JPH04296062A - 光電変換装置の作製方法 - Google Patents
光電変換装置の作製方法Info
- Publication number
- JPH04296062A JPH04296062A JP3084652A JP8465291A JPH04296062A JP H04296062 A JPH04296062 A JP H04296062A JP 3084652 A JP3084652 A JP 3084652A JP 8465291 A JP8465291 A JP 8465291A JP H04296062 A JPH04296062 A JP H04296062A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- conversion layer
- layer
- silicon
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 162
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000004065 semiconductor Substances 0.000 claims abstract description 91
- 238000000034 method Methods 0.000 claims abstract description 42
- 238000000137 annealing Methods 0.000 claims abstract description 26
- 238000004544 sputter deposition Methods 0.000 claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 27
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 239000010703 silicon Substances 0.000 claims description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000012808 vapor phase Substances 0.000 claims description 11
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 9
- 239000007790 solid phase Substances 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 2
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 28
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 44
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 15
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229910021419 crystalline silicon Inorganic materials 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- GGQZVHANTCDJCX-UHFFFAOYSA-N germanium;tetrahydrate Chemical compound O.O.O.O.[Ge] GGQZVHANTCDJCX-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
め要約のデータは記録されません。
Description
デム型の光電変換装置を低コストで提供する方法に関す
るものである。
を有効に利用するためにエネルギーバンドギャップの異
なる光電変換装置を直列に積層したタンデム型の太陽電
池が知られている。
IN(またはNIP)型の光電変換層(または光電変換
装置)を光入射側から直列に積層した構成であり、光入
射側の光電変換層におけるI型半導体層のエネルギーバ
ンドギャプは、もう一方の光電変換層におけるI型半導
体層のエネルギーバンドギャプより大きいことを特徴と
する太陽電池である。以下、光入射側の光電変換層を第
1の光電変換層、もう一方の光入射側から2番目の光電
変換層を第2の光電変換層と記す。
体層のバンドギャップが大きい第1の光電変換層にまず
光は入射することになる。バンドギャップの大きいI型
半導体層では、あまり長波長(即ちフォトンのエネルギ
ーが小さい光)を吸収することができないので、おもに
短波長(即ちフォトンのエネルギーが小さい光)を吸収
する。
層に入射する。第2の光電変換層のI型半導体層はエネ
ルギーバンドギャップが第1の光電変換層のI型半導体
層のエネルギーバンドギャップより小さいので、第1の
光電変換層で吸収されなかった長波長側の光を吸収する
ことができる。
できなかった波長領域の光を第2の光電変換層において
吸収できるので、入射する光を効率的に利用できるとい
う特徴を有している。
を入れ換えた場合、最初にI型半導体層のエネルギーバ
ンドギャップの小さい光電変換層に光が入射してしまい
、第2の光電変換層(即ちこの光電変換層のI型半導体
層のエネルギーバンドギャップが光入射側の光電変換層
のI型半導体層のエネルギーバンドギャップよりも大き
くなる構成になる)で吸収できる波長領域の光が第1の
光電変換層においてすでに吸収されてしまっており、光
電変換層を透過する際に損失してしまう光エネルギーの
分を考えると、これでは光を効果的に活用することがで
きない。
変換するI型半導体層(一般に活性層と呼ばれる)のエ
ルギーバンドギャップが大きい光電変換層(第1の光電
変換層)、そのつぎにI型半導体層のエルギーバンドギ
ャップが小さい方の光電変換層(第2の光電変換層)と
構成することにより、第1の光電変換層で吸収できない
波長領域の光を第2の光電変換変換層で吸収することが
できることになり光エネルギーの効率的な利用を計るこ
とができる。
構成する条件としては、エネルギーバンドギャップの異
なる半導体を用いた光電変換層が必要なことである。エ
ネルギーバンドギャップの異なる半導体としては、アモ
ルファスシリコン(エネルギーバンドギャップ約1.6
〜1.8ev)と多結晶シリコン(エネルギーバンドギ
ャップ約1.1ev)を用いて前述のタンデム構成の光
電変換装置を作製する方法がよく知られている。
光入射側に第1の光電変換層としてアモルファスシリコ
ンを用いたPIN構成の光電変換層を設け、第2の光電
変換層として液相成長によって溶融シリコンから作られ
てバルクの多結晶シリコンをウエハー状にスライスした
ものを用いたPN構造の光電変換層を設けたものである
。
たウエハー状の多結晶シリコン基板は数十μm程度に薄
くつくることは難しく、またN型,P型の導電型を作製
する際には不純物拡散工程が必要であった。
晶シリコンを得る方法としてスピン法、リボン法等があ
るが生産性に問題があり一般的ではなかった。
の光電変換装置は、ウエハー状の多結晶シリコン半導体
を作製するのに非常にコストがかかり、しかも珪素を大
量に用いるため工業的に不向きであった。例えば、液相
成長によって作られるバルクの多結晶珪素半導体をスラ
イスすることによって得られる多結晶シリコン半導体基
板は数百μmもあり、しかも厚さをコントロールするの
が困難であるが、気相成長によって作製されるアモリフ
ァスシリコン(非晶質珪素)半導体層は数十μm程度の
厚さですみ、その厚さも数十Åから自由にコントロール
することができる。
の多結晶珪素半導体層の大きさは、現在の技術において
は、20cm角が程度が限度であり、それ以上大きいも
のを得るのは技術的にも困難であり、できたとしてもコ
スト的に問題があった。
バルクの多結晶珪素半導体を用いることは、工業的に不
向きであり、太陽電池の実用化を妨げる大きな原因の一
つとなっていた。
デム型さらには光電変換層を2層以上用いた多層構造の
光電変換装置を低コストでしかも大量生産できる作製法
を発明することを目的とする。
上に気相化学反応法またはスパッタ法により非単結晶珪
素半導体よりなる少なくとも一層の光電変換層を設ける
工程と、前期非単結晶珪素半導体を熱アニールにより結
晶化させる工程と、前期結晶化した非単結晶珪素半導体
よりなる光電変換層上に気相化学反応法またはスパッタ
法により非単結晶珪素半導体よりなる光電変換層を設け
る工程からなることを特徴とする光電変換装置の作製方
法である。
、石英基板等の絶縁体の基板を用いることができる。
、RFプラズマCVD法、熱CVD法、光CVD法、マ
イクロ波CVD法等の公知の反応ガスをエネルギーによ
って分解して成膜する方法をいう。
たは原子を衝突させ、飛び散ったターゲットの原子、分
子またはそれらのクラスタを基板上に堆積させる方法を
いうものである。
、例えばアモルファスシリコン半導体をあげることがで
きる。しかし、他の半導体において単結晶状態以外の半
導体を本発明の構成にける非単結晶半導体として用いて
もよい。
シリコン)を用いた場合、シリコンの溶融温度である1
000度以上の温度よりも低い温度である450度〜7
00度の温度で行った。また、石英基板等の高い温度に
耐えられる基板を用いた場合には、700度以上の温度
でアニールを行なってもよい。
雰囲気中において1〜96時間行なった。このアニール
時間に幅があるのは、アニール温度によってアニール時
間が変わるからである。
なくとも光電変換層を備えていることを最低の条件とす
る。光電変換層とは、光エネルギーを起電力に変換する
のに必要な構成を有しているものをいう。例えばP型、
I型、N型と積層された半導体、PN接合を有する半導
体等を上げることができる。また、PIN構造であるな
らば、I層がPN接合であるならばPN界面における空
乏層が光起電力に寄与するキャリアの発生する領域であ
り、本明細書においてはこの領域を活性層と記す。即ち
、光電変換層の両端に電極を接続し、光電変換層に光を
照射すれば電極から起電力を取り出すことができる。
置に用いられていた溶融シリコンから作られたウエハー
状の多結晶シリコン半導体の代わりに、アモルファスシ
リコン半導体を熱アニールしシリコンを固相成長させる
ことによってできる結晶化シリコンを用いたものである
。
た第1、第2の光電変換層を同一工程で作製することが
でき生産性を高めることができるという特徴を有する。
されるアモルファスシリコン半導体を熱アニールするこ
とにより得ることができる結晶化シリコン膜は、薄く形
成することができ、資源の有効利用からみて有用である
。
ッタ法は、曲面にも成膜することができるという特徴を
有している。
層のエネルギーバンドギャップの大きさが、光入射側よ
り大きい順になるように光電変換層を構成する際に、小
さいバンドギャップを有する活性層(例えば1.1ev
のバンドギャップを有するI型の結晶性シリコン)を作
製する方法として、気相成長法またはスパッタ法で成膜
したアモルファス、または熱アニールによって結晶性が
改善される薄膜を450度〜700度の温度で熱アニー
ルすることによって、所定のエネルギーバンドギャップ
を得るという方法を用いるものである。
を得られるのであるならば、タンデム型のように2層の
光電変換層を用いるのでなく、3層または4層の光電変
換層を構成してもよい。
パッタ法で得た半導体薄膜を熱アニールにより固相成長
させることによって結晶化させ、所定のバンドギャップ
を得る方法を用いるのが本発明の特徴である。
リコンの光電変換層とアモルファスシリコンの光電変換
層とからなるタンデム型の光電変換装置に、さらにバン
ドギャップの狭い光電変換層であるシリコンゲルマ(S
i1−x Gex (0<X<1))を用いた光電変換
層を用いたものである。
学反応法によって得た膜を熱アニールすることによって
固相成長させ、所定のエネルギーバンドギャップ(約0
.8eV)を得るところに本発明の構成の特徴を有する
。
コンゲルマによるPIN構成でなくともよく、活性層で
あるI層だけナローバンドギャップ(0.8eV)を有
するシリコンゲルマすなわちSi1−x Gex (0
<X<1)で構成させてもよい。
で作ることになる。また、本発明の構成においては、最
もバンドギャップの広い半導体としてアモルファスシリ
コン半導体を用いているが、さらにバンドギャップの広
い半導体として炭化珪素(Six C1−X )を用い
た光電変換層を最も光入射側に位置させてもよい。
優れたスパッタ法、気相化学反応法等の薄膜成膜によっ
て得た非端結晶状の半導体を熱アニールすることによっ
て固相成長させ所定のバンドギャップを得ることが顕著
な特徴である。
のエネルギーバンドギャップが異なる光電変換層を多層
に設けた光電変換装置(例えば前述のタンデム型)の作
製法に関するものであり、それぞれの光電変換層には、
従来の光電変換装置の作製法または構成を用いることが
できることはいうまでもない。以下、実施例を示し本発
明を詳細に説明する。
ってガラス基板上にタンデム型の光電変換装置を設けた
ものである。本実施例においては、絶縁性の基板として
ガラス基板を用いるが、熱アニール時の温度である60
0度程度の温度に耐えるのであれば何ら限定されるもの
ではない。
から2番目に位置する活性層のバンドギャップが第1の
光電変換層の活性層のエネルギーバンドギャップより小
さい光電変換層)となる結晶性シリコン半導体層からな
る光電変換層の作製方法について図1を用いて説明する
1上に下地保護膜として酸化珪素膜12を3000Åの
厚さに酸素100%雰囲気中でのスパッタリングによっ
て成膜する。
されたN型のアモルファスシリコン半導体層13をRF
プラズマCVD法により1μmの厚さに以下の条件で成
膜する。 成膜ガス混合比 PH3 /SiH4 =1000p
pm流量 30〜150ccm 成膜圧力 0.01〜1Torr 成膜温度 130〜300度 RFパワー 30〜150W(13.56MHZ
)尚、光電変換層のN型半導体層と区別するためにこ
の裏面電極となるN型半導体層をN+ 層と記す。
ァスシリコン半導体層13上にRFプラズマCVD法に
よりPIN構成の光電変換層におけるN型半導体領域と
なるN型のアモルファスシリコン半導体層14を300
Åの厚さに設ける。このN型半導体層14の成膜条件は
、 成膜ガス混合比 PH3 /SiH4 =10ppm
流量 30〜150ccm 成膜圧力 0.01〜1Torr 成膜温度 130〜300度 RFパワー 30〜150W(13.56MHZ
)である。
リコン半導体層15をRFプラズマCVD法により10
μmの厚さに以下の条件で成膜する。 成膜ガス SiH4 流量 30〜150ccm 成膜圧力 0.01〜1Torr 成膜温度 130〜300度 RFパワー 30〜150W(13.56MHZ
)
半導体層16をRFプラズマCVD法により500Åの
厚さに以下の条件で成膜する。 成膜ガス B2H6 /SiH4 =10ppm流量
30〜150ccm 成膜圧力 0.01〜1Torr 成膜温度 130〜300度 RFパワー 30〜150W(13.56MHZ
)以上の工程によって、ボトムセルとなる第2の光電
変換層17を作製した。
VD装置は、マルチチャンバー形式を用い、各成膜室に
はロータリーポンプとターボ分子ポンプを直列に設けた
独立な高真空排気手段を用いた。そして成膜中における
酸素濃度を極力低くして成膜を行った。また、各成膜工
程において用いられる不純物が他の工程における成膜時
に存在っしないようにすることは重要である。
において550度から600度のN2 またはH2 の
常圧雰囲気中において熱アニールし、半導体層を固相成
長(結晶化)させた。
例においては48時間の時間をかけて行った。
たボトムセル(第2の光電変換層)17の表面に露出し
ている表面には、熱アニール時において酸化珪素膜が形
成されてしまうので、熱アニール後にHF処理を行いこ
の酸化珪素膜を取り除いた。具体的には、弗酸処理を行
い酸化膜を取り除いた。
リコンの半導体層を有する第2の光電変換層17を完成
させた。
にアモルファスシリコンを熱アニールしたものを用いた
のは、アモルファスシリコンの膜を450度〜700度
の温度で熱アニールすると多結晶シリコンと同じ程度の
約1.1evのバエネルギーバンドギャップを有する結
晶性シリコンを得られるという本発明者が行った実験事
実に基づくものである。
換層)17上にトップセルであるアモルファスシリコン
半導体層を有する第1の光電変換層102を作製する。
変換層17上にN型のアモルファスシリコン半導体層1
8をプラズマCVD法により以下の条件で100Åの厚
さに成膜する。 成膜ガス混合比 PH3 /SiH4 =1%ガス流
量 30〜150ccm圧力
0.01〜1Torr成膜温度
130度〜300度RFパワー 3
0〜150W
リコン半導体層19を3000Åの厚さに以下の条件で
成膜した。 成膜ガス SiH4 ガス流量 30〜150ccm圧力
0.01〜1Torr成膜温度
130度〜300度RFパワー
30〜150W
スシリコン半導体層101を100Åの厚さに以下の条
件で成膜した。 成膜ガス混合比 B2H3 /SiH4 =1%ガス
流量 30〜150ccm圧力
0.01〜1Torr成膜温度
130度〜300度RFパワー
30〜150W成膜ガス混合比 PH3 /SiH4
=1%
2の光電変換層17上にトップセルである第1の光電変
換層102を気相化学反応法によって作製した。さらに
透明同電膜としてITO103をスパッタ法によって成
膜した。 そしてドライエッチング工程またはレーザースクライブ
工程により素子間分離を行い図2の形状を得た。その後
、裏面電極13(第1の光電変換層17の際下部に位置
する。図1の13に示すN+ 層)を取り出し、アルミ
補助電極21を蒸着によって成膜した。
装置の一つのセルを完成した。
であるが、例えば太陽電池として用いるのであるならば
、多数のセルが連結された状態で用いられるのが一般的
である。
光電変換装置の作製工程に集積型の光電変換装置の作製
方法の一つであるレーザースクライブ法を容易に用いる
ことができるという特徴を有する。
イスして作られるウエハー状の多結晶シリコンまたは単
結晶シリコンを用いた光電変換装置においては、その厚
さが数百μmあったためレーザースクライブ法を用いる
こが困難であった。
板側からNIPと半導体層を積層したが、PIN構成と
してもよい。また、結晶性シリコンからなる第2の光電
変換層は、PNまたはNP接合としてもよい。
0<X<1)としてさらに変換効率を高めてもよい。
に光入射側からアモルファスシリコン半導体を用いたP
IN構成を有する第1の光電変換層A、実施例1におい
て作製した結晶性シリコン半導体を用いたPIN構成を
有する第2の光電変換層B、そしてSi1−x Gex
(0<X<1)(以下省略してSiGeと記載する)
を半導体層として用いた第3の光電変換層Cからなる光
電変換装置である。
換層と第2の光電変換層をスパッタ法とRFプラズマC
VD法とによって設け、この2層に対して熱アニールを
行うことでエネルギーバンドギャップの小さい結晶性半
導体を得ることを特徴としている。
する。まず、実施例1と同様にしてガラス等の絶縁性基
板31上に酸化珪素膜32を酸素100%雰囲気中にお
けるスパッタリングにおより3000Åの厚さに下地保
護膜として成膜した。
電極となるN+ 型のアモルファスシリコン膜33を実
施例1の裏面電極であるN+ 型のシリコン膜13と同
様にして形成する。
ーゲットを用いて光電変換層のP型半導体層となるN型
のSiGe膜34をマグネトロン型RFスパッタ装置を
用いて以下の条件で成膜した。 雰囲気 H2 :Ar=8:2
(B2H6 10ppm添加) RFパワー 400W 成膜圧力 0.5pa基板温度
150度
おいて、水素は0〜100%、アルゴンも0〜100%
の条件で設定可能である。 水素またはアルゴン100雰囲気中で、NまたはP型の
半導体を成膜する場合は、ターゲット中に一導電型を付
与する不純物である3価または5価の不純物であるリン
、ボロン等を混入させればよい。
でアニールすることにより不純物の活性化を行ってもよ
い。
な方法を用いて以下の条件でI型のSiGe膜35を5
〜50μmの厚さ、本実施例においては10μmの厚さ
に成膜した。 雰囲気 H2 :Ar=8:2
RFパワー 400W 成膜圧力 0.5pa基板温度
150度
SiGe膜36をN型のSiGe膜34と同様な方法を
用いて以下の条件で100〜1000Å本実施例におい
ては、500Åの厚さに成膜した。 雰囲気 H2 :Ar=8:2
(B2 H6 10ppm添加) RFパワー 400W 成膜圧力 0.5pa基板温度
150度
り第3の光電変換層であるアモルファスSiGe半導体
よりなる基板側からNIP構造の光電変換層Cを設けた
。
してSiGe半導体にスズを添加してもよい。さらに、
本実施例ににおいてはP,N型の半導体層もSiGeを
用いたが、導電型を制御しやすいシリコン半導体を用い
てN型.P型の半導体層を形成してもよい。
ゲルマニウムとシランを用いてCVD法による方法もあ
るが、水酸化ゲルマニウムは取扱が難しく危険性が高い
ので、本実施例においてはSiGeのターゲットを用い
たスパッタ法を用いた。
様な方法でアモルファスシリコン半導体となる基板側か
らNIPの構造を有する光電変換層Bを設け、第2の光
電変換層とした。
C、Bを450〜700度、本実施例においては600
度の温度で72時間熱アニールを行い結晶化させた。な
おアニール雰囲気は水素100%常圧雰囲気または窒素
等の不活性雰囲気中で行なった。
を結晶化させるのは、この二つ光電変換層の活性層(こ
の場合はI型半導体層)のエネルギーバンドギャップを
光入射側から約1.1ev、約0.8evとすることに
よって光電変換層を多層に設けた高効率の光電変換装置
(光電変換層を2層にしたものが実施例1のタンデム型
)を得ようとするためである。
に実施例1と同様な方法によって第1の光電変換層(一
番光入射側の光電変換層)であるアモルファスシリコン
半導体を用いた光電変換層Aを基板側からNIP型の順
に作製する。
は、PIN構成なのでI層になる)のエネルギーバンド
ギャップは約1.6evである。
PNIPNIPの順に光電変換層の半導体を形成した形
になる。
Bは17に対応する。さらに、図3に付与してある符号
の内図1、図2と同一のものは、図1、図2と同じ部分
を表すものである。
この段階で表面に露出している半導体層)上に透明導電
膜37を形成し、ドライエッチング、レーザースクライ
ブ法によりセルに分離し、裏面電極に補助電極を形成し
て、一つのセルを有した光電変換装置を完成させた。
性層のバンドギャップが異なる光電変換層を積層した多
層構造型の光電変換装置を低コストで、大量生産に向く
方法で作製することができた。
有する半導体を得る方法として、スパッタ法やCVD法
によって得た薄膜半導体に熱アニールを行なうことを特
徴としている。このためスパッタ法やCVD法の大きな
特徴である生産性の高さを活用できるという特徴を有す
る。
はスパッタ法によって作製した光電変換層を熱アニール
により結晶化させ所定のエネルギーバンドギャップを有
する活性層を得ることで、高い生産性を有する多層構造
型の光電変換装置(代表的にはタンデム型)を得ること
ができた。
示す。
示す。
示す。
結晶化シリコンからなるI型半導体層16
結晶化シリコンからなるP型半導体層17
結晶化シリコンからなる第2の光電変換層18
アモルファスシリコンからなるN型半導体層19
アモルファスシリコンからなるI型半導体層101
アモルファスシリコンからなるP型半導体層102
アモルファスシリコンからなる第1の光電変換層 103 透明導電膜
Claims (3)
- 【請求項1】 絶縁性基板上にスパッタ法または気相
化学反応法により非単結晶珪素半導体よりなる少なくと
も一層の光電変換層を設ける工程と、前期非単結晶珪素
半導体を熱アニールにより結晶化させる工程と、前期結
晶化した非単結晶珪素半導体よりなる少なくとも一層の
光電変換層上に気相化学反応法またはスパッタ法により
非単結晶珪素半導体よりなる光電変換層を設ける工程か
らなることを特徴とする光電変換装置の作製方法。 - 【請求項2】 絶縁性基板上にシリコンとゲルマニウ
ムの化合物からなる非単結晶半導体を有する光電変換層
を形成する工程と、前記光電変換層上に非単結晶シリコ
ンからなる光電変換層を形成する工程と、前記2つの光
電変換層を熱アニールすることによって固相成長させる
工程と、前記固相成長させた光電変換層上に非単結晶シ
リコンからなる光電変換層を設けることを特徴とする光
電変換装置の作製方法。 - 【請求項3】 請求項2におけるシリコンとゲルマニ
ウムの化合物とは、Si1−x Gex (0<X<1
)であることを特徴とする光電変換装置の作製方法
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08465291A JP3347747B2 (ja) | 1991-03-25 | 1991-03-25 | 光電変換装置の作製方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08465291A JP3347747B2 (ja) | 1991-03-25 | 1991-03-25 | 光電変換装置の作製方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04296062A true JPH04296062A (ja) | 1992-10-20 |
JP3347747B2 JP3347747B2 (ja) | 2002-11-20 |
Family
ID=13836647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08465291A Expired - Fee Related JP3347747B2 (ja) | 1991-03-25 | 1991-03-25 | 光電変換装置の作製方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3347747B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005050905A (ja) * | 2003-07-30 | 2005-02-24 | Sharp Corp | シリコン薄膜太陽電池の製造方法 |
-
1991
- 1991-03-25 JP JP08465291A patent/JP3347747B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005050905A (ja) * | 2003-07-30 | 2005-02-24 | Sharp Corp | シリコン薄膜太陽電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP3347747B2 (ja) | 2002-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101991767B1 (ko) | 넓은 밴드갭 반도체 재료를 갖는 이미터 영역을 구비한 태양 전지 | |
JP5552163B2 (ja) | ヘテロ構造太陽電池のためのシリコン・ウエハ・ベースの構造 | |
US6815788B2 (en) | Crystalline silicon thin film semiconductor device, crystalline silicon thin film photovoltaic device, and process for producing crystalline silicon thin film semiconductor device | |
EP0656664B1 (en) | Polycrystalline silicon photoelectric transducer and process for its production | |
JPH04245683A (ja) | 太陽電池の製造方法 | |
US20100229934A1 (en) | Solar cell and method for the same | |
JP4314716B2 (ja) | 結晶シリコン薄膜光起電力素子 | |
JP2001028452A (ja) | 光電変換装置 | |
JPH0864851A (ja) | 光起電力素子及びその製造方法 | |
JPH0526354B2 (ja) | ||
JP3347747B2 (ja) | 光電変換装置の作製方法 | |
JP2698115B2 (ja) | 光起電力装置の製造方法 | |
JP3346907B2 (ja) | 太陽電池及びその製造方法 | |
JP2002217433A (ja) | 半導体装置 | |
TWI313026B (en) | Multi layer compound semiconductor solar photovoltaic device and its growing method | |
JP2854083B2 (ja) | 半導体薄膜およびその製造方法 | |
JPH04249374A (ja) | 光電変換素子 | |
JP2004296599A (ja) | 薄膜多結晶シリコン太陽電池及びその製造方法 | |
JP2833924B2 (ja) | 結晶太陽電池およびその製造方法 | |
JPH11145499A (ja) | シリコン系薄膜光電変換装置の製造方法 | |
JPS60240167A (ja) | 光電変換装置 | |
JP2003218030A (ja) | 結晶シリコン半導体装置およびその製造方法 | |
JPH0525187B2 (ja) | ||
TWI436493B (zh) | 簡化電極設計之太陽能電池及其製造方法 | |
JPH04230081A (ja) | 光電変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080906 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080906 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090906 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090906 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090906 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100906 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100906 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |