JPH04238860A - Production of barium titanate-based porcelain semiconductor - Google Patents
Production of barium titanate-based porcelain semiconductorInfo
- Publication number
- JPH04238860A JPH04238860A JP3002339A JP233991A JPH04238860A JP H04238860 A JPH04238860 A JP H04238860A JP 3002339 A JP3002339 A JP 3002339A JP 233991 A JP233991 A JP 233991A JP H04238860 A JPH04238860 A JP H04238860A
- Authority
- JP
- Japan
- Prior art keywords
- barium titanate
- sb2o5
- sol
- ceramic semiconductor
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 49
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 229910002113 barium titanate Inorganic materials 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910052573 porcelain Inorganic materials 0.000 title description 2
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Inorganic materials O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000000203 mixture Substances 0.000 claims abstract description 28
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 23
- 239000000126 substance Substances 0.000 claims abstract description 11
- 239000000919 ceramic Substances 0.000 claims description 36
- 238000010304 firing Methods 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 10
- 230000015556 catabolic process Effects 0.000 abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 8
- 238000002156 mixing Methods 0.000 abstract description 6
- 238000012546 transfer Methods 0.000 abstract description 6
- 230000001419 dependent effect Effects 0.000 abstract 1
- 239000003381 stabilizer Substances 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910010252 TiO3 Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 235000006748 manganese carbonate Nutrition 0.000 description 4
- 239000011656 manganese carbonate Substances 0.000 description 4
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229940093474 manganese carbonate Drugs 0.000 description 3
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 238000001238 wet grinding Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 101100194003 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) rco-3 gene Proteins 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000001089 mineralizing effect Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、キュリー点以上の温度
において正の抵抗温度係数を有し、室温においては抵抗
率の小さいという優れたPTC(Positive T
emperature Coefficient)特性
を備えるチタン酸バリウム系磁器半導体の製造方法に関
するものである。[Industrial Application Field] The present invention relates to PTC (Positive T
The present invention relates to a method for manufacturing a barium titanate-based ceramic semiconductor having excellent properties.
【0002】0002
【従来の技術】チタン酸バリウム系磁器組成物に、ラン
タン、タンタル、セリウム、イットリウム、ビスマス、
タングステン、銀、サマリウム、ディスプロシウム等の
酸化物を半導体化剤として微量(0.5モル%以下)添
加し、焼成することによって、正の抵抗温度係数( P
TC特性 )を有する磁器半導体を得ることは、従来か
ら広く知られている。また、希土類元素、タンタル、ニ
オブ、またはアンチモンを含有するチタン酸バリウム系
磁器半導体組成物に二酸化ケイ素を添加し、酸素の存在
下で焼成することによって磁器半導体組成物の電気特性
を向上させることも提案されている( 特開昭53−5
9888号公報参照 )。[Prior Art] Barium titanate-based porcelain compositions include lanthanum, tantalum, cerium, yttrium, bismuth,
By adding a trace amount (0.5 mol% or less) of oxides such as tungsten, silver, samarium, dysprosium, etc. as a semiconducting agent and firing, a positive temperature coefficient of resistance (P
It has been widely known to obtain a ceramic semiconductor having TC characteristics. Additionally, the electrical properties of the ceramic semiconductor composition can be improved by adding silicon dioxide to a barium titanate ceramic semiconductor composition containing a rare earth element, tantalum, niobium, or antimony and firing it in the presence of oxygen. It has been proposed (Japanese Unexamined Patent Publication No. 53-5
(See Publication No. 9888).
【0003】0003
【発明が解決しようとする課題】ところが、上記従来の
方法では、半導体化剤は、焼成時において、その含有率
が他の成分に比べて非常に低く、具体的には全体重量の
1/1000程度である。このため、半導体化剤の秤量
は、高精度に行われなければならない。また、半導体化
剤の含有率(混合率)が低いので、混合時や反応時にお
いて充分な均一性を得るのは非常な困難を伴う。このた
めに、室温における抵抗率の小さいPTCを安定に得る
ことが難しく、その物性の均一性も悪く、品質がばらつ
くという問題点を有している。[Problems to be Solved by the Invention] However, in the above conventional method, the content of the semiconducting agent during firing is very low compared to other components, specifically 1/1000 of the total weight. That's about it. For this reason, the semiconductor forming agent must be weighed with high precision. Furthermore, since the content (mixing ratio) of the semiconducting agent is low, it is very difficult to obtain sufficient uniformity during mixing and reaction. For this reason, it is difficult to stably obtain PTC with low resistivity at room temperature, and its physical properties are not uniform, resulting in variations in quality.
【0004】0004
【課題を解決するための手段】本発明者らは、上記課題
を解決すると共に、さらに特性を向上させるべく原子価
制御による半導体化について種々検討し、それぞれ得ら
れた磁器半導体組成物の種々物性について測定した結果
、半導体化剤として五酸化アンチモン(Sb2O5)ゾ
ルを用い、このゾルのPHを調製して添加することによ
り、室温における抵抗率が低く、かつ、耐電圧性である
破壊電圧の高いチタン酸バリウム系磁器半導体が安定に
得られる製造方法を見出し、本発明を完成するに至った
。[Means for Solving the Problems] In order to solve the above problems and further improve the characteristics, the present inventors have conducted various studies on semiconductor formation through valence control, and various physical properties of the obtained ceramic semiconductor compositions. As a result of measurements, it was found that by using antimony pentoxide (Sb2O5) sol as a semiconducting agent and adding it after adjusting the pH of this sol, the resistivity at room temperature is low and the breakdown voltage is high. The present inventors have discovered a manufacturing method by which a barium titanate-based ceramic semiconductor can be stably obtained, and have completed the present invention.
【0005】すなわち、本発明に係るチタン酸バリウム
系磁器半導体の製造方法は、キュリー点移動物質を含む
チタン酸バリウム系基体組成物に半導体化剤を加えて焼
成してなるチタン酸バリウム系磁器半導体の製造方法に
おいて、上記半導体化剤として、チタン酸バリウム系基
体組成物に対してPH6からPH2までの間のPHに調
製した五酸化アンチモン(Sb2O5)ゾルを使用する
ことを特徴としている。That is, the method for manufacturing a barium titanate-based ceramic semiconductor according to the present invention is to produce a barium titanate-based ceramic semiconductor obtained by adding a semiconducting agent to a barium titanate-based base composition containing a Curie point transfer substance and firing the mixture. The manufacturing method is characterized in that antimony pentoxide (Sb2O5) sol adjusted to a pH between PH6 and PH2 for the barium titanate base composition is used as the semiconductor agent.
【0006】上記 Sb2O5ゾルとは、 Sb2O5
の超微細粒子が水に分散された状態を意味している。こ
のような Sb2O5ゾルでは、従来のように粉砕され
て使用される Sb2O5の粉末径が約1μm〜3μm
であるのと比べて、そのゾルの粒子径が0.02μm〜
0.05μmと非常に小さく、また、その成分濃度は1
0wt%〜70wt%の範囲で可変できる。また、 S
b2O5ゾルは、同様に半導体化剤として使用できる
Sb2O3と比べて低毒性を有し、また、粉末を取り扱
う必要がないので粉塵による害もなく、取扱が極めて容
易で作業環境を大幅に改善できる半導体化剤である。
Sb2O5ゾルのPH6からPH2までの間へのPH調
製は、硫酸や塩酸等の無機酸の酸濃度を調製した酸溶液
を加えることにより行われる。[0006] The above Sb2O5 sol is Sb2O5
This means that ultrafine particles are dispersed in water. In such Sb2O5 sol, the powder diameter of Sb2O5 that is used after being crushed in the conventional manner is approximately 1 μm to 3 μm.
Compared to that, the particle size of the sol is 0.02 μm ~
It is extremely small at 0.05μm, and its component concentration is 1
It can be varied within the range of 0wt% to 70wt%. Also, S
b2O5 sol can be used as a semiconducting agent as well.
It is a semiconducting agent that has lower toxicity than Sb2O3, and since there is no need to handle the powder, there is no harm caused by dust, and it is extremely easy to handle and can significantly improve the working environment.
The pH of the Sb2O5 sol is adjusted to between PH6 and PH2 by adding an acid solution of an inorganic acid such as sulfuric acid or hydrochloric acid whose acid concentration has been adjusted.
【0007】より具体的な製造方法としては、キュリー
点移動物質を含むチタン酸バリウム基体組成物に対して
、PHを調製した Sb2O5ゾルを配合するが、その
際、この配合物に鉱化剤として炭酸マンガン(MnCO
3) や、また電圧依存性安定剤として二酸化ケイ素(
SiO2)等を添加してもよい。なお、上記キュリー点
移動物質としては、チタン酸ストロンチウム(SrTi
O3)等が挙げられる。チタン酸ストロンチウム( S
rTiO3 )の配合はキュリー点を低温側へシフトさ
せるので、SrTiO3を 0.1wtモル%〜30w
tモル%前記チタン酸バリウム基体組成物中に配合する
ことによって、得られるチタン酸バリウム系磁器半導体
のキュリー点を所定の範囲内温度に設定できる。このよ
うな配合物をボールミルで1時間〜24時間、水の存在
下で湿式混合し、乾燥した後、1000℃〜1400℃
において1時間〜3時間仮焼し、仮焼した配合物は、粉
砕する。このようにして得られた粉末を所定形状の成形
器において成形した後、その成形物を1300℃〜14
00℃において0時間〜10時間保持し、焼成してチタ
ン酸バリウム系磁器半導体が得られる。[0007] As a more specific manufacturing method, a Sb2O5 sol whose pH has been adjusted is blended into a barium titanate base composition containing a Curie point transfer substance, and at this time, a mineralizing agent is added to this blend. Manganese carbonate (MnCO)
3) Also, silicon dioxide (
SiO2) etc. may be added. In addition, as the Curie point transfer substance, strontium titanate (SrTi
O3), etc. Strontium titanate (S
rTiO3) shifts the Curie point to the lower temperature side, so the addition of SrTiO3 from 0.1 wt mol% to 30 w
By incorporating t mol % into the barium titanate base composition, the Curie point of the obtained barium titanate ceramic semiconductor can be set within a predetermined temperature range. Such formulations are wet mixed in the presence of water in a ball mill for 1 hour to 24 hours, dried and then heated to 1000°C to 1400°C.
The calcined mixture is then calcined for 1 to 3 hours and pulverized. After molding the powder thus obtained in a molding machine of a predetermined shape, the molded product is heated to 1300°C to 14°C.
The barium titanate ceramic semiconductor is obtained by holding at 00° C. for 0 to 10 hours and firing.
【0008】[0008]
【作用】上記の方法によれば、半導体化剤として添加し
たゾル中の Sb2O5粒子はその粒径が非常に小さい
ので、均一な混合および反応が可能となり、半導体化が
より容易に行え、しかも室温での抵抗率をより小さく設
定できると共に品質のばらつきを抑制することができる
ので、電流容量の小さい回路中に対応することができる
汎用性に優れた低抵抗PTC素子を製造することができ
る。また、 Sb2O5粒子は、水中に分散している(
10wt%〜70wt%)ために多量に秤量できるので
、半導体化剤の秤量誤差を著しく小さくできる。例えば
、水中での Sb2O5粒子のwt%が10wt%の場
合、従来の10倍の量が秤量できることとなる。[Operation] According to the above method, since the Sb2O5 particles added as a semiconductor agent in the sol have a very small particle size, uniform mixing and reaction is possible, and semiconductor formation can be performed more easily. Since the resistivity can be set smaller and variations in quality can be suppressed, it is possible to manufacture a highly versatile low-resistance PTC element that can be used in circuits with small current capacity. In addition, Sb2O5 particles are dispersed in water (
(10 wt% to 70 wt%), it is possible to weigh a large amount of the semiconducting agent, and therefore the error in weighing the semiconductor forming agent can be significantly reduced. For example, when the wt% of Sb2O5 particles in water is 10 wt%, it is possible to weigh 10 times the amount conventionally.
【0009】[0009]
【実施例】以下において本発明を(第1実施例)および
(第2実施例)に基づいてさらに詳細に説明し、一方、
比較する従来例として半導体化剤としての五酸化アンチ
モンを従来のように粉末で使用した例を(第1比較例)
として挙げ、また、添加する五酸化アンチモンゾルのP
Hを約8に調製して用いた例を(第2比較例)として挙
げた。[Example] The present invention will be explained in more detail below based on (first example) and (second example), and on the other hand,
As a conventional example for comparison, an example in which antimony pentoxide as a semiconducting agent is used in powder form as in the past (first comparative example)
and P of the antimony pentoxide sol to be added.
An example in which H was adjusted to about 8 was used (second comparative example).
【0010】(第1実施例)無水炭酸バリウム( Ba
CO3 、堺化学社製BW−KL ) 680.49g
、高純度二酸化チタン( TiO2、東邦チタニウム社
製 )290.01g、無水炭酸ストロンチウム( S
rCO3 、本荘ケミカル社製 ) 26.79g、炭
酸マンガン( MnCO3 、和光純薬社製、99.9
%試薬) 0.2086g、二酸化ケイ素( SiO2
、レアメタリック社製、99.9%試薬 )1.090
4g、五酸化アンチモンゾル( Sb2O5 、日産化
学工業社製、A−1530ZB、30.5wt% タイ
プPH2.12)4.6197gを5リットル容量のボ
ールミルに入れ、これに水 3.5リットルと直径25
mmのナイロンコーティングされた鉄球40個とを加え
、24時間、湿式粉砕、混合した後、そのスラリーを底
浅バットに移し 130℃において乾燥した。その乾燥
混合物を乳鉢で粉砕後、アルミナルツボ(直径 100
mm、高さ100mm)に入れ、180 ℃/時の昇温
速度において加熱し、1150℃において2時間、仮焼
した。その仮焼物を振動ボールミルに入れ、水0.7リ
ットルと前記と同様に直径25mmのナイロンコーティ
ングされた鉄球20個、および直径25mmのナイロン
コーティングされた鉄球15個とを加えて、16時間、
湿式粉砕混合し、これに15%(w/w) ポリビニル
アルコール( PVA ) 水溶液 150gを加え、
2時間、攪拌した後、そのスラリーをスプレードライヤ
ーで噴霧乾燥して、径約50μmの顆粒に造粒した。そ
の顆粒を成形用金型〔12.5mm(径) ×35mm
(高さ) 〕に入れ、1トン/cm2の加圧下で成形し
、その成形物を下記の条件において焼成した。(First Example) Anhydrous barium carbonate (Ba
CO3, Sakai Chemical Co., Ltd. BW-KL) 680.49g
, high purity titanium dioxide (TiO2, manufactured by Toho Titanium Co., Ltd.) 290.01g, anhydrous strontium carbonate (S
rCO3, manufactured by Honjo Chemical Co., Ltd.) 26.79g, manganese carbonate (MnCO3, manufactured by Wako Pure Chemical Industries, Ltd., 99.9g)
% reagent) 0.2086g, silicon dioxide (SiO2
, Rare Metallic Co., Ltd., 99.9% reagent) 1.090
4g of antimony pentoxide sol (Sb2O5, manufactured by Nissan Chemical Industries, Ltd., A-1530ZB, 30.5wt% type PH2.12) 4.6197g were placed in a ball mill with a capacity of 5 liters, and 3.5 liters of water and a diameter of 25
After wet grinding and mixing for 24 hours, the slurry was transferred to a shallow vat and dried at 130°C. After crushing the dry mixture in a mortar, grind it in an alumina crucible (diameter 100 mm).
mm, height 100 mm), heated at a heating rate of 180° C./hour, and calcined at 1150° C. for 2 hours. The calcined product was placed in a vibrating ball mill, and 0.7 liters of water and 20 nylon-coated iron balls with a diameter of 25 mm and 15 nylon-coated iron balls with a diameter of 25 mm were added for 16 hours. ,
Mix by wet grinding, add 150g of 15% (w/w) polyvinyl alcohol (PVA) aqueous solution,
After stirring for 2 hours, the slurry was spray dried with a spray dryer to form granules with a diameter of about 50 μm. The granules were molded into a mold [12.5 mm (diameter) x 35 mm]
(height)] and molded under a pressure of 1 ton/cm2, and the molded product was fired under the following conditions.
【0011】温度範囲 昇温または
降温の条件室温〜800 ℃ 14
5 ℃/時の昇温800 ℃
2時間保持800 ℃〜1360℃
150 ℃/時の昇温1360℃
15分間保持1360℃〜1000
℃ 360 ℃/時の降温1000℃〜
550 ℃ 245 ℃/時の降温55
0 ℃ 温度コントロール
の終了室温に冷却した後、錠剤状成形物の円盤面にオー
ミック性の銀電極( デグサ社製 )を塗布し、 58
0℃において5分間、焼付けて電極を形成し、その電極
上にカバー電極( デグサ社製 )を塗布し、560
℃において5分間さらに焼付けを行って、チタン酸バリ
ウム系磁器半導体の試料を得た。Temperature range: Conditions for temperature rise or fall: room temperature to 800°C 14
Temperature increase of 800 °C at 5 °C/hour
Hold for 2 hours 800℃~1360℃
Temperature rise 1360℃ at 150℃/hour
Hold for 15 minutes 1360℃~1000
℃ 360℃/hour temperature drop 1000℃~
550 ℃ 245 ℃/hour temperature drop 55
0°C End of temperature control After cooling to room temperature, an ohmic silver electrode (manufactured by Degussa) was applied to the disk surface of the tablet-shaped molded product.
An electrode was formed by baking at 0°C for 5 minutes, and a cover electrode (manufactured by Degussa) was applied on the electrode.
Baking was further performed at ℃ for 5 minutes to obtain a barium titanate ceramic semiconductor sample.
【0012】このチタン酸バリウム系磁器半導体の原料
の配合組成は次のとおりである。
(Ba0.95Sr0.05)TiO3+0.00
05MnO2+ 0.005SiO2+0.0012S
b2O5
この試料の抵抗の温度変化を測定した結果、正の抵
抗温度係数を示す領域が生じる温度( キュリー点 )
は 110℃であり、抵抗の立ち上がり幅は3桁であっ
た。The composition of the raw materials for this barium titanate ceramic semiconductor is as follows. (Ba0.95Sr0.05)TiO3+0.00
05MnO2+ 0.005SiO2+0.0012S
b2O5 As a result of measuring the temperature change in the resistance of this sample, the temperature at which a region exhibiting a positive temperature coefficient of resistance occurs (Curie point)
was 110°C, and the rise width of the resistance was three digits.
【0013】このとき室温における抵抗率は4.26Ω
・cmであり、正の抵抗温度係数を示す領域における抵
抗温度係数αは9.03℃/ Ω・cm、また、VI特
性測定の結果、直径10mm、厚み1mmの円盤状の上
記チタン酸バリウム系磁器半導体における破壊電圧は2
0Vであった。[0013] At this time, the resistivity at room temperature is 4.26Ω.
・cm, and the temperature coefficient of resistance α in the region showing a positive temperature coefficient of resistance is 9.03°C/Ω・cm. Also, as a result of the VI characteristic measurement, the above barium titanate-based material has a disc shape with a diameter of 10 mm and a thickness of 1 mm. The breakdown voltage in a ceramic semiconductor is 2
It was 0V.
【0014】(第2実施例)五酸化アンチモンゾル(
Sb2O5、日産化学工業社製、A−1550、48.
7wt% タイプ、PH5.81)2.9354gを使
用したこと以外は上記第1実施例と同様に調製してチタ
ン酸バリウム系磁器半導体の試料を得た。(Second Example) Antimony pentoxide sol (
Sb2O5, manufactured by Nissan Chemical Industries, Ltd., A-1550, 48.
A barium titanate-based ceramic semiconductor sample was obtained in the same manner as in Example 1 above, except that 2.9354 g of 7wt% type, PH 5.81) was used.
【0015】このチタン酸バリウム系磁器半導体の原料
の配合組成は次のとおりである。
(Ba0.95Sr0.05)TiO3+0.00
05MnO2+0.005SiO2 +0.0012S
b2O5
この試料の抵抗の温度変化を測定した結果、正の抵
抗温度係数を示す領域が生じる温度( キュリー点 )
は 107℃であり、抵抗の立ち上がり幅は3桁であっ
た。The composition of the raw materials for this barium titanate ceramic semiconductor is as follows. (Ba0.95Sr0.05)TiO3+0.00
05MnO2+0.005SiO2 +0.0012S
b2O5 As a result of measuring the temperature change in the resistance of this sample, the temperature at which a region exhibiting a positive temperature coefficient of resistance occurs (Curie point)
was 107°C, and the rise width of the resistance was three digits.
【0016】このとき室温での抵抗率は8.22Ω・c
m、正の抵抗温度係数αは 8.3℃/ Ω・cmであ
り、前記第1実施例と同様の破壊電圧は、16Vであっ
た。[0016] At this time, the resistivity at room temperature is 8.22Ω·c
m, the positive temperature coefficient of resistance α was 8.3° C./Ω·cm, and the breakdown voltage was 16 V, similar to the first example.
【0017】(第1比較例)前記第1実施例における五
酸化アンチモンゾルに代えて、粉状五酸化アンチモン(
Sb2O5、レアメタリック社製、 99.99%試薬
) 1.7605gを使用したこと以外は第1実施例と
同様に調製してチタン酸バリウム系磁器半導体の試料を
得た。(First Comparative Example) Powdered antimony pentoxide (
A barium titanate ceramic semiconductor sample was obtained in the same manner as in Example 1 except that 1.7605 g of Sb2O5 (manufactured by Rare Metallic Co., Ltd., 99.99% reagent) was used.
【0018】このチタン酸バリウム系磁器半導体の原料
の配合組成は次のとおりである。
(Ba0.95Sr0.05)TiO3+0.00
05MnO2+ 0.005SiO2+0.0015S
b2O5
この試料の抵抗の温度変化を測定した結果、正の抵
抗温度係数を示す領域が生じる温度( キュリー点 )
は 105℃であり、抵抗の立ち上がり幅は約 2.3
桁であった。このとき室温における抵抗率は 4.8Ω
・cmであり、正の抵抗温度係数αは11℃/ Ω・c
m、破壊電圧は10Vであった。The composition of the raw materials for this barium titanate ceramic semiconductor is as follows. (Ba0.95Sr0.05)TiO3+0.00
05MnO2+ 0.005SiO2+0.0015S
b2O5 As a result of measuring the temperature change in the resistance of this sample, the temperature at which a region exhibiting a positive temperature coefficient of resistance occurs (Curie point)
is 105℃, and the resistance rise width is approximately 2.3
It was a digit. At this time, the resistivity at room temperature is 4.8Ω
・cm, and the positive temperature coefficient of resistance α is 11℃/Ω・c
m, and the breakdown voltage was 10V.
【0019】(第2比較例)前記第1実施例における約
PH2の五酸化アンチモンゾルに代えて、五酸化アンチ
モンゾル(Sb2O5、日産化学工業社製、A−151
0、11.3wt% タイプ、PH7.98)1.24
69gを使用したこと以外は第1実施例と同様に調製し
てチタン酸バリウム系磁器半導体の試料を得た。(Second Comparative Example) Antimony pentoxide sol (Sb2O5, manufactured by Nissan Chemical Industries, Ltd., A-151) was used in place of the antimony pentoxide sol having a pH of about 2 in the first embodiment.
0, 11.3wt% type, PH7.98) 1.24
A barium titanate ceramic semiconductor sample was obtained in the same manner as in Example 1 except that 69 g was used.
【0020】このチタン酸バリウム系磁器半導体の原料
の配合組成は次のとおりである。
(Ba0.95Sr0.05)TiO3+0.00
05MnO2+ 0.005SiO2+0.0012S
b2O5
この試料の抵抗の温度変化を測定した結果、正の抵
抗温度係数を示す領域が生じる温度( キュリー点 )
は 110℃であり、抵抗の立ち上がり幅は3桁であっ
た。The composition of the raw materials for this barium titanate ceramic semiconductor is as follows. (Ba0.95Sr0.05)TiO3+0.00
05MnO2+ 0.005SiO2+0.0012S
b2O5 As a result of measuring the temperature change in the resistance of this sample, the temperature at which a region exhibiting a positive temperature coefficient of resistance occurs (Curie point)
was 110°C, and the rise width of the resistance was three digits.
【0021】このとき室温での抵抗率は11.8Ω・c
m、破壊電圧は30Vであった。[0021] At this time, the resistivity at room temperature is 11.8Ω・c
m, and the breakdown voltage was 30V.
【0022】以上により、第1、第2実施例および第1
、第2比較例の結果を整理すると、下記の表1に示すよ
うになる。[0022] As described above, the first and second embodiments and the first
The results of the second comparative example are summarized as shown in Table 1 below.
【0023】[0023]
【表1】[Table 1]
【0024】表1から明らかなように、半導体化剤とし
て、チタン酸バリウム基体組成物に対してSb2O5
ゾルを使用することによって、Sb2O5 粉末を使用
した場合(第1比較例を参照)よりも、耐電圧性である
破壊電圧を大きくすることができた。また、添加するS
b2O5 ゾルのPHを種々換え用いて得られたチタン
酸バリウム系磁器半導体の室温における抵抗率は、図1
に示すように、PHが下がると抵抗率も下がり、特に約
PH2のSb2O5 ゾルを用いた場合では従来の方法
によって得られたチタン酸バリウム系磁器半導体の室温
における抵抗率よりも低くなった。また、図1から示さ
れるように、約PH6のSb2O5 ゾルを用いた場合
でも、室温における抵抗率は実用上問題のない低抵抗値
を示しており、かつ、表1から明らかなように、破壊電
圧も従来よりも明らかに大きく優れた特性を備えていた
。これらのことから、PHを低く2〜6に調製したSb
2O5 ゾルを用いてチタン酸バリウム系磁器半導体の
製造すると、破壊電圧の高い、かつ室温における抵抗率
の極めて低いチタン酸バリウム系磁器半導体が得られる
。なお、PH 1.5以下のSb2O5 ゾルを調製す
ることは公報(特開昭60−41536号公報参照)に
も示されているように困難であった。As is clear from Table 1, Sb2O5 was used as a semiconductor agent for the barium titanate base composition.
By using the sol, it was possible to increase the breakdown voltage, which is the withstand voltage, compared to the case where Sb2O5 powder was used (see the first comparative example). Also, S to be added
The resistivities at room temperature of barium titanate-based ceramic semiconductors obtained by using various b2O5 sol pHs are shown in Figure 1.
As shown in Figure 2, as the pH decreases, the resistivity also decreases, and in particular, when a Sb2O5 sol of about PH2 was used, the resistivity was lower than that of barium titanate ceramic semiconductor obtained by the conventional method at room temperature. Furthermore, as shown in Figure 1, even when using Sb2O5 sol with a pH of about 6, the resistivity at room temperature shows a low resistance value that poses no practical problem, and as is clear from Table 1, the The voltage was also clearly larger and had better characteristics than before. Based on these facts, Sb with a low pH of 2 to 6
When a barium titanate-based ceramic semiconductor is manufactured using 2O5 sol, a barium titanate-based ceramic semiconductor having a high breakdown voltage and an extremely low resistivity at room temperature can be obtained. It should be noted that it is difficult to prepare an Sb2O5 sol with a pH of 1.5 or less, as shown in a publication (see Japanese Patent Application Laid-open No. 41536/1983).
【0025】さらに、上記の方法では、半導体化剤とし
て添加した Sb2O5ゾル中の Sb2O5粒子の粒
径が非常に小さいので、均一な混合および反応が可能と
なり、半導体化がより容易に均一に行え、しかも室温で
の抵抗率をより小さく設定できると共に、半導体化の均
一に伴う耐電圧等の物性が均一化され、品質のばらつき
が抑制される。したがって、前記のような優れた特性を
備えたチタン酸バリウム系磁器半導体が安定に製造でき
る。この結果、電流容量の小さい回路中に対応すること
ができる汎用性に優れた低抵抗PTC素子(正特性サー
ミスタ)を安定に製造することができる。また、 Sb
2O5粒子は、水中に均一に分散して希釈されているた
め、Sb2O5ゾルとして多量に秤量できるので、半導
体化剤の秤量誤差が著しく小さくなる。加えて、添加す
る Sb2O5ゾル粒子の制御量は小数点5桁(従来は
小数点3桁までが限度であった)まで可能となる。さら
に、 Sb2O5ゾルは、 Sb2O3粉末やSb2O
5粉末と比較して原料原価が遙かに安い(2桁ないし3
桁安い)ので、全体的にコスト低減が可能となると共に
、 Sb2O3粉末と比較して毒性が弱く、また粉末を
取り扱う必要がないので、粉塵による害もなく、取扱が
極めて容易で作業環境を大幅に改善できる。Furthermore, in the above method, since the particle size of the Sb2O5 particles in the Sb2O5 sol added as a semiconducting agent is very small, uniform mixing and reaction is possible, and semiconducting can be carried out more easily and uniformly. Moreover, the resistivity at room temperature can be set smaller, and physical properties such as withstand voltage are made uniform due to uniform semiconductor formation, and variations in quality are suppressed. Therefore, a barium titanate-based ceramic semiconductor having the above-mentioned excellent properties can be stably produced. As a result, a highly versatile low-resistance PTC element (positive temperature coefficient thermistor) that can be used in a circuit with a small current capacity can be stably manufactured. Also, Sb
Since the 2O5 particles are uniformly dispersed and diluted in water, they can be weighed out in large amounts as Sb2O5 sol, so that the error in weighing the semiconductor forming agent is significantly reduced. In addition, the amount of added Sb2O5 sol particles can be controlled to five decimal places (conventionally, the limit was up to three decimal places). Furthermore, Sb2O5 sol can be made from Sb2O3 powder or Sb2O
The raw material cost is much lower than 5 powder (2 digits to 3 digits).
This makes it possible to reduce the overall cost, as well as being less toxic than Sb2O3 powder, and since there is no need to handle the powder, there is no harm caused by dust, and it is extremely easy to handle, greatly improving the work environment. can be improved.
【0026】ここで、上記各種チタン酸バリウム系磁器
半導体の試料の諸物性の測定方法を以下に説明する。
(1)キュリー点の測定
チタン酸バリウム系磁器半導体の試料を測定用の試料ホ
ルダーに取り付け、測定槽(MINI−SUBZERO
MC−810P タバイ エスペック社製)内に
装着して、−50℃から190 ℃までの温度変化に対
する試料の電気抵抗の変化を直流抵抗計( マルチメー
ター3478A YHP製)を用いて測定した。測定に
より得られた電気抵抗−温度のプロットより、抵抗値が
室温における抵抗値の2倍になるときの温度をキュリー
点とした。
(2)室温抵抗率の測定
チタン酸バリウム系磁器半導体の試料を25℃の測定槽
において、直流抵抗計(マルチメーター3478A Y
HP製)を用いて電気抵抗値を測定した。Here, methods for measuring the various physical properties of the various barium titanate-based ceramic semiconductor samples described above will be explained below. (1) Measurement of Curie point Attach a barium titanate ceramic semiconductor sample to a measurement sample holder, and place it in a measurement tank (MINI-SUBZERO).
MC-810P manufactured by Tabai Espec Co., Ltd.), and the change in electrical resistance of the sample with respect to temperature changes from -50°C to 190°C was measured using a DC resistance meter (Multimeter 3478A manufactured by YHP). From the electrical resistance-temperature plot obtained by measurement, the temperature at which the resistance value becomes twice the resistance value at room temperature was defined as the Curie point. (2) Measurement of room temperature resistivity A barium titanate ceramic semiconductor sample was placed in a measurement tank at 25°C using a DC resistance meter (Multimeter 3478A Y).
The electrical resistance value was measured using a commercially available product (manufactured by HP).
【0027】チタン酸バリウム系磁器半導体の試料の調
製において、電極塗布前に試料の大きさ(径および厚さ
)を測定しておき、次式により比抵抗(ρ)を算出し、
これを抵抗率とした。
ρ=R・S/t
ρ: 比抵抗(抵抗率) 〔Ω・cm〕R: 電
気抵抗の測定値 〔Ω〕
S: 電極の面積 〔cm2 〕t:
試料の厚さ 〔cm〕(3)抵抗率
の立ち上がり幅の測定
キュリー点の測定の温度変化(−50℃から190 ℃
)に対する試料の電気抵抗の変化の測定を、さらに20
0 ℃を超える温度まで続行し、その抵抗率−温度プロ
ットにおいて、キュリー点における電気抵抗の急激な立
ち上がりのときの抵抗率と、200 ℃における抵抗率
とを比較して、その桁数の対数比を抵抗率の立ち上がり
幅とした。In preparing a barium titanate ceramic semiconductor sample, the size (diameter and thickness) of the sample was measured before electrode coating, and the specific resistance (ρ) was calculated using the following formula:
This was defined as the resistivity. ρ=R・S/t ρ: Specific resistance (resistivity) [Ω・cm] R: Measured value of electrical resistance [Ω] S: Area of electrode [cm2] t:
Thickness of sample [cm] (3) Measurement of rising width of resistivity Temperature change in measurement of Curie point (from -50℃ to 190℃
), the change in electrical resistance of the sample was measured for an additional 20
Continue until the temperature exceeds 0 °C, and in the resistivity-temperature plot, compare the resistivity at the sudden rise in electrical resistance at the Curie point with the resistivity at 200 °C, and calculate the logarithmic ratio of the number of digits. was defined as the rise width of resistivity.
【0028】なお、本発明に係るチタン酸バリウム系磁
器半導体は、室温において抵抗率が小さいので、電流容
量の小さい回路における低抵抗PTC素子として使用す
ることができ、例えば温度ヒューズスイッチング電源の
コンパレータとしても使用することができ、また、上記
以外に、電解コンデンサーの保護回路、カラーTV自動
消磁装置、自動車等のモータ起動装置、電子機器の過熱
防止装置、遅延素子、タイマ、液面計、無接点スイッチ
、リレー接点保護装置などに利用することができる。Furthermore, since the barium titanate ceramic semiconductor according to the present invention has a low resistivity at room temperature, it can be used as a low resistance PTC element in a circuit with a small current capacity, for example, as a comparator for a thermal fuse switching power supply. In addition to the above, protection circuits for electrolytic capacitors, color TV automatic degaussing devices, motor starting devices for automobiles, overheating prevention devices for electronic equipment, delay elements, timers, liquid level gauges, non-contact points, etc. Can be used for switches, relay contact protection devices, etc.
【0029】[0029]
【発明の効果】本発明のチタン酸バリウム系磁器半導体
の製造方法は、キュリー点移動物質を含むチタン酸バリ
ウム基体組成物に半導体化剤を加えて焼成してなるチタ
ン酸バリウム系磁器半導体の製造方法において、上記半
導体化剤として、PH6からPH2までの間のPHに調
製した五酸化アンチモン(Sb2O5) ゾルを使用す
る方法である。これにより、破壊電圧の高い、かつ室温
における抵抗率の極めて低いチタン酸バリウム系磁器半
導体が安定に得られるという効果を奏する。Effects of the Invention The method for manufacturing a barium titanate-based ceramic semiconductor of the present invention is to manufacture a barium titanate-based ceramic semiconductor by adding a semiconducting agent to a barium titanate base composition containing a Curie point transfer substance and firing the mixture. In this method, antimony pentoxide (Sb2O5) sol adjusted to a pH between PH6 and PH2 is used as the semiconductor agent. This has the effect that a barium titanate-based ceramic semiconductor having a high breakdown voltage and an extremely low resistivity at room temperature can be stably obtained.
【図1】本発明の製造方法において、添加された五酸化
アンチモンゾルのPHの変化に対する得られたチタン酸
バリウム系磁器半導体の室温抵抗率の変化を示すグラフ
である。FIG. 1 is a graph showing changes in room temperature resistivity of a barium titanate-based ceramic semiconductor obtained with respect to changes in pH of added antimony pentoxide sol in the manufacturing method of the present invention.
Claims (1)
ム系基体組成物に半導体化剤を加えて焼成してなるチタ
ン酸バリウム系磁器半導体の製造方法において、上記半
導体化剤として、PH6からPH2までの間のPHに調
製した五酸化アンチモン(Sb2O5) ゾルを使用す
ることを特徴とするチタン酸バリウム系磁器半導体の製
造方法。[Claim 1] A method for producing a barium titanate-based ceramic semiconductor by adding a semiconducting agent to a barium titanate-based substrate composition containing a Curie point shifting substance and firing the mixture, wherein the semiconducting agent comprises a barium titanate-based ceramic semiconductor having a pH ranging from PH6 to PH2. A method for producing a barium titanate-based ceramic semiconductor, characterized by using an antimony pentoxide (Sb2O5) sol adjusted to a pH between 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3002339A JPH089501B2 (en) | 1991-01-11 | 1991-01-11 | Method for manufacturing barium titanate-based porcelain semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3002339A JPH089501B2 (en) | 1991-01-11 | 1991-01-11 | Method for manufacturing barium titanate-based porcelain semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04238860A true JPH04238860A (en) | 1992-08-26 |
JPH089501B2 JPH089501B2 (en) | 1996-01-31 |
Family
ID=11526545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3002339A Expired - Fee Related JPH089501B2 (en) | 1991-01-11 | 1991-01-11 | Method for manufacturing barium titanate-based porcelain semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH089501B2 (en) |
-
1991
- 1991-01-11 JP JP3002339A patent/JPH089501B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH089501B2 (en) | 1996-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20090082103A (en) | Semiconductor ceramic composition and method for producing the same | |
US6221800B1 (en) | Method of producing PTC semiconducting ceramic | |
US2981699A (en) | Positive temperature coefficient thermistor materials | |
JPH04238860A (en) | Production of barium titanate-based porcelain semiconductor | |
JP3254316B2 (en) | Barium titanate-based semiconductor porcelain composition | |
JP2511561B2 (en) | Method for manufacturing barium titanate porcelain semiconductor | |
JPS6243522B2 (en) | ||
JP2690597B2 (en) | Method for producing barium titanate porcelain semiconductor | |
JPH07297009A (en) | Positive temperature coefficient thermistor and manufacturing method thereof | |
JPH0822773B2 (en) | Method for manufacturing barium titanate porcelain semiconductor | |
JP2613327B2 (en) | Barium titanate-based porcelain semiconductor | |
JP2839932B2 (en) | Method for producing barium titanate porcelain semiconductor | |
JP2705019B2 (en) | Porcelain semiconductor composition and method for producing the same | |
JP2566335B2 (en) | Method for manufacturing barium titanate porcelain semiconductor | |
JPH0745338B2 (en) | Method for manufacturing barium titanate porcelain semiconductor | |
JP2613323B2 (en) | Barium titanate-based porcelain semiconductor | |
JP2595385B2 (en) | Method for producing barium titanate-based porcelain semiconductor | |
JPH0465356A (en) | Raw material powder for barium titanate series semiconducting ceramic composition and ceramic composition | |
JP3178083B2 (en) | Barium titanate-based ceramic semiconductor and method for producing the same | |
JPH1072254A (en) | Production of barium titanate-base semiconductor porcelain | |
JPS5948521B2 (en) | Method for manufacturing positive characteristic semiconductor porcelain | |
JPH07335404A (en) | Manufacture of positive temperature coefficient thermistor | |
JPH085716B2 (en) | Method for manufacturing barium titanate porcelain semiconductor | |
JPH07183104A (en) | Manufacture of barium titanate semiconductor porcelain | |
JP2000286104A (en) | Manufacture of positive temperature coefficient thermistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |