b)  本実施例の測定方法によれば、
例えば従来の赤外線方式による膜厚測定方法などを併用
することにより、各エピタキシャル成長時における上方
拡散量、あるいは固相拡散量等を求めることもできる。
(b) According to the measurement method of this example,
For example, the amount of upward diffusion or the amount of solid phase diffusion during each epitaxial growth can be determined by using a conventional infrared method for measuring film thickness.

【0039】(c)  また、残しパターン14,18
内における除去を行う際に、断面円弧状部分は半径Rの
真円形状としたので、例えば回転研磨装置を用いて精度
の良い除去処理を行え、結果的に高精度の膜厚測定が可
能となる。
(c) Also, remaining patterns 14 and 18
When removing the inside of the film, the arcuate cross section was made into a perfect circle with radius R, so it was possible to perform highly accurate removal using, for example, a rotary polishing device, and as a result, highly accurate film thickness measurement was possible. Become.

【0040】(d)  例えば測定専用に形成した成膜
層の膜厚測定を行う場合でも、N形エピタキシャル層1
6とP形エピタキシャル層20とをそれぞれ別々の基板
に成長させずともそれぞれの正確な膜厚測定を行えるた
め、モニタとする基板(ウエハ)の枚数が例えば1枚で
すみ、ウエハを有効的に使用することができる。
(d) For example, even when measuring the thickness of a film formed specifically for measurement, the N-type epitaxial layer 1
6 and P-type epitaxial layer 20 can be measured accurately without growing them on separate substrates, the number of substrates (wafers) to be monitored can be, for example, one, and the wafers can be effectively can be used.

【0041】(e)  本実施例の除去処理時に、例え
ば、高濃度N形拡散領域13の底部を越える深さまで除
去することにより、高濃度N形拡散領域13の底部にお
ける除去端の位置を測定すれば、N形エピタキシャル層
16及びP形エピタキシャル層20の高濃度N形拡散領
域13の拡散深さも、ステンエッチングにより求めるこ
とができる。
(e) During the removal process of this embodiment, for example, by removing to a depth exceeding the bottom of the high concentration N type diffusion region 13, the position of the removal end at the bottom of the high concentration N type diffusion region 13 is measured. Then, the diffusion depth of the high concentration N type diffusion region 13 of the N type epitaxial layer 16 and the P type epitaxial layer 20 can also be determined by stainless steel etching.

【0042】図6は、本発明の第2の実施例を示す半導
体装置の膜厚測定方法を説明するためのもので、半導体
装置の部分構成を示す断面図である。
FIG. 6 is a cross-sectional view showing a partial structure of a semiconductor device, for explaining a method for measuring film thickness of a semiconductor device according to a second embodiment of the present invention.

【0043】この半導体装置は、第1の実施例の半導体
装置とほぼ同様の構成を有しているが、それぞれ2つず
つのパターンからなる残しパターン14,18に代えて
、それぞれ1つのパターンのみからなる残しパターン3
1,32を設けている。また、第1及び第2の成膜層1
5,19は、横方向の成長も含む選択エピタキシャル成
長法により形成している。
This semiconductor device has almost the same configuration as the semiconductor device of the first embodiment, but instead of the remaining patterns 14 and 18 each consisting of two patterns, only one pattern each is used. Remaining pattern 3 consisting of
1,32 are provided. In addition, the first and second film formation layers 1
5 and 19 are formed by a selective epitaxial growth method that also includes lateral growth.

【0044】本実施例によっても、例えば図6中に二点
鎖線で示すような断面円弧状の除去処理を行なうことに
より、第1の実施例とほぼ同様の作用、効果が得られる
In this embodiment as well, substantially the same operation and effect as in the first embodiment can be obtained by performing the removal process having an arcuate cross section as shown by the two-dot chain line in FIG. 6, for example.

【0045】なお、本発明は、図示の実施例に限定され
ず、種々の変形が可能である。その変形例としては、例
えば次のようなものが挙げられる。
Note that the present invention is not limited to the illustrated embodiment, and various modifications are possible. Examples of such modifications include the following.

【0046】(I)  上記実施例では、N形、P形の
積層エピタキシャル層の場合について説明したが、これ
は同一導電形の積層エピタキシャル層でもよく、また2
層のみならず、3層以上の複数層の膜厚測定も同様にし
て行える。
(I) In the above embodiment, the case of laminated epitaxial layers of N type and P type was explained, but this may be laminated epitaxial layers of the same conductivity type, or two
The thickness measurement of not only a layer but also a plurality of layers of three or more layers can be performed in the same manner.

【0047】また、積層エピタキシャル層の膜厚測定で
、各測定パターン上にポリシリコン層を成長させる代わ
りに、その測定パターンの材質等を適宜選定することに
より、エピタキシャル成長層を横方向に成長させてポリ
シリコン層に代える場合、横方向の成長レートと縦方向
(深さ方向)の成長レートとを考慮して、測定誤差が生
じないように各測定パターンのパターン数、形状、配置
等を適宜設定する。
In addition, when measuring the thickness of a laminated epitaxial layer, instead of growing a polysilicon layer on each measurement pattern, the epitaxial growth layer can be grown laterally by appropriately selecting the material of the measurement pattern. When replacing it with a polysilicon layer, consider the growth rate in the horizontal direction and the growth rate in the vertical direction (depth direction), and set the number, shape, arrangement, etc. of each measurement pattern appropriately to avoid measurement errors. do.

【0048】(II)  上記実施例では、膜厚測定対
象をエピタキシャル層のみからなる複数の成膜層とした
が、これはエピタキシャル層と絶縁膜等を含む他の層と
からなる複数の成膜層でもよいし、あるいはエピタキシ
ャル層を含まない他の層による複数の成膜層としてもよ
い。
(II) In the above embodiment, the object of film thickness measurement was a plurality of deposited layers consisting only of an epitaxial layer, but this also applies to a plurality of deposited layers consisting of an epitaxial layer and other layers including an insulating film, etc. It may be a layer, or it may be a plurality of deposited layers including other layers not including an epitaxial layer.

【0049】(III)  上記実施例では、円板形回
転研磨体をもつ回転研磨装置により除去処理を行なうよ
うにしたが、これは例えば球状の回転研磨体をもつ回転
研磨装置等により同様の除去処理を行なうようにするこ
とも可能である。
(III) In the above embodiment, the removal process was carried out using a rotary polishing device having a disk-shaped rotary polishing body, but this is different from the case where a similar removal process was carried out using a rotary polishing device having a spherical rotary polishing body, for example. It is also possible to perform processing.

【0050】(IV)  上記実施例の残しパターンは
、酸化膜としたが、これは各成膜層形成時に損傷を受け
ず、後の除去端に支障を来さないなどの条件を満たすも
のであればよく、その厚さや形状等も測定条件などに応
じて適宜設定できる。
(IV) The remaining pattern in the above example was an oxide film, which satisfies conditions such as not being damaged during the formation of each film layer and not interfering with the edges to be removed later. The thickness, shape, etc. can be set as appropriate depending on the measurement conditions.

【0051】(V)  上記実施例では、半導体装置の
基板を半導体基板11、即ち高濃度N形拡散領域13と
したが、例えば半導体基板上に形成した他の成膜層を基
板と設定し、その上に形成した各成膜層の膜厚を測定す
るようにしてもよい。
(V) In the above embodiment, the substrate of the semiconductor device is the semiconductor substrate 11, that is, the high concentration N-type diffusion region 13, but for example, another film layer formed on the semiconductor substrate is set as the substrate, The thickness of each film layer formed thereon may be measured.

【0052】[0052]

【発明の効果】本発明によれば、以上のように半導体装
置の膜厚測定方法を構成したので、前記各測定パターン
の各除去端の位置を測定し、その測定結果及び前記一定
曲率に基づき、各成膜層の膜厚を求めることができる。 そのため、各成膜層の構成成分や各成膜層の成膜プロセ
ス及び成膜状態等に影響を受けない膜厚測定を行え、所
望の膜厚を精度良く測定できる。
According to the present invention, since the method for measuring the film thickness of a semiconductor device is configured as described above, the position of each removal end of each measurement pattern is measured, and the position of each removal end of each measurement pattern is measured, and based on the measurement result and the constant curvature. , the thickness of each deposited layer can be determined. Therefore, the film thickness can be measured without being affected by the constituent components of each film-forming layer, the film-forming process, the film-forming state, etc. of each film-forming layer, and the desired film thickness can be measured with high accuracy.

【0053】また、本発明の測定方法では、前記各測定
パターンを用いて膜厚測定を行うようにしたので、例え
特定の成膜層の成膜プロセスにより他の成膜層の膜厚が
変動するような場合でも、当初の界面間の正確な膜厚を
測定でき、他の測定手段を併用すれば、その変動値をも
測定することができる。
Furthermore, in the measuring method of the present invention, since the film thickness is measured using each of the measurement patterns described above, even if the film thickness of other film layers changes due to the film forming process of a specific film layer, Even in such cases, it is possible to accurately measure the initial film thickness between the interfaces, and if other measuring means are used in combination, it is also possible to measure its fluctuation value.

【0054】さらに、本発明の測定方法においては、前
記除去を行う際の断面円弧状の曲率を一定としているの
で、例えば回転研磨法(グルービング法)などを用いて
正確な除去処理を行え、結果的に膜厚の測定精度を向上
させることができる。
Furthermore, in the measuring method of the present invention, since the curvature of the cross-sectional arc shape is constant when performing the removal, accurate removal processing can be performed using, for example, a rotary polishing method (grooving method), and the results can be improved. Therefore, the accuracy of film thickness measurement can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例を示す半導体装置の膜厚
測定方法を説明するためのもので、膜厚を測定する成膜
層及び測定パターンの形成プロセスの工程図である。
FIG. 1 is for explaining a method for measuring film thickness of a semiconductor device according to a first embodiment of the present invention, and is a process diagram of a process for forming a film formation layer and a measurement pattern whose film thickness is to be measured.

【図2】従来の半導体装置の膜厚測定方法の一例を示す
もので、赤外線を応用したエピタキシャル膜厚計を用い
て行う膜厚測定プロセスの工程図である。
FIG. 2 shows an example of a conventional film thickness measurement method for a semiconductor device, and is a process diagram of a film thickness measurement process performed using an epitaxial film thickness meter that applies infrared rays.

【図3】図1(f)の半導体装置の部分構成を示す断面
図である。
FIG. 3 is a cross-sectional view showing a partial configuration of the semiconductor device of FIG. 1(f).

【図4】円板形回転研磨体を持つ回転研磨装置により図
3中の回転研磨面まで半導体装置の一部を研磨する様子
を示した断面図である。
4 is a cross-sectional view showing a state in which a part of a semiconductor device is polished to the rotary polishing surface in FIG. 3 by a rotary polishing apparatus having a disc-shaped rotary polishing body; FIG.

【図5】図4の回転研磨装置による研磨後の半導体装置
の研磨状態を示す断面図である。
FIG. 5 is a cross-sectional view showing the polishing state of the semiconductor device after polishing by the rotary polishing apparatus of FIG. 4;

【図6】本発明の第2の実施例を示す半導体装置の膜厚
測定方法を説明するためのもので、半導体装置の部分構
成を示す断面図である。
FIG. 6 is a cross-sectional view showing a partial configuration of a semiconductor device, for explaining a method for measuring film thickness of a semiconductor device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11  半導体基板 13  高濃度N形拡散領域 14,18  残しパターン 16,20  エピタキシャル層 17,21  ポリシリコン層 S,Pa〜Pd  除去端 11 Semiconductor substrate 13 High concentration N type diffusion region 14, 18 Remaining pattern 16, 20 Epitaxial layer 17, 21 Polysilicon layer S, Pa~Pd Removed end

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体装置の基板上に、該半導体装置
を構成する複数の成膜層を積層状態に形成する際に、同
一積層方向に配置され所定形状及び厚みを有する測定パ
ターンを、該基板上及び該各成膜層間にそれぞれ介在さ
せて該各成膜層を積層状態に堆積した後、前記基板上及
び前記各成膜層間のそれぞれにおける前記測定パターン
内において、前記基板に達する深さで、前記各成膜層を
一定曲率の断面円弧状に除去し、最上層の前記成膜層に
おける前記円弧状部分の除去端を基準にして、前記基板
上及び前記各成膜層間の前記測定パターンのそれぞれに
ついて前記円弧状部分の除去端の位置を測定し、その測
定結果及び前記一定曲率に基づき前記各成膜層の膜厚を
求めることを特徴とする半導体装置の膜厚測定方法。
1. When forming a plurality of film formation layers constituting the semiconductor device in a stacked state on a substrate of a semiconductor device, a measurement pattern having a predetermined shape and thickness arranged in the same stacking direction is placed on the substrate. After each of the film formation layers is deposited in a laminated state with the film formation layers interposed on the substrate and between the film formation layers, within the measurement pattern on the substrate and between the film formation layers, at a depth that reaches the substrate. , each of the deposited layers is removed in a cross-sectional arc shape with a constant curvature, and the measurement pattern is formed on the substrate and between each of the deposited layers, with the removed end of the arc-shaped portion of the uppermost deposited layer as a reference. A method for measuring film thickness of a semiconductor device, characterized in that the position of the removal end of the arcuate portion is measured for each of the above, and the thickness of each of the deposited layers is determined based on the measurement result and the constant curvature.
JP8270391A 1991-04-15 1991-04-15 Method of measuring film thickness of semiconductor device Withdrawn JPH04316347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8270391A JPH04316347A (en) 1991-04-15 1991-04-15 Method of measuring film thickness of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8270391A JPH04316347A (en) 1991-04-15 1991-04-15 Method of measuring film thickness of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04316347A true JPH04316347A (en) 1992-11-06

Family

ID=13781762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8270391A Withdrawn JPH04316347A (en) 1991-04-15 1991-04-15 Method of measuring film thickness of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04316347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521470B1 (en) * 2001-10-31 2003-02-18 United Microelectronics Corp. Method of measuring thickness of epitaxial layer
KR100403351B1 (en) * 2001-12-15 2003-10-30 주식회사 하이닉스반도체 Method for forming etch monitoring box in dual damascene process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521470B1 (en) * 2001-10-31 2003-02-18 United Microelectronics Corp. Method of measuring thickness of epitaxial layer
KR100403351B1 (en) * 2001-12-15 2003-10-30 주식회사 하이닉스반도체 Method for forming etch monitoring box in dual damascene process

Similar Documents

Publication Publication Date Title
JP5380912B2 (en) Film thickness measuring method, epitaxial wafer manufacturing method, and epitaxial wafer
JP3274190B2 (en) Method for manufacturing semiconductor epitaxial substrate
JP5326888B2 (en) Epitaxial wafer manufacturing method
JP3897963B2 (en) Semiconductor wafer and manufacturing method thereof
JPH04316347A (en) Method of measuring film thickness of semiconductor device
CN112366134B (en) Chemical mechanical polishing method
JP2010028011A (en) Method for measuring thickness of epitaxial layer, method for manufacturing epitaxial wafer and method for controlling manufacturing process of epitaxial wafer
JP2956833B2 (en) Evaluation method of polycrystalline silicon film
JP2011014800A (en) Method for measuring film thickness of epitaxial layer, method for manufacturing epitaxial wafer, and method for controlling manufacturing process of epitaxial wafer
JPH02206146A (en) Measurement of film thickness of semiconductor device
JPH02105438A (en) Measurement of film thickness of epitaxial growth layer
JP3453793B2 (en) Semiconductor device and alignment inspection method using the same
JP3913300B2 (en) Semiconductor integrated circuit
EP0494685B1 (en) Pattern shift measuring method
JPH0236523A (en) Wafer alignment mark and formation thereof
JP2752617B2 (en) Method for manufacturing thin film transistor
JPH01173629A (en) Manufacture of semiconductor device
JPS5846645A (en) Manufacture of semiconductor device
JPH06103715B2 (en) Pattern shift measurement method
TW508719B (en) Semiconductor device
JP2020077662A (en) Pattern shift measuring method
JPH0528904B2 (en)
JP2003110117A (en) Method for manufacturing semiconductor device
JPH01223725A (en) Evaluation of film thickness of semiconductor device
JPS61228621A (en) Formation of epitaxial film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711