JPH0430006B2 - - Google Patents

Info

Publication number
JPH0430006B2
JPH0430006B2 JP55175961A JP17596180A JPH0430006B2 JP H0430006 B2 JPH0430006 B2 JP H0430006B2 JP 55175961 A JP55175961 A JP 55175961A JP 17596180 A JP17596180 A JP 17596180A JP H0430006 B2 JPH0430006 B2 JP H0430006B2
Authority
JP
Japan
Prior art keywords
waveguide
harmonics
nonlinear optical
optical device
fundamental wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55175961A
Other languages
English (en)
Other versions
JPS5697324A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS5697324A publication Critical patent/JPS5697324A/ja
Publication of JPH0430006B2 publication Critical patent/JPH0430006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/395Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves in optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3546Active phase matching, e.g. by electro- or thermo-optic tuning

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【発明の詳細な説明】 本発明は非線形伝搬材料中で該材料に与えられ
る別の放射線の波長がほぼ分周された放射線を作
り出すごとき光デバイスに関する。より詳しく
は、基板表面の金属イオンの拡散によつて得られ
る導波路を内部に有し2つの放射線がフエーズマ
ツチングで非線形的に影響しあう積層構造に関す
る。
リチウムナイオベートにおけるチタニウムの拡
散によつて基本波を高調波に変換するごとき積層
導波路の構成が知られている。しかしながら、こ
のような構造においては、変換効率が低い。この
ような適当な変換効率を得る場合、波を閉じ込め
ること及び波の相互作用の長さは考慮すべき唯一
のフアクタではない。フエーズマツチングの状態
を満足することは、低いオーバラツプ積分値をも
つ伝搬モードを選択することを意味する。
適当なオーバラツプ積分値を与えるべきモード
の選択から生ずる問題を解決するために、チタニ
ウム二酸化物層による導波路をジンクズルフアイ
ド(Zinc Zulphide)でおおうことが提案されて
いる。しかしながら、この方法は、フエーズマツ
チングを与えるモードが限定的なオーバラツプ積
分を有しているので、リチウムナイオベートにチ
タニウムを拡散させることにより得られるガイド
には用いることができない。ところで、フエーズ
マツチングは基本波の零モードと高調波のより高
いオーダのモードとの間で得ることができる。2
つの最初の高調波のモードの実効屈折率が基本波
の実効屈折率より大とすれば、最初のフエーズマ
ツチングが受動層を用いない場合よりも高いラン
クの高調波のモードに生ずる結果として、受動層
をガイドに付加することにより実効屈折率が増加
する。
上述した不利益を除くために、本発明はガイド
構成に受動層を用い基本波の実効屈折率のレンジ
が高調波のそれよりも大である構成を提案するも
のである。この方法は、実効屈折率の範囲の間に
重複がないためにフエーズマツチングを直接得る
ことのできないガイド構成に基礎をおくものであ
る。
従つて本発明は、放射線をリチウムナイオベー
ト基板表面の金属イオンの拡散で得られる導波路
に制限し基本波から高調波をつくりだす非線形光
デバイスにおいて、フエーズマツチングが、受動
層なしのときに得られる値をこえるオーバラツプ
積分値に一致する基本波伝搬モード及び高調波伝
搬モードの実効屈折率をつくるごとき少なくとも
1つの受動層を導波路の自由面にコーテイングす
ることにより得られる非線形光デバイスに関す
る。
以下図面により実施例を説明する。
第1図において示される放射源3の出力スロツ
ト4は軸zに対して平行に伝搬する単色放射をな
す。この放射線は非線形光デバイスで受波され
る。該デバイスは、案内溝20が金属イオンの拡
散により形成される面45をもつ基板で構成され
る。基板10はリチウムナイオベートのごとき光
学的に非線形な材料で形成される。拡散金属イオ
ンは、拡散領域20における屈折率nが基板の屈
折率ns以上となるごとく、選定される。チタニウ
ム或いはニツケルの拡散はこの目的のために考慮
することができる。拡散領域はより小さい屈折率
をもつ領域で取り囲まれ、積層導波路を構成す
る。このガイドは放射線を良好に閉じ込め、フエ
ーズマツチングを得る場合に、非線形相互作用の
長い距離を容易に得ることを可能とする。第1図
においてはガイドの横の寸法が極めておおげさに
示されている。
第1図においては、相互作用のプロセスを示す
ために、波長λFの基本波Fの時間tにおける振幅
分布が図解的に示されている。この波のエネルギ
は放射源3から与えられてz方向に進行し、その
エネルギの一部を波長λH=λF/kの高調波Hとして 放出する。ここにkは1以上の整数である。
高調波8Hは、導波路20において生ずる非線
形相互作用の結果として形成される。これは振幅
分布7で第1図に図解的に示される。矢印8は基
本波から高調波に送られるエネルギを示す。これ
らは、2つの波の屈折率がガイド20内の伝搬方
向zにおいて等しいものとするフエーズマツチン
グを示す。
2つの波の各々は、実効屈折率nの個々の値に
一致するいくつかの伝搬モードをもつことが可能
である。基本波及び高調波の夫々の屈折率が配列
される範囲を示すセグメント11〜16が、第2
図において、実効屈折率nの値の与えられた水平
目盛に対してプロツトされている。夫々の伝搬モ
ードに対する屈折率で仮定される値は、伝搬モー
ドのランクrを示す数字0,1,2etcのラインに
よつて示される。
屈折率の範囲11及び12は、リチウムナイオ
ベート基板に拡散されたチタニウムより得られる
導波路に関するものである。範囲11は基本波モ
ードに関し、範囲12は非線形的相互作用により
作られる高調波に関する。フエーズマツチングが
基本波モード(正常波)のオーダ0と高調波モー
ド(異常波)のオーダ2とで確実に得られている
ことがわかる。この一般的な解は、フエーズマツ
チングが与えられるモード0と2とのオーバラツ
プ積分値が低いという不利益を有している。xが
基板表面に直角をなしその内側に向く方向であれ
ば、基本波の電界はE〓r(x)で示され、高調波の
それはEkr(x)で示される。ここにkは高調波
のランク、rは伝搬モードのランク、ωは基本波
の光学的脈動である。周波数を重ねる場合におい
て、オーバラツプ積分は次の関係で与えられる。
+ -dNL(x)・〔E〓r(x)〕2・E2r(x)dx…(
1) ここにdNLは非線形テンソルの適当な成分であ
る。
オーバラツプ積分において高い値を得るために
は、xに沿つて進行する高調波に基本波との同等
の良好なモード形態を選定することが必要であ
る。
屈折率の範囲13及び15はリチウムナイオベ
ートにニツケルを拡散させることによつて得られ
る導波路に関する。
基本波の範囲13は高調波の範囲14に対し重
なり領域をもたないことがわかる。従つて、これ
ではフエーズマツチングは得られない。第2図に
おける屈折率の範囲15及び16は本発明による
複合導波路に関する。このガイドは、ニツケルが
拡散された表面を受動用の適当な厚さのナイオビ
ユームオキサイド層Nb2O5でおおつたリチウムナ
イオベート基板で作られる。
基本波の屈折率の範囲15は、受動層のない同
様のガイドに関する範囲13とほとんど異ならな
い。しかしながら、高調波に関する屈折率の範囲
16は右方向に相当にのびている。基本波のオー
ダ0のモードと例えば高調波のオーダ1のモード
との間でフエーズマツチングが可能であることが
わかる。このフエーズマツチングはオーバラツプ
積分に相当高い値を与えることができる。
第3図は本発明による非線形光デバイスを示
す。図面を簡略化するために、例えばほぼ赤外領
域の動作をなす半導体レーザのごとき基本波放射
源は示されていない。
非線形相互作用は、リチウムナイオベート基板
10の上面5にニツケルを拡散することによつて
得られる導波路20に閉じ込められる。受動ナイ
オビユームオキサイド層21はガイド20をおお
つて基板10の両端までのびる。受動層21は基
本波F及び高調波Hの波長に対し透明である。こ
れは、ガイド20を循環する電磁エネルギが結合
されるように、高い屈折率を有しなければならな
い。受動層21の厚さは望ましいフエーズマツチ
ングが得られるごとく選定される。
非限定的な例として、真空中で基本波λF=1μm
の波長及び高調波λH=0.5μmの波長においては、
次式で与えられるリチウムナイオベートに拡散さ
れるガイドの屈折率を適用することが可能であ
る。
n(x)=ns+△ne-x2/a2 ここにa=3μm、nsはリチウムナイオベートの
屈折率、△nは屈折率の表面変動である。
ナイオビユームオキサイドNb2O5で作られる厚
さe=0.5μmの受動層21を適用することによつ
て、長さ1cmで幅5μmのガイドに対して10%の変
換効率を得ることができる。従つて、、先に説明
したデバイスと組合せて20mWのパワーをもつ赤
外放射源とすれば、可視光スペクトルにおいて
2nWの変換パワーを得ることができる。フエー
ズマツチングは層21の厚さによつて制御され
る。このマツチングを容易になすために、本発明
はガイド20を囲む電極17及び18を具備する
第3図のデバイスを提供する。これらの電極は、
例えば受動層21の配置に先だつて基板10の表
面5にもうけられる。電極17及び18を電圧V
を調整するジエネレータ19に接続することによ
つて、フエーズマツチングをなすためにリチウム
ナイオベートの電気−光学的性質を用いることが
可能となる。この電圧はまた、非線形変換により
与えられる光エネルギを調節するためのフエーズ
マツチングの破壊にも用いられる。
第4図は基板表面下方の深さxの関数として示
される屈折率n及び電界Eの分布に対する第3図
の複合ガイドのセクシヨン25を示す。曲線22
は屈折率を与え、曲線23は基本波のオーダ0の
モードを与え、曲線21は高調波のオーダ1のモ
ードを与える。モード23及び24に基づいて算
出されるオーバラツプ積分は、良好な変換効率を
与える高い値が得られる。
上述の実施例は入射した放射線の周波数を倍に
することを可能にする。しかしながら、これはま
た、より高いオーダの周波数逓倍或いは寄生効果
をなすことまで放射線の領域を広げることができ
る。本発明は望ましい実施例について説明及び示
されたが、この変形又は等価な手段を用いること
は明らかに本発明の範囲に含まれるものである。
特に、受動層は単一又は複合のものとすることが
でき、Nb2O5以外の例えばTiO2などの材料で作
ることができる。非線形相互作用はまた、2つの
入射放射線の変調波となる放射線の発生をなすこ
とも可能である。
【図面の簡単な説明】
第1図は単色放射源に組合された非線形光デバ
イス、第2図は説明図、第3図は本発明による非
線形光デバイス、第4図は説明図である。 3…放射源、4…出力スロツト、5…上面、1
0…基板、17,18…電極、19…ジエネレー
タ、20…導波路、21…受動層。

Claims (1)

  1. 【特許請求の範囲】 1 基本波Fから高調波Hを発生させる非線形光
    デバイスであつて、 前記各波が、リチウムナイオベート基板5の表
    面から金属イオンを拡散して得られる導波路20
    を伝搬し、 前記高調波を発生させる非線形の相互作用が前
    記導波路で行なわれる非線形光デバイスにおい
    て、 前記導波路20に金属イオンを拡散することに
    より、導波路の基本波に対する実効屈折率の範囲
    が、高調波に対する実効屈折率の範囲と重複せず
    これより大きな値となり、かつ、高調波への変換
    に必要なフエーズマツチングが直接起こらない範
    囲となるごとく構成され、 前記フエーズマツチングは前記導波路20の自
    由表面をおおう受動層21により保証され、 受動層の屈折率は、導波路内を循環する電磁エ
    ネルギを良好に結合させるために十分に高く選定
    され、 受動層の厚さeは、フエーズマツチングが高調
    波に対する屈折率を上昇させることにより得られ
    るごとく選定され、 前記受動層により、基本波と高調波のオーバー
    ラツプ積分値が、受動層のないときよりも増大
    し、 前記フエーズマツチングが、前記基本波Fの0
    次の伝搬モードと前記高調波Hの高次伝搬モード
    の間で実現され、 前記金属イオンがニツケルであり、 前記受動層がナイオビウムオキサイド
    (Nb2O5)であることを特徴とする非線形光デバ
    イス。 2 フエーズマツチングを調節する電気手段1
    7,18,19が設けられることを特徴とする特
    許請求の範囲第1項記載の非線形光デバイス。 3 前記電気手段が、導波路20に結合する2つ
    の電極17,18に結合する電圧制御源19を有
    することを特徴とする特許請求の範囲第2項記載
    の非線形光デバイス。 4 基本波Fが単色放射源3で作られ、その周波
    数が非線形相互作用により、供給される高調波に
    結合することを特徴とする特許請求の範囲第1項
    〜第3項のいずれかに記載の非線形光デバイス。 5 前記単色放射源が赤外領域の半導体レーザで
    あることを特徴とする特許請求の範囲第4項記載
    の非線形光デバイス。 6 供給される高調波が可視光であることを特徴
    とする特許請求の範囲第4項記載の非線形光デバ
    イス。 7 別の放射源で作られる第2の基本波が導波路
    に与えられることを特徴とする特許請求の範囲第
    4項記載の非線形光デバイス。
JP17596180A 1979-12-14 1980-12-15 Nonlinear light device having composite waveguide path and radioactive source for same device Granted JPS5697324A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7930720A FR2471617A1 (fr) 1979-12-14 1979-12-14 Dispositif optique non lineaire a guide d'onde composite et source de rayonnement utilisant un tel dispositif

Publications (2)

Publication Number Publication Date
JPS5697324A JPS5697324A (en) 1981-08-06
JPH0430006B2 true JPH0430006B2 (ja) 1992-05-20

Family

ID=9232792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17596180A Granted JPS5697324A (en) 1979-12-14 1980-12-15 Nonlinear light device having composite waveguide path and radioactive source for same device

Country Status (6)

Country Link
US (1) US4427260A (ja)
EP (1) EP0031263B1 (ja)
JP (1) JPS5697324A (ja)
CA (1) CA1153229A (ja)
DE (1) DE3071151D1 (ja)
FR (1) FR2471617A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2533714A1 (fr) * 1982-09-28 1984-03-30 Thomson Csf Dispositif coupleur optique integre non lineaire et oscillateur parametrique comprenant un tel dispositif
JPS61189686A (ja) * 1985-02-19 1986-08-23 Matsushita Electric Ind Co Ltd レ−ザ装置
DE3546239A1 (de) * 1985-12-28 1987-07-02 Sohler Wolfgang Nichtlinearer lichtleiterkanal, insbes. zur frequenzverdoppelung
GB2187566A (en) * 1986-03-07 1987-09-09 Philips Electronic Associated Device for doubling the frequency of electromagnetic radiation
US4714312A (en) * 1986-05-19 1987-12-22 Trw Inc. Electrostatically biased electrooptical devices
JPS6344781A (ja) * 1986-08-11 1988-02-25 Sharp Corp 高調波発生装置
US4763019A (en) * 1986-09-09 1988-08-09 American Telephone And Telegraph Company, At&T Bell Laboratories Apparatus comprising harmonic generation means
US4830447A (en) * 1987-02-13 1989-05-16 Fuji Photo Film Co., Ltd. Optical wavelength conversion device
EP0287880A1 (en) * 1987-04-10 1988-10-26 Polaroid Corporation Optical mixer and parametric up-converter
US4748631A (en) * 1987-05-06 1988-05-31 International Business Machines Modulated laser source for optical storage
JPS6490427A (en) * 1987-09-30 1989-04-06 Sharp Kk Light wavelength converter
JP2584811B2 (ja) * 1988-01-14 1997-02-26 キヤノン株式会社 非線形光学素子
JP2624279B2 (ja) * 1988-01-20 1997-06-25 キヤノン株式会社 スラブ導波光出射半導体レーザー
CN1008305B (zh) * 1988-04-14 1990-06-06 中国科学院福建物质结构研究所 用三硼酸锂单晶体制造的非线性光学器件
US4911712A (en) * 1988-04-14 1990-03-27 Heraeus Lasersonics, Inc. Medical laser probe
US4896931A (en) * 1988-08-18 1990-01-30 North American Philips Corp. Frequency doubling device
EP0364214B1 (en) * 1988-10-11 1995-01-11 Sony Corporation Optical wavelength conversion devices
US5061030A (en) * 1989-08-15 1991-10-29 Optical Measurement Technology Development Co., Ltd. Optical integrated modulator
US4974923A (en) * 1989-11-30 1990-12-04 North American Philips Corporation Gap tuned optical waveguide device
US5046803A (en) * 1989-12-08 1991-09-10 North American Philips Corp. Actively phased matched frequency doubling optical waveguide
US5274652A (en) * 1990-11-15 1993-12-28 Asahi Glass Company Ltd. Harmonic wave generator, a method of producing a harmonic wave and a reading apparatus for an optical recording medium using the harmonic wave generator or the method of producing a harmonic wave
US5212759A (en) * 1991-12-16 1993-05-18 Eastman Kodak Company Mode insensitive waveguide device
US5271083A (en) * 1992-07-27 1993-12-14 Motorola, Inc. Molded optical waveguide with contacts utilizing leadframes and method of making same
US5436992A (en) * 1994-10-18 1995-07-25 National Science Council Lithium niobate optical TE-TM mode splitter
FR2726661B1 (fr) * 1994-11-07 1997-01-31 France Telecom Dispositif parametrique optique
FR2728697B1 (fr) * 1994-12-23 1997-01-24 Thomson Csf Convertisseur de frequence a tres haute efficacite, en optique guidee
DE69637984D1 (de) * 1995-12-28 2009-09-17 Panasonic Corp Optischer Wellenleiter, Vorrichtung zur Umwandlung optischer Wellenlängen und Verfahren zu ihrer Herstellung
FR2784185B1 (fr) 1998-10-06 2001-02-02 Thomson Csf Dispositif pour l'harmonisation entre une voie d'emission laser et une voie passive d'observation
FR2830339B1 (fr) * 2001-10-02 2003-12-12 Thales Sa Dispositif optronique de veille passive
JP4826469B2 (ja) * 2006-12-28 2011-11-30 株式会社島津製作所 擬似位相整合素子
US8743922B2 (en) 2011-10-21 2014-06-03 Sharp Kabushiki Kaisha Ultraviolet laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993033A (ja) * 1972-07-25 1974-09-04
JPS52143047A (en) * 1976-05-25 1977-11-29 Nippon Telegr & Teleph Corp <Ntt> Second harmonic optical switch
JPS53119066A (en) * 1977-03-23 1978-10-18 Thomson Csf Nonnlinear thin membrane device and method of manufacturing thereof
JPS5499651A (en) * 1978-01-24 1979-08-06 Nippon Telegr & Teleph Corp <Ntt> Nonlinear optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856379A (en) * 1973-08-20 1974-12-24 Us Navy Optical mixing device employing noncritical phase matching in waveguides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993033A (ja) * 1972-07-25 1974-09-04
JPS52143047A (en) * 1976-05-25 1977-11-29 Nippon Telegr & Teleph Corp <Ntt> Second harmonic optical switch
JPS53119066A (en) * 1977-03-23 1978-10-18 Thomson Csf Nonnlinear thin membrane device and method of manufacturing thereof
JPS5499651A (en) * 1978-01-24 1979-08-06 Nippon Telegr & Teleph Corp <Ntt> Nonlinear optical device

Also Published As

Publication number Publication date
CA1153229A (en) 1983-09-06
DE3071151D1 (en) 1985-11-07
EP0031263A1 (fr) 1981-07-01
US4427260A (en) 1984-01-24
FR2471617A1 (fr) 1981-06-19
FR2471617B1 (ja) 1983-08-26
JPS5697324A (en) 1981-08-06
EP0031263B1 (fr) 1985-10-02

Similar Documents

Publication Publication Date Title
JPH0430006B2 (ja)
EP0206220B1 (en) Higher harmonic generator
JPH01105220A (ja) 光波長変換素子
US4925263A (en) Proton-exchanged waveguides for sum-frequency generation
JP2693582B2 (ja) 波長変換素子
US5061038A (en) Fiber type wavelength converter
Benech et al. An exact simplified method for the normalization of radiation modes in planar multilayer structures
US5424867A (en) Fabrication of ferroelectric domain reversals
JPH0523410B2 (ja)
JP2009271435A (ja) 光導波路素子および波長変換素子および高調波レーザ光源装置
US11815785B2 (en) Wavelength conversion optical element
JPS63121829A (ja) 高調波発生装置
JP3332497B2 (ja) 波長変換装置
JP2658381B2 (ja) 導波路型波長変換素子
JP2973963B2 (ja) 短波長光源
JP2666540B2 (ja) 導波路型波長変換素子
Zolotov et al. Investigation and determination of the optimal characteristics of a thin-film LiNbO3 electrooptic modulator
JPH02275418A (ja) 光波長変換素子
JPH06194703A (ja) 波長変換素子
JP3310024B2 (ja) 変調機能付高調波発生装置
Vaya, Arun Kumar, K. Thyagarajan Parametric amplification in four-layered QPM leaky waveguides
JP3178849B2 (ja) 導波路型shg素子
JPH0328832A (ja) 光波長変換素子
Bozhevol'nyĭ et al. Investigation of an interferometric modulator based on channel waveguides in LiNbO3
JPH0454210B2 (ja)