JPH0465356A - Raw material powder for barium titanate series semiconducting ceramic composition and ceramic composition - Google Patents

Raw material powder for barium titanate series semiconducting ceramic composition and ceramic composition

Info

Publication number
JPH0465356A
JPH0465356A JP2172654A JP17265490A JPH0465356A JP H0465356 A JPH0465356 A JP H0465356A JP 2172654 A JP2172654 A JP 2172654A JP 17265490 A JP17265490 A JP 17265490A JP H0465356 A JPH0465356 A JP H0465356A
Authority
JP
Japan
Prior art keywords
mol
less
srtio
powder
batio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2172654A
Other languages
Japanese (ja)
Other versions
JP2569208B2 (en
Inventor
Takamitsu Enomoto
榎本 隆光
Midori Kawahara
川原 みどり
Noboru Murata
昇 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2172654A priority Critical patent/JP2569208B2/en
Priority to US07/841,210 priority patent/US5219811A/en
Publication of JPH0465356A publication Critical patent/JPH0465356A/en
Application granted granted Critical
Publication of JP2569208B2 publication Critical patent/JP2569208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide a raw material powder for semiconductor ceramics having low resistance and high dielectric strength by providing a composition which is composed principally of BaTiO3, SrTiO3, CaTiO3, PbTiO3 having respectively specified shapes and with which semiconductor forming agent and trace amounts of CuO, Mn, and SiO2 blended. CONSTITUTION:Principle components which consists of (A) 45-85 mole% of BaTiO3 powder consisting of secondary grains formed by connecting <=0.2-mum primary grains and having 150-250mum average grain size, <=5 wt.% <=50-mum grains and open pores, (B) 1-20 mole% of SrTiO3 powder consisting of secondary grains formed by connecting <=0.1-mum primary grains and having 70-180mum average grain size, 20-30m<2>/g BET specific surface area, and open pores, (C) 5-20 mole% of CaTiO3, and (D) 1-20 mole% of PbTiO3 are produced. The raw material powder for barium titanate series semiconducting ceramic composition can be produced by incorporating 0.05-0.14 mole% semiconductor forming agent consisting of the oxide of Y, La, Ce, Nb, or Sb, 0.005-0.03 mole% CuO, 0.005-0.03 mole% Mn, and 0.5-2 mole% SiO2 into the above principle components.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、著しい正の温度特性を有し、しかも比抵抗が
十分に低いと同時に抵抗温度係数に優れたチタン酸バリ
ウム系半導体M!L器組成物およびその原料となる粉末
に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a barium titanate-based semiconductor M! which has a significantly positive temperature characteristic, has a sufficiently low specific resistance, and has an excellent temperature coefficient of resistance. The present invention relates to a L-pot composition and a powder serving as a raw material thereof.

[従来技術とその解決しようとする課題1従来、チタン
酸バリウム系半導体磁器はチタン酸バリウムを主成分と
し、これに半導体化剤としてY、La、Ceなどの希土
類元素、Nb、Sbのうち少なくとも1種を微量含有さ
せたもので、常温における比抵抗を低くし、抵抗急変点
(キュリー点)を越えると著しい正の抵抗温度特性を示
すという特徴を有している。
[Prior art and problems to be solved 1 Conventionally, barium titanate-based semiconductor porcelain has barium titanate as its main component, and at least one of rare earth elements such as Y, La, and Ce, Nb, and Sb is added as a semiconducting agent. It contains a small amount of one kind, and has the characteristics of lowering the specific resistance at room temperature and exhibiting a significantly positive resistance-temperature characteristic when the resistance abruptly changes point (Curie point) is exceeded.

通常、チタン酸バリウム系半導体磁器はその主成分であ
るチタン酸バリウムの影響によりキュ1ノ一点はほぼ1
20°C付近乙こある。
Normally, barium titanate-based semiconductor porcelain has a cu1 point of approximately 1 due to the influence of its main component, barium titanate.
It's around 20°C.

かかるチタン酸バリウム系半導体磁器のキュリー点を高
温側に移行させるために、Baの一部をpbで置換する
ことが知られている。また、キュリー点を低温側に移行
させるためや電気的特性を改善するため、Baの一部を
SrまたはCaで置換したり、Tiの一部をZr、Sn
などで置換することも知られている。
In order to shift the Curie point of such barium titanate-based semiconductor ceramics to a high temperature side, it is known to replace a part of Ba with Pb. In addition, in order to shift the Curie point to a lower temperature side and improve electrical characteristics, a part of Ba is replaced with Sr or Ca, and a part of Ti is replaced with Zr or Sn.
It is also known to replace with

さらに、チタン酸バリウム系半導体磁器に肚やシリカ、
アルミナ、酸化銅等を添加することにより、キュリー点
を越えた後の抵抗温度変化率を改善したり、半導体磁器
の特性を安定化させる等、種々の試みが行われている。
In addition, barium titanate-based semiconductor porcelain with silica and silica,
Various attempts have been made to improve the temperature change rate of resistance after exceeding the Curie point and to stabilize the characteristics of semiconductor ceramics by adding alumina, copper oxide, etc.

(特公昭53−29386、特公昭54−10110、
特公昭63−28324等)そして、かかるチタン酸バ
リウム系半導体磁器の特性を利用することにより、定温
度発熱用素子、電流制限用素子、温度制御用素子などと
して使用されている。
(Tokuko Sho 53-29386, Sho 54-10110,
(Japanese Patent Publication No. 63-28324, etc.) By utilizing the characteristics of such barium titanate-based semiconductor porcelain, it is used as a constant temperature heating element, a current limiting element, a temperature controlling element, etc.

しかしながら、上記のような用途において、チタン酸バ
リウム系半導体磁器ができる限り低比抵抗であることが
求められる用途も多いが、従来のものにおいては比抵抗
が低くなるに従って、抵抗温度特性、および破壊電圧が
極端に劣化し、例えば比抵抗が5Ωcm程度のものでは
抵抗温度係数、すなわち抵抗温度特性の勾配[以後、α
値と略記する。](”/”C)が約7程度しかなく、破
壊電圧も約30V/ms前後と低い値に留まり[西井基
:エレクトロニク・セラミクス、885月号(1988
) pp22〜27]このような低比抵抗値を有するチ
タン酸バリウム系半導体磁器は実Wi、Lこは実用化さ
れていないのが現状である。
However, in many of the above-mentioned applications, barium titanate-based semiconductor ceramics are required to have as low a resistivity as possible, but as the resistivity of conventional ceramics decreases, resistance temperature characteristics and breakdown When the voltage deteriorates extremely, for example, when the specific resistance is about 5 Ωcm, the temperature coefficient of resistance, that is, the slope of the resistance temperature characteristic [hereinafter α
Abbreviated as value. ] (''/''C) is only about 7, and the breakdown voltage remains low at around 30 V/ms [Moto Nishii: Electronic Ceramics, May 888 issue (1988
) pp22-27] Currently, barium titanate semiconductor ceramics having such a low resistivity value have not been put into practical use.

[課題を解決するための手段〕 本発明者らはこのような現状に鑑み、上記問題点を解決
するために鋭意検討を行い、チタン酸バリウム系半導体
磁器の原料として通常用いられる炭酸塩または酸化物の
代わりムこ、主成分として使用される BaTiO3、
SrTiO3、 CaTiO3、PbTiO3の内、少
なくともBaTi0 ]、SrTiO3、PbTiO3
を特定の方法によって製造したシュウ酸塩の仮焼粉末、
すなわち微細で均一な一次粒子を有し、平均粒子径が大
きい形骸二次粒子を用い、該粉末に添加剤として半導体
化剤、Mn、SiO□を加えることにより低比抵抗で他
の電気的特性に優れた半導体磁器組成物が得られること
を見い出し、特願平1〜225061号、特願平1〜2
25062号により提案を行い、さらに添加剤として半
導体化剤、CuO1Si02を使用する系においても、
同様に優れた電気的特性が得られることを見い出し、特
願平2−137667号により提案を行った。
[Means for Solving the Problems] In view of the current situation, the present inventors have conducted extensive studies to solve the above problems, and have found that carbonate or oxide, which is commonly used as a raw material for barium titanate semiconductor ceramics, has been developed. BaTiO3, which is used as the main component of Muko instead of things,
Among SrTiO3, CaTiO3, PbTiO3, at least BaTiO], SrTiO3, PbTiO3
calcined powder of oxalate produced by a specific method,
That is, by using skeletal secondary particles that have fine and uniform primary particles and a large average particle size, and adding semiconducting agents, Mn, and SiO□ as additives to the powder, low resistivity and other electrical properties can be achieved. It was discovered that a semiconductor ceramic composition excellent in
25062, and also in a system that uses a semiconductor agent, CuO1Si02, as an additive.
It was discovered that similarly excellent electrical characteristics could be obtained, and a proposal was made in Japanese Patent Application No. 2-137667.

本発明者らは、さらに検討を行い上記主成分に他の添加
剤として半導体化剤、開口、CuO1SiO□を同時に
加えることにより、比抵抗が10Ω・C1以下と極めて
低く、しかも抵抗温度係数が一段と優れた正抵抗温度特
性を持つ磁器が得られることを見いだし、本発明に到達
したものである。
The present inventors conducted further studies and found that by simultaneously adding other additives such as a semiconducting agent, apertures, and CuO1SiO□ to the above-mentioned main components, the specific resistance was extremely low at 10Ω・C1 or less, and the temperature coefficient of resistance was further improved. The present invention was achieved by discovering that porcelain having excellent positive resistance temperature characteristics can be obtained.

すなわち本発明は、BaTiO3、SrTiO3 、C
aTiO3、PbTiO3の主成の内、少なくともBa
TiO3、SrTiO3、PbTiO3が、 (1)BaTiO3:  0.2μm以下の一次粒子が
互に繋がった開気孔を有する形骸二次粒子でその大きさ
が平均粒径150〜250〃mであり、かつ50μm以
下の形骸二次粒子が5wt%以下であるBaTiO3粉
末、■SrTiO3:  0.lum以下の一次粒子が
互に繋がった開気孔を有する形骸二次粒子でその大きさ
が平均粒径70〜180μmであり、かつそのBET比
表面積が20〜30m2/gであるSrTiO3粉末、
(3)PbTiO3:  0.2μm以下の一次粒子が
互に緊がった開気孔を有する形骸二次粒子で、その大き
さが平均50〜150μmであり、かつ20μm以下の
形骸二次粒子が5wt%以下であるPbTiO3粉末、
上記■、■または(1)、(2)、(3)で表わされる
粉末よりなり、 その主成分の組成がBaTi口。:45〜85モル%、
SrTiO3  :1〜20モル%、 口aTi03 
 :5〜20モル%、PbTiO3: 1〜20モル%
であり前記主成分に対して半導体化剤としてY、La、
Ceなどの希土類元素、Nb、Sbのうち少なくともI
IIが酸化物として0.05〜0,14  モル%、さ
らにCuO:0.005〜0.03モル%、Mn : 
0.005〜0.03モル%、SiO□:0.5〜20
モル%の組成範囲よりなることを特徴とするチタン酸バ
リウム系半導体磁器組成物用原料粉末、および上記粉末
を焼結したチタン酸バリウム系半導体磁器組成物、更に
比抵抗値が10(Ω・cm)以下、抵抗温度係数が9(
Z/”c)以上、耐電圧力50 (V /m園)以上テ
アルことを特徴とするチタン酸バリウム系サーミスター
を提供するものである。
That is, the present invention provides BaTiO3, SrTiO3, C
Among the main components of aTiO3 and PbTiO3, at least Ba
TiO3, SrTiO3, and PbTiO3 are: (1) BaTiO3: A skeletal secondary particle having open pores in which primary particles of 0.2 μm or less are connected to each other, and the size thereof is an average particle size of 150 to 250〃m, and 50 μm. BaTiO3 powder containing 5 wt% or less of the following secondary particles: ■SrTiO3: 0. SrTiO3 powder, which is a skeletal secondary particle having open pores in which primary particles of lum or less are connected to each other, has an average particle size of 70 to 180 μm, and has a BET specific surface area of 20 to 30 m2/g;
(3) PbTiO3: Primary particles of 0.2 μm or less are skeletal secondary particles having open pores that are tightly connected to each other, and the average size is 50 to 150 μm, and the skeletal secondary particles of 20 μm or less are 5wt. % or less PbTiO3 powder,
It consists of powders represented by the above ■, ■, or (1), (2), and (3), the main component of which is BaTi. :45-85 mol%,
SrTiO3: 1 to 20 mol%, aTi03
: 5 to 20 mol%, PbTiO3: 1 to 20 mol%
and Y, La,
At least I of rare earth elements such as Ce, Nb, and Sb
II is 0.05 to 0.14 mol% as an oxide, CuO: 0.005 to 0.03 mol%, Mn:
0.005-0.03 mol%, SiO□: 0.5-20
A raw material powder for a barium titanate-based semiconductor ceramic composition characterized by having a composition range of mol %, and a barium titanate-based semiconductor ceramic composition obtained by sintering the above powder, further having a specific resistance value of 10 (Ω cm ) or less, the temperature coefficient of resistance is 9 (
The present invention provides a barium titanate thermistor having a dielectric strength of 50 (V/m) or more and a voltage resistance of 50 (V/m) or more.

本発明の原料粉末は、シュウ酸塩を仮焼したものであり
、そのために本発明特有の効果が生しるわけであるが、
最初にまずそれらの各種シュウ酸塩の製造方法について
述べることにする。
The raw material powder of the present invention is obtained by calcining oxalate, and as a result, the unique effects of the present invention are produced.
First, methods for producing these various oxalates will be described.

これらの方法において重要な事項は、できるだけ純度の
高いシュウ酸塩を得ること、シュウ酸塩中のBa、Sr
、Pb、CaとTiのモル比ができるだけlに近くかつ
各結晶間のばらつきの無いものを得ることである。その
ため純度については原料となるシュウ酸、四塩化チタン
やBa 、 Sr 、 Pb 、 Caの塩ができるだ
け高純度であることは勿論、反応容器からの混入をさけ
るため反応容器はテフロン等の耐酸性のプラスチック容
器が好ましり、!!に終的に得られたシュウ酸塩はアル
カリ土類を除いた他の金属不純物濃度は数ppm以下、
トータルで1100pp以下が好ましい。またモル比に
ついては結晶形状や粒子径が均一で、できるだけ大きい
ものを得る必要があるが、それらは以下のような製造法
をとることによりうまく製造できることがわかった。
The important points in these methods are to obtain oxalate as highly pure as possible, and to reduce Ba and Sr in oxalate.
, Pb, Ca and Ti are as close to 1 as possible in molar ratio and there is no variation between crystals. Therefore, in terms of purity, the raw materials such as oxalic acid, titanium tetrachloride, and salts of Ba, Sr, Pb, and Ca must be as pure as possible, and in order to avoid contamination from the reaction container, the reaction container should be made of acid-resistant material such as Teflon. I prefer plastic containers! ! The oxalate finally obtained has a concentration of metal impurities other than alkaline earth metals of several ppm or less.
The total amount is preferably 1100 pp or less. Regarding the molar ratio, it is necessary to obtain particles with uniform crystal shape and particle size and as large as possible, and it has been found that these can be successfully produced by using the following production method.

初めにンユウ酸チタン酸バリウムの製造について述べる
と、反応はソユウ酸を熔解した水溶液に対し、四塩化チ
タンと塩化バリウムを熔解した溶液を添加することによ
り行うわけであるが、設定濃度としては主成するシュウ
酸チタン酸バリウム4水塩の濃度が10〜12−t%の
範囲内に入るように設定すればよい。従って、両液の水
バランスは設定濃度の範囲内であればどのような濃度で
もよいが、四塩化チタンと塩化バリウムの溶液で塩化バ
リウムが析出しないよう溶液中の塩化バリウムの濃度は
10−t%以下にする必要がある。
First, to explain the production of barium titanate, the reaction is carried out by adding a solution of titanium tetrachloride and barium chloride to an aqueous solution of soylic acid. The concentration of barium oxalate titanate tetrahydrate may be set within the range of 10 to 12-t%. Therefore, the water balance between both solutions can be any concentration as long as it is within the set concentration range, but the concentration of barium chloride in the solution should be 10-t to prevent barium chloride from precipitating in a solution of titanium tetrachloride and barium chloride. % or less.

Ba=’Ti(モル比)はBaが若干多回の1.02〜
1.054こ設定する必要がある。Ba、、’Ti(モ
ル比)が102より小さい場合は主成するシュウ酸塩の
Ba/Ti(モル比)が0998より小さい値となり好
ましくなく、一方Ba/Ti (モル比)が1.05よ
り大きい場合は、主成するシュウ酸塩のBa/T璽モル
比)は1,0付近で大きく変化しないが未反応のBaが
多くなるため経済的でない。シュウ#/Ti(モル比)
のモル比は、収量および経済性の点から2.1〜2.3
の範囲に設定するのが好ましい、また、他の塩の析出を
抑えしかも経済的な濃度、および結晶の形状等からみて
、濃度が10〜12wt%の範囲が好ましい。
Ba = 'Ti (molar ratio) is 1.02 ~ with slightly more Ba
It is necessary to set 1.054. If Ba,,'Ti (molar ratio) is less than 102, the Ba/Ti (molar ratio) of the main oxalate will be less than 0998, which is undesirable, whereas Ba/Ti (molar ratio) is 1.05. If it is larger, the Ba/T molar ratio of the main oxalate salt does not change significantly around 1.0, but unreacted Ba increases, which is not economical. Shu #/Ti (molar ratio)
From the viewpoint of yield and economic efficiency, the molar ratio of
It is preferable to set the concentration in the range of 10 to 12 wt % from the viewpoint of suppressing precipitation of other salts, economical concentration, crystal shape, etc.

さらに主成するシュウ酸チタン酸バリウム4水塩の結晶
の大きさ、形状、粒度分布に大きな影響を与えるのは添
加条件、攪拌状態、温度条件であり、添加はなるべく広
い範囲にシャワー状で添加するのがよく、添加時に十分
分散しないと微細な結晶が析出し、また4時間以上かけ
てゆっくり、少量づつ添加しないと同様の現象がおこり
、最終製品の物性が劣化する原因となる。攪拌状態につ
いても同様であり、容器のスケールや形状において若干
異なるが、少なくとも攪拌周速2.5m/secで行う
必要がある。
Furthermore, the addition conditions, stirring conditions, and temperature conditions have a major influence on the crystal size, shape, and particle size distribution of the main constituent barium oxalate titanate tetrahydrate, and the addition is done in a shower over as wide a range as possible. If it is not sufficiently dispersed during addition, fine crystals will precipitate, and if it is not added slowly and in small amounts over 4 hours or more, a similar phenomenon will occur, causing deterioration of the physical properties of the final product. The same applies to the stirring state, and although it differs slightly depending on the scale and shape of the container, it is necessary to perform stirring at a circumferential speed of at least 2.5 m/sec.

次に温度条件であるが、晶析温度およびその温度の変動
は晶析に大きな影響を及ぼし微結晶の析出の大きな原因
となるので、55〜75°Cの温度範囲で一定温度に保
つ必要があり、55°Cより低い温度では結晶性の悪い
結晶が主成し、Ba/Ti(モル比)が0.998より
小さい値となり、一方75°Cより高い場合は晶出した
結晶が不安定で結晶中から6aが抜けやすく濾過までの
時間が長くなった場合、Ba/Ti(モル比)が0.9
98より低くなるため好ましくない。
Next, regarding temperature conditions, the crystallization temperature and temperature fluctuations have a great effect on crystallization and are a major cause of precipitation of microcrystals, so it is necessary to maintain a constant temperature within the temperature range of 55 to 75°C. At temperatures lower than 55°C, poorly crystalline crystals mainly form, and the Ba/Ti (molar ratio) becomes less than 0.998, while at temperatures higher than 75°C, the crystals formed are unstable. If 6a is easily removed from the crystal and the time until filtration is long, Ba/Ti (molar ratio) is 0.9.
It is not preferable because it becomes lower than 98.

このようにして析出したシュウ酸チクン酸バリウムの結
晶は、Ba/Ti (モル比)が0.998〜1.05
4の範囲内で、結晶内部も化学量論的に均一であり、結
晶粒径は平均100μm以上で揃っており、小さな結晶
の少ないものとなる。
The crystals of barium oxalate ticunate thus precipitated have a Ba/Ti (molar ratio) of 0.998 to 1.05.
Within the range of 4, the inside of the crystal is also stoichiometrically uniform, the crystal grain size is uniform with an average of 100 μm or more, and there are few small crystals.

次に7ユウ酸チタン酸ストロンチウムの製造法であるが
、ノユウ酸チタン酸バリウムに比較してSr/丁1(モ
ル比)が1より小さい値になり易いため仕込みのSr、
/Ti(モル比〕を12以上に設定する必要がある。設
定Sr/Ti (モル比)が1.2より小さいと、主成
シュウ酸塩のSr/Ti(モル比)が0998より小さ
い値となり好ましくないが、余り大きすぎても経済的で
なく、普通は1.2〜13の範囲で設定する。シュウ酸
/Ti(モル比)のモル比は、収量および経済性の点か
ら2.1〜2.3の範囲に設定するのが好ましい。また
、他の塩の析出を抑えしかも経済的な濃度、および結晶
の形状等からみて、濃度は10〜14iut%の範囲が
好ましい。
Next is the method for producing strontium titanate 7-oxalate. Compared to barium titanate oxalate, Sr/1 (molar ratio) tends to be less than 1, so the Sr used in the preparation,
/Ti (molar ratio) must be set to 12 or more.If the setting Sr/Ti (molar ratio) is smaller than 1.2, the Sr/Ti (molar ratio) of the main oxalate is smaller than 0998. This is not preferable, but it is also uneconomical if it is too large, so it is usually set in the range of 1.2 to 13. The molar ratio of oxalic acid/Ti (molar ratio) is set to 2. The concentration is preferably set in the range of 1 to 2.3%.The concentration is preferably set in the range of 10 to 14 iut% from the viewpoint of suppressing precipitation of other salts, economical concentration, and crystal shape.

さらに主成するシュウ酸チタン酸ストロンチウム5水塩
の結晶の大きさ、形状、粒度分布に大きな影響を与える
のは添加条件、攪拌状態、温度条件であり、添加はなる
べく広い範囲にシャワー状で添加するのがよく、添加時
に十分攪拌分散させないと微細な結晶が析出し、また2
時間以上かけてゆっくり、少量づつ添加しないと同様の
現象力おこり、結晶のSr/T i (モル比)が09
98より小さくなり好ましくない。撹拌条件についても
同様であり、容器のスケールや形状において若干異なる
が、少なくとも攪拌周速3.0m/seeで行う必要が
ある。
Furthermore, the addition conditions, stirring conditions, and temperature conditions have a major influence on the crystal size, shape, and particle size distribution of the main constituent, strontium oxalate titanate pentahydrate, and the addition is done in a shower over as wide a range as possible. If the addition is not sufficiently stirred and dispersed, fine crystals will precipitate, and
If it is not added slowly and in small amounts over a period of time, a similar phenomenon will occur, and the Sr/Ti (molar ratio) of the crystal will be 0.9
It is less than 98, which is not preferable. The stirring conditions are also similar, and although they differ slightly depending on the scale and shape of the container, it is necessary to perform stirring at a peripheral speed of at least 3.0 m/see.

次に温度条件であるが、晶析温度およびその温度の変動
は晶析に大きな影響を及ぼし微結晶の析出の大きな原因
となるので、60〜80°Cとシュウ酸チタン酸バリウ
ムに比較してより高い温度範囲で一定温度に保つ必要が
あり、シュウ酸チタン酸バリウムと同様の理由で、上記
範囲より高い場合も低い場合もSr/Ti (モル比)
が0.998より小さい値となり好ましくない。
Next, regarding temperature conditions, the crystallization temperature and temperature fluctuations have a large effect on crystallization and are a major cause of precipitation of microcrystals, so compared to barium titanate oxalate, the temperature is 60 to 80°C. It is necessary to maintain a constant temperature in a higher temperature range, and for the same reason as barium oxalate titanate, Sr/Ti (molar ratio)
is less than 0.998, which is not preferable.

このようにして析出したンユウ酸チタン酸ストロンチウ
ムの結晶も、Sr/Ti(モル比)が0.998〜1 
、002の範囲内で、結晶内部も化学量論的に均一であ
り、結晶粒径は平均70μm以上で揃っており小さな結
晶の少ないものとなる。
The crystals of strontium titanate oxalate thus precipitated also have a Sr/Ti (molar ratio) of 0.998 to 1.
, 002, the inside of the crystal is also stoichiometrically uniform, the crystal grain size is uniform with an average of 70 μm or more, and there are few small crystals.

シュウ酸チタン酸ストロンチウムの場合は、反応温度の
60〜80°Cでは収率が約80−t%と低いため反応
後に冷却することにより収率を90i%以上に上げるこ
とができる。しかし、冷却速度によりその後析出するシ
ュウ酸塩のSr/T+(モル比)が変わってくるためそ
の冷却速度は5°C/hr〜30°Cz’hrの範囲内
で行う必要がある。
In the case of strontium titanate oxalate, the yield is as low as about 80-t% at the reaction temperature of 60-80°C, so the yield can be increased to 90i% or more by cooling after the reaction. However, since the Sr/T+ (molar ratio) of the oxalate that is subsequently precipitated changes depending on the cooling rate, the cooling rate must be within the range of 5°C/hr to 30°Cz'hr.

更に、ノユウ酸チタン酸鉛の製造法であるが、この場合
四塩化チタンを使用すると鉛の塩を溶解させた場合、塩
化鉛の沈殿を主成するため、シュウ酸チタン酸バリウム
の場合のような方法は使えず、四塩化チタンを一旦アン
モニアにより中和して水酸化チタンのゲルを主成させ、
十分濾過洗浄を行った後ンユウ酸に溶解すれば溶液状と
なるので、この溶液を使用することができる。シュウ酸
チタン酸鉛の場合、条件によってPb/Ti (モル比
)が変動するので種々の条件を一定にする必要があるが
、完全な溶液とするためおよび後のシュウ酸塩主成時の
収率等を考え、かっモル比が1に近い条件では、シュウ
#/Ti(モル比)は2.1〜23、Tj02 : 4
 ivt%以下とする必要がある。トータルの水バラン
スから考えると、主成するシュウ酸チタン酸鉛の濃度が
10〜18社%になるように設定すればよくその範囲内
になるよう、Tiがシュウ酸に熔解した溶液と硝酸鉛の
濃度を設定すればよい。
Furthermore, regarding the manufacturing method of lead titanate oxalate, if titanium tetrachloride is used in this case, lead chloride precipitates will mainly form when the lead salt is dissolved. However, titanium tetrachloride was first neutralized with ammonia to form a gel mainly composed of titanium hydroxide.
After thorough filtration and washing, it becomes a solution by dissolving it in oxalic acid, and this solution can be used. In the case of lead oxalate titanate, the Pb/Ti (molar ratio) varies depending on the conditions, so it is necessary to keep various conditions constant. Considering the ratio, etc., under conditions where the molar ratio is close to 1, Shu#/Ti (molar ratio) is 2.1 to 23, Tj02: 4
It is necessary to keep it below ivt%. Considering the total water balance, it is best to set the concentration of lead oxalate titanate, which is the main component, to 10 to 18%. All you have to do is set the concentration of

また、ンユウ酸チタン酸鉛の濃度が10〜18−t%に
設定した場合、粒径が大きくかつ均一な結晶を得ること
ができる。
Moreover, when the concentration of lead titanate oxalate is set to 10 to 18-t%, it is possible to obtain uniform crystals with a large particle size.

Pb/Ti (モル比)が1に近いシュウ酸塩を得るた
めには、設定Pb/Ti (モル比)は101〜103
にする必要があり、設定Pb/Ti<モル比)が1,0
1より低いとソユウ酸塩のPb/Ti(モル比)が0.
99以下と下がり、−力設定Pb/Ti(モル比)が1
.03より大きい場合は、反対にシュウ酸塩のモル比が
1.01と大きすぎる値となる。設定シュウ酸/Ti(
モル比)L二ついても同様である。反応時の液温につい
ては、45〜55°Cの範囲で行う必要があり、この範
囲外ではいずれもモル比が099より低くなり好ましく
ない。
In order to obtain oxalate with a Pb/Ti (molar ratio) close to 1, the set Pb/Ti (molar ratio) should be 101 to 103.
It is necessary to set Pb/Ti<molar ratio) to 1.0.
If it is lower than 1, the Pb/Ti (molar ratio) of the soylic acid salt is 0.
99 or less, -force setting Pb/Ti (molar ratio) is 1
.. If it is larger than 03, on the other hand, the molar ratio of oxalate becomes 1.01, which is too large. Setting oxalic acid/Ti(
Molar ratio) The same applies even if there are two L. Regarding the liquid temperature during the reaction, it is necessary to carry out the reaction in the range of 45 to 55°C, and anything outside this range is not preferable as the molar ratio becomes lower than 099.

シュウ酸チタン酸鉛を得る場合も、液中の拡散状態は結
晶状態に大きな影響を及ぼし、なるべく均一かつ早い拡
散が起こるよう、添加はノヤヮー状態で行い、撹拌周速
は2.0i/sec以上で行う必要がある。
When obtaining lead oxalate titanate, the diffusion state in the liquid has a great influence on the crystalline state, so to ensure as uniform and fast diffusion as possible, the addition should be carried out in a noisy state, and the peripheral stirring speed should be at least 2.0 i/sec. It is necessary to do so.

このようにして析出したンユウ酸チタン酸鉛の結晶も、
Pb/Ti(モル比)が0.998〜1002の範囲内
で、結晶内部も化学量論的に均一であり、結晶粒径は平
均50μ■以上で揃っており、小さな結晶の少ないもの
となる。
The lead titanate crystals precipitated in this way also
When the Pb/Ti (mole ratio) is within the range of 0.998 to 1002, the inside of the crystal is stoichiometrically uniform, and the crystal grain size is uniform with an average of 50μ■ or more, and there are few small crystals. .

本発明の粉末組成物の一つであるチタン酸カルシウムに
ついても、チタン酸ストロンチウム等を製造するのと同
様に、Ca/Ti (モル比) 、CaCl2の濃度、
シュウ酸/Ti(モル比)、主成するシュウ酸塩の濃度
、液の温度、添加の方法、攪拌の条件等を設定すること
により、Ca/Ti(モル比)が1に近く結晶粒径が同
様に大きく整ったシュウ酸チタン酸カルシウムを得るこ
とができる。
Regarding calcium titanate, which is one of the powder compositions of the present invention, the concentration of Ca/Ti (molar ratio), CaCl2,
By setting the oxalic acid/Ti (molar ratio), the concentration of the main oxalate salt, the temperature of the liquid, the method of addition, the stirring conditions, etc., the crystal grain size can be adjusted so that the Ca/Ti (molar ratio) is close to 1. Similarly, calcium oxalate titanate with a large degree of uniformity can be obtained.

前述の方法により得られたそれぞれのシュウ酸塩は、有
機酸のプロトンが金属または金属酸化物で置き換えられ
た形になっており、これを十分酸素の存在する雰囲気中
、普通の焼結を行う温度よりは若干低い温度で仮焼成す
ることにより有機物が酸化分解し、BaTi0+、Sr
TiO3、PbTiO3、CaTiO3のような形の酸
化物となる。
Each oxalate obtained by the above method is in a form in which the protons of the organic acid are replaced by metals or metal oxides, and this is subjected to ordinary sintering in an atmosphere containing sufficient oxygen. By pre-calcining at a temperature slightly lower than the
This forms oxides such as TiO3, PbTiO3, and CaTiO3.

この際の分解前の有機物の結晶状態が焼成後の酸化物の
粒径、粒度分布、モル比等の物性に大きな影響を与え、
さらに上記物性が最絆的な焼結体の電気的性質にも大き
く影響するが、本発明で得られたンユウ酸塩の仮焼体は
、02μm程度以下の均一・で微細な粒子が軽く焼結し
てお互いに結合力を持ち、分解前のシュウ酸塩の形を保
持したいわゆる形骸粒子の構造をとっておりしかもその
粒子は原子分布の片寄りがなく均一に分布しておりこの
ような仮焼体を使用して後述する混合、焼成工程により
焼結体を得ることにより焼結体自体も均一な組織を持ち
、低比抵抗で抵抗温度係数が高くかつ耐電圧の高い磁器
となる。
At this time, the crystalline state of the organic matter before decomposition has a great influence on the physical properties such as particle size, particle size distribution, and molar ratio of the oxide after firing.
Furthermore, although the above-mentioned physical properties greatly affect the electrical properties of the most bonded sintered body, the calcined body of the sulfurate obtained in the present invention has uniform and fine particles of about 0.2 μm or less and is lightly sintered. They have a bonding force with each other and have a so-called skeleton particle structure that retains the shape of oxalate before decomposition.Moreover, the particles have a uniform distribution with no uneven atomic distribution. By using a calcined body and obtaining a sintered body through the mixing and firing steps described below, the sintered body itself has a uniform structure, and becomes a porcelain having a low specific resistance, a high temperature coefficient of resistance, and a high withstand voltage.

まずシュウ酸チタン酸バリウム、シュウ酸チタン酸スト
ロンチウム、ンユウ酸チタン酸カルシウムの仮焼成につ
いて具体的に述べると、得られたそれぞれのシュウ酸塩
は、結晶水が飛散しない程度の温度で乾燥されており含
水塩となっているが、これを有機物が炭化せずかつ粒子
が適当な大きさに留まる程度の温度で焼成する。従って
焼成時の炉内は酸素が十分供給される雰囲気中で行う必
要があるが、有機酸塩は急激な分解燃焼を起こす場合が
あるので余り過剰な酸素は必要でなく、適度な酸素雰囲
気で行うことが好ましい。仮焼成温度は700〜900
°Cが好ましく 、7.00°Cより低い場合は十分に
酸化分解が進行せず、炭素等が残留するため好ましくな
く。一方900 ’Cより高い場合、不均一な粒成長が
起きやすく、局所的な異常粒成長が認められる場合が多
く好ましくない。
First, to specifically describe the pre-calcination of barium oxalate titanate, strontium oxalate titanate, and calcium titanate oxalate, each of the obtained oxalates is dried at a temperature that does not allow crystal water to scatter. The resulting hydrated salt is calcined at a temperature that does not carbonize the organic matter and keeps the particles at an appropriate size. Therefore, it is necessary to carry out firing in an atmosphere that is sufficiently supplied with oxygen in the furnace, but since organic acid salts may cause rapid decomposition and combustion, excessive oxygen is not necessary, and a moderate oxygen atmosphere is necessary. It is preferable to do so. Preliminary firing temperature is 700-900
°C is preferred; if it is lower than 7.00 °C, oxidative decomposition will not proceed sufficiently and carbon etc. will remain, which is not preferred. On the other hand, if the temperature is higher than 900'C, non-uniform grain growth tends to occur, and local abnormal grain growth is often observed, which is not preferable.

このようにして得たシュウ酸塩の仮焼体は、チタン酸バ
リウム、チタン酸カルシウムについては0.2μm以下
の一次粒子が互に繋がった開気孔を有する形骸二次粒子
で、その大きさが平均粒径150〜250μmであり、
50μm以下の形骸二次粒子が5wt%以下、BET比
表面積が6〜10rr+/gの整った二次粒子径を有す
る仮焼体となる。
For barium titanate and calcium titanate, the calcined body of oxalate obtained in this way is a skeletal secondary particle having open pores in which primary particles of 0.2 μm or less are connected to each other, and the size of the calcined body is The average particle size is 150 to 250 μm,
The calcined body has a uniform secondary particle size with a BET specific surface area of 6 to 10 rr+/g and 5 wt % or less of skeletal secondary particles of 50 μm or less.

またチタン酸ストロンチウム仮焼体については、01μ
m以下の一次粒子が互に繋がった開気孔を有する形骸二
次粒子でその大きさが平均70〜180μmであるが、
この場合シュウ酸塩の製造方法により主成した仮焼体の
BET比表面積が大きく変化し、焼結磁器が優れた特性
を示す粉末はBET比表面積が20〜30rnL’gの
範囲内である。
In addition, for calcined strontium titanate bodies, 01μ
A skeletal secondary particle having open pores in which primary particles of less than m are connected to each other, and the average size is 70 to 180 μm,
In this case, the BET specific surface area of the primarily calcined body changes greatly depending on the oxalate production method, and the BET specific surface area of the powder exhibiting excellent characteristics of sintered porcelain is within the range of 20 to 30 rnL'g.

シュウ酸チタン酸鉛の場合、上記したシュウ酸塩に比べ
酸化分解の温度が低く、粒成長しやすいため仮焼成は6
00〜800°Cが好ましく、600”Cより低い温度
では同様に十分番二酸化分解が進行せず、炭素等が残留
するため好ましくなく。一方800°Cより高い場合、
不均一な粒成長が起きやすく、局所的な異常粒成長が認
められる場合が多く好ましくない、このようにして得た
シュウ酸チタン酸鉛の仮焼体も、0.2a m以下の一
次粒子が互に緊がった開気孔を有する形骸二次粒子で、
その大きさが平均50〜150μmであり、20μm以
下の形骸二次粒子が5wt%以下、BET比表面積が6
〜10r+(7gの整った二次粒子径を有する仮焼体と
なる。
In the case of lead oxalate titanate, the oxidative decomposition temperature is lower than the above-mentioned oxalates, and grain growth is easy, so the pre-calcination is 6
00 to 800°C is preferable, and temperatures lower than 600"C are not preferable because the decomposition of carbon dioxide does not proceed and carbon etc. remain. On the other hand, if the temperature is higher than 800"C,
The calcined body of lead oxalate titanate obtained in this way, which is undesirable because uneven grain growth tends to occur and local abnormal grain growth is often observed, also has primary particles of 0.2 am or less. A skeletal secondary particle with mutually tight open pores,
The average size is 50 to 150 μm, the proportion of secondary particles of 20 μm or less is 5 wt% or less, and the BET specific surface area is 6.
It becomes a calcined body having a uniform secondary particle size of ~10r+(7g).

以上のような方法で得られたシュウ酸塩仮焼体を原料と
して、後述する方法により混合、焼成を行うわけである
が、この場合色ずしもすべてシュウ酸塩の仮焼体を使用
する必要はなく、少なくともBaTiO3、SrTiO
3についてシュウ酸塩の仮焼体を使用すればい。
The oxalate calcined body obtained by the above method is used as a raw material, and is mixed and fired by the method described later. In this case, all color sushi is also made from oxalate calcined body. Not necessary, at least BaTiO3, SrTiO
Regarding 3, use a calcined body of oxalate.

この場合他のPbTiO3、CaTiO3は所謂普通の
固相法により製造したものを使用してもよく、普通はそ
れぞれの原料粉末、例えばPbTiO3の場合はPbO
とTtO7を混合、焼成、粉砕することにより製造した
PbTiO3&li成の粉末と、PbTi0aと同様の
方法で製造したCaTi0a Mi成の粉末をシュウ酸
塩仮焼体と混合して使用することになる。
In this case, the other PbTiO3 and CaTiO3 may be those produced by the so-called ordinary solid phase method, and usually each raw material powder, for example, in the case of PbTiO3, PbO
PbTiO3&li powder produced by mixing, firing, and pulverizing PbTiO3 and TtO7, and CaTiOa Mi powder produced in the same manner as PbTiOa are used by mixing with the oxalate calcined body.

しかし、均一な紡織の焼結体を得るためには、固相法で
製造した粉末がンユウ酸塩仮焼体と平均粒径、不純物濃
度とも近催している必要があり、平均粒径は2μm以下
、アルカリ土類金属を除いた他の金属不純物は1100
pp以下である必要がある。
However, in order to obtain a sintered body with a uniform texture, it is necessary that the powder produced by the solid phase method has a similar average particle size and impurity concentration to the sulfate calcined body, and the average particle size is 2 μm. Below, other metal impurities excluding alkaline earth metals are 1100
It needs to be less than pp.

次に本発明の組成について説明すると、本発明は上記主
成分としてのBaTiO3、SrTiO3 、CaTi
03PbTi03がBaTiO3: 45〜85モル%
、SrTiO3  :1〜20モル%、 CaTiO3
: 5〜20モル%、 PbTi0a:1〜20モル%
からなり、これに対して半導体化剤としてY、La、C
eなどの希土類元素、Nb、Sbのうち少なくとも1種
が酸化物として0.05〜0.14モル%、さらにCu
O:0.005〜0.03モル%、Mn : 0.00
5〜003モル%、5i02 : 0.5〜20モル%
が添加されている組成である。
Next, the composition of the present invention will be explained. The present invention includes BaTiO3, SrTiO3, CaTiO3, and
03PbTi03 is BaTiO3: 45-85 mol%
, SrTiO3: 1 to 20 mol%, CaTiO3
: 5 to 20 mol%, PbTi0a: 1 to 20 mol%
On the other hand, Y, La, and C are used as semiconducting agents.
At least one of rare earth elements such as e, Nb, and Sb is 0.05 to 0.14 mol% as an oxide, and Cu
O: 0.005 to 0.03 mol%, Mn: 0.00
5-003 mol%, 5i02: 0.5-20 mol%
This is a composition in which is added.

本発明の主成分のBaTiO3−SrTiO3−CaT
i03、PbTiO3の4成分系の磁器は、チタン酸バ
リウムのBaの一部をCa、Sr、Pbで同時に置換し
たものである。Pb、Srは単独ではキュリー点をそれ
ぞれ高温側、低温側へ移行させるものであり、これらに
CaSr 、 Pbを共存状態で主成分に含有させ、さ
らに訃および5i02を加えることにより、耐電圧値が
高くなり、また突入大を流への耐久性が向上することが
知られているが、本発明のような組成において比抵抗が
非常に低く他の特性にもひれだものは得られていない。
BaTiO3-SrTiO3-CaT, the main component of the present invention
The four-component ceramic of i03 and PbTiO3 is obtained by replacing part of Ba in barium titanate with Ca, Sr, and Pb at the same time. When used alone, Pb and Sr shift the Curie point to the high temperature side and low temperature side, respectively, but by containing CaSr and Pb as the main components in a coexisting state and further adding CaSr and 5i02, the withstand voltage value increases. Although it is known that the resistance to high currents and large inrush currents is improved, the composition of the present invention has a very low specific resistance and no other properties have been achieved.

本発明の主成分は、BaTiO3: 45〜85モル%
、SrTiO3  :  1〜20モル%、 CaTi
O3:  5〜20モル%、PbTiO3: 1〜20
モル%よりなるが、上記範囲に主成分を限定したのは以
下の理由によるためである。
The main component of the present invention is BaTiO3: 45 to 85 mol%
, SrTiO3: 1 to 20 mol%, CaTi
O3: 5-20 mol%, PbTiO3: 1-20
The main components are limited to the above range for the following reasons.

まず、BaTiO3が45モル%未満の場合、半導体化
が困難になり、比抵抗も高くなる。一方、85モル%を
越えると、電気的特性が劣化するため好ましくない。
First, if BaTiO3 is less than 45 mol%, it becomes difficult to make it into a semiconductor and the specific resistance becomes high. On the other hand, if it exceeds 85 mol %, electrical characteristics deteriorate, which is not preferable.

5rTilI13が1モル%未満では、焼結体の粒子が
粗大となってしまい、電気的特性改善の効果が現れず、
20モル%を越えると、部分的粒成長が起こり電気的特
性が劣化してしまう。
If 5rTilI13 is less than 1 mol%, the particles of the sintered body will become coarse, and the effect of improving electrical characteristics will not appear.
If it exceeds 20 mol %, partial grain growth occurs and electrical characteristics deteriorate.

CaTiO3が5モル%未満では、その耐電圧特性等が
優れず、20モル%を越えた場合、上記耐電圧特性が劣
化してしまう。
If CaTiO3 is less than 5 mol%, the withstand voltage characteristics are not excellent, and if it exceeds 20 mol%, the voltage withstand characteristics are deteriorated.

PbTiO3については、1モル%未満では電気的特性
が満足できるものではなく、20モル%を越えた場合、
焼成時にpbが飛散するため焼結しにくくまた半導体化
が困難になる。
Regarding PbTiO3, if it is less than 1 mol%, the electrical properties are not satisfactory, and if it exceeds 20 mol%,
During firing, PB scatters, making it difficult to sinter and make it difficult to convert into a semiconductor.

なお、このとき主成分のBa、Sr、Ca、Pbの合計
とTiのモル比については、099〜1.03の範囲内
で調整すれば、製造された磁器の物性に殆ど影響をおよ
ぼさないものが製造できる。
At this time, if the molar ratio of the sum of the main components Ba, Sr, Ca, and Pb and Ti is adjusted within the range of 099 to 1.03, it will hardly affect the physical properties of the manufactured porcelain. We can manufacture things that don't already exist.

チタン酸バリウム系半導体磁器を製造するためには、半
導体化剤を微量含有させる必要があり、半導体化剤とし
てY 、 La 、 Ceなどの希土類元素、Nb。
In order to manufacture barium titanate-based semiconductor ceramics, it is necessary to contain a small amount of a semiconductor agent, and the semiconductor agent includes rare earth elements such as Y, La, and Ce, and Nb.

sbのうち少なくとも1種を、酸化物として0.05〜
0、14モル%添加、含有させればよい。
At least one of sb as an oxide is 0.05~
It may be added or contained in an amount of 0.14 mol%.

添加量が0.05モル%より少ない場合は、半導体化が
うまくいかず、0.14  モル%より多い場合も逆に
比抵抗は高くなり好ましくない、添加の際は、シュウ酸
塩か酸化物の形で添加するのが好ましい。
If the amount added is less than 0.05 mol%, semiconductor formation will not be successful, and if it is more than 0.14 mol%, the resistivity will increase, which is not preferable. It is preferable to add it in the form of

さらに、上記組成にCuO,Mn、SiO□の3成分を
同時に添加することにより、耐電圧、抵抗温度特性をさ
らに改善させることができる。
Furthermore, by simultaneously adding the three components CuO, Mn, and SiO□ to the above composition, the withstand voltage and resistance temperature characteristics can be further improved.

第1図は、主要4成分がそれぞれBaTiO3: 65
モル%、SrTiO3: 11モル%、CaTiO3:
 15モル%、PbTiO3: 9モル%の場合の添加
剤で、半導体化剤、SiO3以外の成分、すなわちMn
単独、CuO単独、MnとCuDを同時に添加した場合
の比抵抗と抵抗温度係数および比抵抗と耐電圧の関係を
比較した図であるが、Mn単独では抵抗温度係数の値が
他の系に比べ低く、一方CuO単独の系では耐電圧が他
の系に比べ低いのに対し、MnとCuOを同時に添加し
た系では、耐電圧と抵抗温度係数の両特性とも高い値を
示し、いわゆる相乗効果が認められるものである。
Figure 1 shows that the four main components are BaTiO3: 65
Mol%, SrTiO3: 11 mol%, CaTiO3:
15 mol%, PbTiO3: Additive for 9 mol%, semiconducting agent, components other than SiO3, that is, Mn
This is a diagram comparing the relationship between resistivity, temperature coefficient of resistance, and resistivity and withstand voltage when CuO is added alone, when CuO is added alone, and when Mn and CuD are added at the same time. On the other hand, in the system containing CuO alone, the withstand voltage is lower than other systems, whereas in the system in which Mn and CuO are added simultaneously, both the withstand voltage and resistance temperature coefficient are high, and the so-called synergistic effect is observed. It is acceptable.

このように、本発明においては、微量のCuO,Mn、
5102の添加で大きな特性の向上が図られているが、
これもシュウ酸塩仮焼体を主原料として用いたため、添
加量が非常に均一に分散し、上記効果を奏するものと考
えられる。
In this way, in the present invention, trace amounts of CuO, Mn,
Although the addition of 5102 significantly improves the properties,
Since this also used an oxalate calcined body as the main raw material, the amount added was very uniformly dispersed, and it is thought that the above effects were achieved.

この場合、CuOの添加量は、CuO:0.005〜0
.03モル%で、これらの割合で磁器中に含ませる。
In this case, the amount of CuO added is CuO: 0.005 to 0
.. 0.3 mol %, and these proportions are included in the porcelain.

CuOを添加することにより、キュリー点を越えた正の
抵抗温度特性において、その抵抗温度変化率を著しく増
大させることができる。
By adding CuO, the rate of change in resistance temperature can be significantly increased in the positive resistance temperature characteristic exceeding the Curie point.

上記特性を表わすパラメーターとして、α値があるが、
CuOが0.005モル%より少ない場合、α値が小さ
くなり、耐圧特性が劣化する。一方、CuOが0.03
モル%より多い場合は、α値は上がるが耐電圧が低くな
るので好ましくない。CuOは酸化物、硫化物、シュウ
酸塩の形で添加すればよい。
The α value is a parameter that represents the above characteristics.
When CuO is less than 0.005 mol %, the α value becomes small and the breakdown voltage characteristics deteriorate. On the other hand, CuO is 0.03
If it is more than mol%, the α value increases but the withstand voltage decreases, which is not preferable. CuO may be added in the form of oxide, sulfide, or oxalate.

次に、Mnの添加量は0.005〜003モル%の範囲
内で磁器中に含有せしめるのが好ましい。
Next, it is preferable that the amount of Mn added is within the range of 0.005 to 003 mol % in the ceramic.

Mnはα値を向上させると同時に耐電圧の向上に著しい
効果があり、計が0.005モル%より少ない場合、耐
電圧特性が劣化するため好ましくなく、一方Mnが0,
03モル%以上の場合は、耐電圧は上がるが比抵抗が高
くなりすぎるため好ましくない。
Mn has a remarkable effect of improving the α value and at the same time improving the withstand voltage.If the total amount is less than 0.005 mol%, the withstand voltage characteristics deteriorate, which is not preferable;
If it is more than 0.03 mol %, the withstand voltage will increase, but the specific resistance will become too high, which is not preferable.

Mnの添加は、シュウ酸塩か酸化物の形で添加すればよ
い。
Mn may be added in the form of oxalate or oxide.

次に5i02の添加であるが、その量としては、5i0
2 : 0.5〜2.0モル%の範囲が好ましい。
Next is the addition of 5i02, the amount of which is 5i0
2: preferably in the range of 0.5 to 2.0 mol%.

5iO7の添加により、半導体札割の添加のわずかな変
動によって生しる比抵抗の変化を抑制し、常温乙こおい
て低い比抵抗値にしようとするものであり、5i02が
05モル%より少ない場合、粒成長しやすく、耐電圧特
性が劣化し、α値が小さくなり、一方SiO□が2.0
モル%より多い場合、比抵抗が高くなり好ましくない。
By adding 5iO7, the change in resistivity caused by slight fluctuations in the addition of semiconductor components is suppressed, and the resistivity value is lowered at room temperature.5i02 is less than 05 mol%. When SiO□ is 2.0
If it is more than mol%, the specific resistance becomes high, which is not preferable.

5102の添加は、なるべく粒子径の小さい酸化物を使
用すればよい。
When adding 5102, it is sufficient to use an oxide with a particle size as small as possible.

上述のようなり1合で各原料粉末を秤量し、金属不純物
の混入しにくいプラスチック等のボールミル用ボットと
密度が高くしかも不純物として少量混入した場合も電気
的特性に影響を与えないジルコニア等のボールを使用し
て混合、解砕を行う。
As mentioned above, each raw material powder is weighed in 1 cup, and ball mill bots are made of plastic, etc., which are difficult to mix with metal impurities, and balls of zirconia, etc., which are high in density and do not affect the electrical characteristics even if a small amount of impurities are mixed in. Use for mixing and crushing.

この場合、解砕効果を上げるために水、有w1熔剖等の
液体を添加してもよい。この工程の後、液体を餘去し、
造粒を行い、0.3〜1.0 t(/cm’の圧力で成
型を行う、成型後は、5〜10”C/winで昇温を行
い、1300〜1400°Cで5分〜2時間焼成した後
に、昇温と同様の速度で陣温し、本発明の磁器を得る。
In this case, a liquid such as water or liquid may be added to increase the disintegration effect. After this step, the liquid is evaporated and
Granulate and mold at a pressure of 0.3 to 1.0 t(/cm'). After molding, raise the temperature at 5 to 10"C/win and heat at 1300 to 1400°C for 5 minutes. After firing for 2 hours, the temperature is raised at the same rate as the temperature rise to obtain the porcelain of the present invention.

成型圧力が所定より低すぎると比抵抗が上がり、一方高
すぎると比抵抗は下がるがα値が下がり好ましくない、
また、昇温速度が低すぎると比抵抗が上がる、一方高す
ぎる場合は比抵抗は下がるがα値も下がり好ましくない
、焼成温度については、温度が低すぎても高すぎても比
抵抗が上がり好ましくない。
If the molding pressure is too low than the specified value, the specific resistance will increase, while if it is too high, the specific resistance will decrease, but the α value will decrease, which is undesirable.
Also, if the temperature increase rate is too low, the specific resistance will increase, while if it is too high, the specific resistance will decrease, but the α value will also decrease, which is undesirable. Regarding the firing temperature, if the temperature is too low or too high, the specific resistance will increase. Undesirable.

以上のような方法で製造した本発明の磁器は、密度が5
.2〜5.6 g/C13、比抵抗値が10(0cm)
以下、α値カ9 (t/”C)以上、耐ii圧カ50 
(V/mm)以上という低抵抗で耐電圧が高く、且つα
値も高い優れたチタン酸バリウム系半導体磁器となる。
The porcelain of the present invention produced by the method described above has a density of 5
.. 2 to 5.6 g/C13, specific resistance value is 10 (0 cm)
Below, α value power is 9 (t/”C) or more, II pressure resistance is 50
(V/mm) or more, with low resistance and high withstand voltage, and α
It becomes an excellent barium titanate semiconductor porcelain with a high value.

このように、原料として主成分にシュウ酸塩から製造さ
れたものを用いたために優れた電気的特性を有するよう
になった理由としては、原料の純度がアルカリ土類元素
を除いたトータルの金属元素が1100ppと非常に高
いため劣化を起こす原因となるような元素が含まれず微
量元素の添加により特性がコントロールしやすくその特
性改善の効果が大きいこと、磁器中の組織がダレインサ
イズが10μm以下で平均サイズがおよそ5μmに制御
された整った粒径の焼結体からなる均一微細組織となっ
ているため耐圧性が向上したこと、主成分のシュウ酸塩
仮焼体が適当な強度を有する微細で均一な一次粒子が結
合した形骸粒子であるため混合解砕時に形骸粒子が順次
解砕されながら混合され非常に混合性がよく、焼結時G
コ均一に各原子が固溶し、磁器とした場合原子の分布も
より均一となり、磁器中での局所的な特性の変化がなく
、全体が均一な特性を示すことなどが考えられるが、実
際には本発明の原料の選択および製造法、混合解砕方法
、焼結方法等で最も最適な条件になるよう種々の条件を
検討じた結果、総合的な効果としてこのような格段の電
気的特性を有する磁器を得ることができたものである。
In this way, the reason why it has excellent electrical properties due to the use of materials manufactured from oxalate as the main component is that the purity of the raw materials is the total metal content excluding alkaline earth elements. Since the element content is extremely high at 1100pp, it does not contain any elements that cause deterioration, and the addition of trace elements makes it easy to control the properties and has a large effect on improving the properties. It has a uniform fine structure consisting of a sintered body with a uniform grain size controlled to an average size of approximately 5 μm, which improves pressure resistance, and the oxalate calcined body, which is the main component, has appropriate strength. Since the bulk particles are a combination of fine and uniform primary particles, the bulk particles are sequentially crushed and mixed during mixing and crushing, resulting in very good mixability, and G during sintering.
It is conceivable that each atom is uniformly dissolved in solid solution, and that when made into porcelain, the distribution of atoms becomes more uniform, and there is no local change in the properties in the porcelain, and the whole shows uniform properties. As a result of examining various conditions to obtain the most optimal conditions for the selection of raw materials, manufacturing method, mixing and crushing method, sintering method, etc. of the present invention, we have found that the overall effect is such a remarkable electrical This made it possible to obtain porcelain with special characteristics.

このようにして得られた磁器は、特にバッテリーや電池
等で作動する低電圧用の定温度発熱用素子、電流制限用
素子、温度制御用素子等の用途として極めて行用である
The porcelain thus obtained is extremely useful, particularly as a low-voltage constant-temperature heating element, a current-limiting element, a temperature-controlling element, etc. operated by batteries or batteries.

[実施例] 以下、実施例により本発明を具体的に説明するが、本発
明は係る実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 容量が5n?のゴムライニング製タンクAに、Ti(O
H)a換算で27.6wt%のTiイオン、HC1換算
で282−t%のCIイオンを含有するTi溶液650
 Kg、塩化バリウム2水塩389Kgおよび純水29
80Kgをゆっくり混合して添加用の溶液とした。一方
容量が7dのゴムライニング製タンクBに、シュウ酸4
29 Kgを2055Kgの純水に溶解し、温度を60
℃まで昇温し、その温度に維持した。
Example 1 Capacity is 5n? Ti(O) is placed in rubber-lined tank A.
H) Ti solution 650 containing 27.6 wt% Ti ions in terms of a and 282-t% CI ions in terms of HC1
kg, barium chloride dihydrate 389 kg and pure water 29
80Kg was slowly mixed to form a solution for addition. On the other hand, in rubber-lined tank B with a capacity of 7 d, oxalic acid 4
Dissolve 29 kg in 2055 kg of pure water and lower the temperature to 60 kg.
The temperature was raised to and maintained at that temperature.

この時のBa/Ti(モル比)−1,03、シュウ酸/
Ti(モル比)=2.2 、BaCl2−8.25 i
vt%であった。
At this time, Ba/Ti (molar ratio) -1,03, oxalic acid/
Ti (molar ratio) = 2.2, BaCl2-8.25 i
It was vt%.

タンクAからタンクBへの溶液の添加はチャジポンプに
よって行い、添加方法はパイプの先端に約200個の穴
を設けて、シャワー状で液面に添加することにより行っ
た。
The solution was added from tank A to tank B using a charge pump, and about 200 holes were provided at the tip of a pipe, and the solution was added to the liquid surface in the form of a shower.

この際の攪拌は平板状の2枚の羽根を有する攪拌羽根を
50rp園で回転させることにより行い、この時の攪拌
周速は2.9■/secであった0反応中の溶液は60
°Cに維持し、添加時間は4時間であった。
The stirring at this time was carried out by rotating a stirring blade having two flat blades at 50 rpm, and the peripheral stirring speed at this time was 2.9 cm/sec.
The addition time was 4 hours.

またこの時に主成するシュウ酸チタン酸バリウムの設定
濃度は11〜t%であった。
Further, the concentration of barium titanate oxalate, which is the main constituent, was set at 11 to t%.

添加終了後、反応液は遠心分離機により濾過し洗浄した
後、50°Cで乾燥することによりシュウ酸チタン酸バ
リウムの結晶592Kgを得た。この時の収率は85.
3ivt%で、そのBa/Ti <モル比)は0.99
9であった。
After the addition was completed, the reaction solution was filtered and washed using a centrifuge, and then dried at 50°C to obtain 592 kg of barium titanate oxalate crystals. The yield at this time was 85.
3ivt%, its Ba/Ti <molar ratio) is 0.99
It was 9.

得られた粉末は磁器製のるつぼに入れ、空気中900°
Cl2hrで焼成してチタン酸ノ\リウム仮焼粉末を得
た。得られた粉末は、アルカリ土類以外の金属不純物が
いずれもl0pP!1以下で、平均粒径が200μmで
、50μm以下の粒子が約2wt%であった。上記粒度
分布は、■セイシン企業製のレーザー式粒度分布測定機
(PRO−7000)により測定した。
The obtained powder was placed in a porcelain crucible and heated at 900° in air.
Calcination was performed using Cl2hr to obtain calcined powder of norium titanate. The obtained powder contains 10 pP of all metal impurities other than alkaline earth metals! 1 or less, the average particle size was 200 μm, and particles with a diameter of 50 μm or less accounted for about 2 wt%. The above particle size distribution was measured using a laser particle size distribution analyzer (PRO-7000) manufactured by Seishin Enterprises.

実施例2 容量が5rrrのゴムライニング製タンクAに、Ti(
OH) a換算で31.9wt%のTiイオン、1(C
I換算で31.9iut%のC]イオンを含有するTi
溶液449 Kg、塩化ストロンチウム6水塩516K
g、純水1590Kgをゆっくり混合して添加用の溶液
とした。一方容量が7n?のゴムライニング製タンクB
にシュウ#429 Kgヲ2147Kgの純水に熔解し
、温度を75°Cまで昇温し、その温度に維持した。
Example 2 Ti(
OH) 31.9 wt% Ti ions in terms of a, 1(C
Ti containing 31.9 iut% C] ions in terms of I
Solution 449 Kg, Strontium chloride hexahydrate 516K
g and 1590 kg of pure water were slowly mixed to prepare a solution for addition. On the other hand, the capacity is 7n? Rubber lined tank B
Next, #429 kg was dissolved in 2147 kg of pure water, and the temperature was raised to 75°C and maintained at that temperature.

この時のSr/Ti (モル比)=1.25、シュウ酸
/Ti(モル比)=2.2.5rC1212,0wt%
であった。
At this time, Sr/Ti (molar ratio) = 1.25, oxalic acid/Ti (molar ratio) = 2.2.5rC1212.0wt%
Met.

タンクAからタンクBへの溶液の添加はチャージポンプ
によって行い、添加方法はパイプの先端に約200個の
穴を設けて、シャワー状で液面に添加することにより行
った。
The solution was added from tank A to tank B using a charge pump, and about 200 holes were provided at the tip of a pipe, and the solution was added to the liquid surface in a shower-like manner.

この際の攪拌は平板状の2枚の羽根を有する攪拌羽根を
用い、この時の攪拌周速は4.1■/secであった。
For stirring at this time, a stirring blade having two flat blades was used, and the stirring circumferential speed at this time was 4.1 sec/sec.

反応中の溶液は75°Cに維持し、添加時間は2.5時
間であった。またこの時に主成するシュウ酸チタン酸ス
トロンチウムの設定濃度は12igt%であった。
The solution during the reaction was maintained at 75°C and the addition time was 2.5 hours. Further, the concentration of strontium titanate oxalate, which is the main constituent, was set at 12 igt%.

添加終了後、反応液を20°C/hrの速度で室温まで
冷却した後、遠心分離機により濾過し洗浄し、さらに5
0°Cで乾燥することによりンユウ酸チタン酸ストロン
チウム5水塩の結晶600 Kgを得た。このンユウ酸
塩のSr/Ti (モル比)=0.999 、収率は9
3−t%であった。
After the addition was completed, the reaction solution was cooled to room temperature at a rate of 20°C/hr, filtered and washed with a centrifuge, and further
By drying at 0°C, 600 kg of crystals of strontium titanate oxalate pentahydrate were obtained. The Sr/Ti (molar ratio) of this sulfate salt was 0.999, and the yield was 9
It was 3-t%.

得られた粉末は磁器製のるつぼに入れ、空気中900°
Cl2hrで焼成してチタン酸ストロンチウム仮焼粉末
を得た。得られた粉末は、アルカリ土類以外の金属不純
物がいずれも10pp■以下で、二次粒子の平均粒子径
が150μm、50μm以下の二次粒子が25臀t%、
BET比表面積が26 、 Om2 /’gであった。
The obtained powder was placed in a porcelain crucible and heated at 900° in air.
Calcined powder of strontium titanate was obtained by firing with Cl2hr. The obtained powder contained metal impurities other than alkaline earth metals of 10 pp or less, an average particle diameter of secondary particles of 150 μm, 25 t% of secondary particles of 50 μm or less,
The BET specific surface area was 26 Om2/'g.

BET比表面積の測定は、■島津製作所製の流動式比表
面積自動測定装置マイクロメリティノクス フローソノ
プII  2300形を使用した。
The BET specific surface area was measured using a flow type automatic specific surface area measuring device Micromeritinox Flowsonop II Model 2300 manufactured by Shimadzu Corporation.

実施例3 TiC11: 10wt%の溶液を40°C以下になる
よう冷却しながら、アンモニウム水溶液でPH7になる
まで中和し、ゲル状の水酸化チタンを得た後、これを濾
過、純水により洗浄する。洗浄後のゲルは直ちにシュウ
酸により熔解し、Tiイオンの濃度を測定した後、純水
およびシュウ酸によりTiイオンの濃度2,4圓t%、
シュウ酸/Ti(モル比)=2.15に調整し、この溶
液2378Kgを添加用溶液として容量7rrrのゴム
ライニング製タンクAに移液した。一方、容fが5−の
ゴムライニング製タンクBに硝酸鉛402 Kgと純水
1086Kgを入れ溶液とした。この時のPb/T i
 (モル比)=1.02、主成するシュウ酸チタン酸鉛
の設定濃度: 16.0iit%であった。
Example 3 TiC11: A 10 wt% solution was cooled to below 40°C and neutralized with an ammonium aqueous solution until the pH reached 7 to obtain gel-like titanium hydroxide, which was then filtered and purified with pure water. Wash. The gel after washing was immediately dissolved with oxalic acid, and after measuring the concentration of Ti ions, the concentration of Ti ions was 2.4 gt% with pure water and oxalic acid.
Oxalic acid/Ti (molar ratio) was adjusted to 2.15, and 2378 kg of this solution was transferred as an addition solution to a rubber-lined tank A having a capacity of 7 rrr. On the other hand, 402 kg of lead nitrate and 1086 kg of pure water were put into a rubber-lined tank B having a volume f of 5- to form a solution. Pb/T i at this time
(Molar ratio)=1.02, and the set concentration of lead oxalate titanate as the main constituent: 16.0iit%.

タンクAからタンクBへの溶液の添加はチャージポンプ
によって行い、添加方法はパ“イブの先端に約200個
の穴を設けて、シャワー状で液面に添加することにより
行った。
The solution was added from tank A to tank B using a charge pump, and the solution was added by making about 200 holes at the tip of a pipe and adding the solution to the liquid surface in the form of a shower.

この際の攪拌は平板状の2枚の羽根を有する攪拌羽根を
用い、この時の攪拌周速は2.0w/seeであった。
For stirring at this time, a stirring blade having two flat blades was used, and the peripheral stirring speed at this time was 2.0 w/see.

反応中の溶液は50°Cに維持し、添加時間は20時間
であった。
The solution during the reaction was maintained at 50°C and the addition time was 20 hours.

添加終了後、溶液を濾過洗浄し、さらに50°Cで乾燥
してシュウ酸チタン酸鉛4水塩を得た。収率は97.0
wt%、シュウ酸チタン酸鉛のPb/Ti(モル比)は
0.998であった。
After the addition was completed, the solution was filtered and washed, and further dried at 50°C to obtain lead oxalate titanate tetrahydrate. Yield is 97.0
wt%, Pb/Ti (molar ratio) of lead oxalate titanate was 0.998.

得られた粉末は磁器製のるつぼに入れ、空気中700°
Cl2hrで焼成してチタン酸鉛の仮焼粉末を得た。得
られた粉末は、アルカリ土類以外の金属不純物がいずれ
も10ppm以下で、二次粒子の平均粒子径が140μ
m、50μm以下の二次粒子が3wt%であった。
The obtained powder was placed in a porcelain crucible and heated at 700° in air.
A calcined powder of lead titanate was obtained by calcining with Cl2hr. The obtained powder contains all metal impurities other than alkaline earth metals at 10 ppm or less, and the average particle size of the secondary particles is 140 μm.
m, secondary particles with a size of 50 μm or less were 3 wt%.

実施例4〜11 主成分原料として、BaTi0a −SrTiO3 、
CaTiO3は実施例1〜3により製造したシュウ酸塩
仮焼粉末を用い、CaTiO3としてはCaCO3とT
iO2から固相法により製造した、アルカリ土類以外の
金属不純物がいずれも10pp@以下、平均粒径が05
μmの粉末を用いた。
Examples 4 to 11 Main component raw materials include BaTi0a-SrTiO3,
For CaTiO3, the oxalate calcined powder produced in Examples 1 to 3 was used, and as CaTiO3, CaCO3 and T
Manufactured from iO2 by solid phase method, all metal impurities other than alkaline earth metals are 10 pp@ or less, average particle size is 0.5
Powder of μm was used.

次に、半導体化剤として酸化ランタンを用い、他の微量
成分として酸化銅、シュウ酸マンガン、無水ケイ酸を用
いたが、半導体化剤、酸化銅、ノユウ酸マンガン、無水
ケイ酸については、10μm以下の粒径の粒子を用いた
。これらの各原料を第1表に示すような組成比になるよ
うに配合し、バインダーを添加して501のポリエチレ
ン製のボールミル用ポットおよびジルコニア製ボールを
使用し、エタノールを添加し、24時時間式混合を行っ
た。
Next, lanthanum oxide was used as a semiconducting agent, and copper oxide, manganese oxalate, and silicic anhydride were used as other trace components. Particles having the following particle sizes were used. These raw materials were mixed in a composition ratio as shown in Table 1, a binder was added, a 501 polyethylene ball mill pot and a zirconia ball were used, ethanol was added, and the mixture was heated for 24 hours. Equation mixing was performed.

これを脱水乾燥し造粒した後、成形圧力1000kg/
ciで円盤状に成形した。さらにこれを、実施例4〜7
については1320°Cで30分間、実施例8〜11に
ついては1340°C130分間焼成し、13■φの直
径で2.Olの厚さの円盤状焼結体を得た。得られた半
導体磁器につき両生表面にIn−Ga合金の電極を付与
し、これを試料とした。これらの試料につき、比抵抗値
、α値、耐電圧値を測定した。これらの抵抗と温度の関
係はpAメーター:横河ヒューレ2トバノカード■製 
モデル4140B 、、X−Yレコーダー;横河北辰電
気■製 モデル3086  を用い、恒温槽中にサンプ
ルを入れ、一定速度で昇温しながら測定した。
After dehydrating and drying this and granulating it, the molding pressure was 1000 kg/
It was molded into a disk shape using ci. Furthermore, Examples 4 to 7
The samples were baked at 1320°C for 30 minutes, and Examples 8 to 11 were baked at 1340°C for 130 minutes. A disc-shaped sintered body having a thickness of 100 ml was obtained. An In-Ga alloy electrode was provided on the amphibian surface of the obtained semiconductor porcelain, and this was used as a sample. The specific resistance value, α value, and withstand voltage value were measured for these samples. The relationship between these resistances and temperature is pA meter: Yokogawa Hule 2 Tobano Card ■
Using Model 4140B, X-Y recorder; Model 3086 manufactured by Yokogawa Hokutatsu Electric, the sample was placed in a constant temperature bath, and measurements were taken while raising the temperature at a constant rate.

実施例4のキュリー点は、94°Cであった。The Curie point of Example 4 was 94°C.

また上述の特性において、耐電圧については試料に電圧
を印加した後、徐々にその電圧を上昇させてゆき、試料
の破壊が生じる手前の最高印加電圧値を示したものであ
る。
In addition, in the above-mentioned characteristics, the withstand voltage is the voltage that is gradually increased after a voltage is applied to the sample, and indicates the maximum applied voltage value before the sample breaks down.

試料組成と電気的特性の測定結果を第1表に示す。第2
図は、実施例4で得られた磁器の抵抗温度特性を図に示
したものであるが、低比抵抗でかつ高いα値に保つこと
ができる。
Table 1 shows the sample composition and measurement results of electrical properties. Second
The figure shows the resistance-temperature characteristics of the porcelain obtained in Example 4, which can maintain a low resistivity and a high α value.

比較例1〜9 実施例1〜3のそれぞれの方法において、一つの条件だ
けを変化させてそれぞれのシュウ酸塩を製造し、同様の
方法で仮焼し、その仮焼粉末を使用した他は、実施例4
と全く同様の組成、方法で磁器を製造してその電気的特
性を測定した。
Comparative Examples 1 to 9 In each method of Examples 1 to 3, each oxalate was produced by changing only one condition, calcined in the same manner, and the calcined powder was used. , Example 4
Porcelain was manufactured using exactly the same composition and method, and its electrical properties were measured.

その時の条件および電気的特性を第2表に示す。Table 2 shows the conditions and electrical characteristics at that time.

上記比較例によれば、第2表に示されるように、平均粒
径が小さい粉末やわ径の小さい二次粒子を含有する粉末
が主成し、該粉末を使用して磁器を製造した場合、実施
例に比べ、比抵抗、耐電圧等の電気的特性に劣るものと
なることがわかる。
According to the above comparative example, as shown in Table 2, powder containing powder with a small average particle size and secondary particles with a small diameter is the main constituent, and when porcelain is manufactured using the powder, It can be seen that the electrical properties such as specific resistance and withstand voltage are inferior to those of the examples.

[発明の効果] 本発明の主成分の原料粉末は微細で粒子径の整った一次
粒子よりなる独特の形状を有する二次粒子であり、この
原料に半導体化剤およびCuOlMn、SiO□を添加
した混合粉末組成物を使用して焼結することにより得ら
れたチタン酸バリウム系半導体磁器組成物は、比抵抗値
が10(Ω・cm )以下、α値が9(Z/’C)以上
、耐電圧力50 (V/’ml) 以上という低抵抗で
耐電圧、α値も優れた電気的特性を示すため、特に電池
、パンテリー等を電源とした低電圧用の電流制限用素子
、温度制御用素子、定温度発熱用素子等としての種々の
用途へ、応用できるものである。
[Effect of the invention] The raw material powder, which is the main component of the present invention, is a secondary particle with a unique shape consisting of fine primary particles with a uniform particle size, and a semiconducting agent, CuOlMn, and SiO□ are added to this raw material The barium titanate-based semiconductor ceramic composition obtained by sintering the mixed powder composition has a specific resistance value of 10 (Ω cm ) or less, an α value of 9 (Z/'C) or more, It has a low resistance of 50 (V/'ml) or more, and has excellent electrical characteristics such as voltage resistance and α value, so it is especially suitable for current limiting devices and temperature control devices for low voltages using batteries, pantry batteries, etc. as power sources. It can be applied to various uses such as an element, a constant temperature heating element, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の半導体磁器組成物の比抵抗と抵抗温
度係数および耐電圧の関係を示す図であり、第2図は、
本発明のチタン酸バリウム系半導体磁器組成物の抵抗温
度特性図である。 特許出願人  セントラル硝子株式会社(Ω・cm )
FIG. 1 is a diagram showing the relationship between resistivity, temperature coefficient of resistance, and withstand voltage of the semiconductor ceramic composition of the present invention, and FIG.
FIG. 2 is a resistance temperature characteristic diagram of a barium titanate-based semiconductor ceramic composition of the present invention. Patent applicant Central Glass Co., Ltd. (Ω・cm)

Claims (1)

【特許請求の範囲】 (1)BaTiO_3、SrTiO_3、CaTiO_
3、PbTiO_3の主成分の内、少なくともBaTi
O_3、SrTiO_3が、(1)BaTiO_3:0
.2μm以下の一次粒子が互に繋がった開気孔を有する
形骸二次粒子でその大きさが平均粒径150〜250μ
mであり、かつ50μm以下の形骸二次粒子が5wt%
以下であるBaTiO_3粉末、(2)SrTiO_3
:0.1μm以下の一次粒子が互に繋がった開気孔を有
する形骸二次粒子でその大きさが平均粒径70〜180
μmであり、かつそのBET比表面積が20〜30m^
2/gであるSrTiO_3粉末、上記(1)、(2)
で表わされる粉末よりなり、その主成分の組成がBaT
iO_3:45〜85モル%、SrTiO_3:1〜2
0モル%、CaTiO_3:5〜20モル%、PbTi
O_3:1〜20モル%であり 前記主成分に対して半導体化剤としてY,La,Ceな
どの希土類元素、Nb,Sbのうち少なくとも1種が酸
化物として0.05〜0.14モル%、さらにCuO:
0.005〜0.03モル%、Mn:0.005〜0.
03モル%、SiO_2:0.5〜2.0モル%の組成
範囲よりなることを特徴とするチタバリ系半導体磁器組
成物用の原料粉末。 (2)BaTiO_3、SrTiO_3、CaTiO_
3、PbTiO_3の主成の内、少なくともBaTiO
_3、SrTiO_3、PbTiO_3が、 (1)BaTiO_3:0.2μm以下の一次粒子が互
に繋がった開気孔を有する形骸二次粒子でその大きさが
平均粒径150〜250μmであり、かつ50μm以下
の形骸二次粒子が5wt%以下であるBaTiO_3粉
末、(2)SrTiO_3:0.1μm以下の一次粒子
が互に繋がった開気孔を有する形骸二次粒子でその大き
さが平均粒径70〜180μmであり、かつそのBET
比表面積が20〜30m^2/gであるSrTiO_3
粉末、(3)PbTiO_3:0.2μm以下の一次粒
子が互に繋がった開気孔を有する形骸二次粒子で、その
大きさが平均50〜150μmであり、かつ20μm以
下の形骸二次粒子が5wt%以下であるPbTiO_3
粉末、上記(1)、(2)、(3)で表わされる粉末よ
りなり、その主成分の組成がBaTiO_3:45〜8
5モル%、SrTiO_3:1〜20モル%、CaTi
O_3:5〜20モル%、PbTiO_3:1〜20モ
ル%であり 前記主成分に対して半導体化剤としてY,La,Ceな
どの希土類元素、Nb,Sbのうち少なくとも1種が酸
化物として0.05〜0.14モル%、さらにCuO:
0.005〜0.03モル%、Mn:0.005〜0.
03モル%、SiO_2:0.5〜2.0モル%の組成
範囲よりなることを特徴とするチタバリ系半導体磁器組
成物用の原料粉末。 (3)BaTiO_3、SrTiO_3、CaTiO_
3、PbTiO_3の主成分の内、少なくともBaTi
O_3、SrTiO_3が、(1)BaTiO_3:0
.2μm以下の一次粒子が互に繋がった開気孔を有する
形骸二次粒子でその大きさが平均粒径150〜250μ
mであり、かつ50μm以下の形骸二次粒子が5wt%
以下であるBaTiO_3粉末、(2)SrTiO_3
:0.1μm以下の一次粒子が互に繋がった開気孔を有
する形骸二次粒子でその大きさが平均粒径70〜180
μmであり、かつそのBET比表面積が20〜30m^
2/gであるSrTiO_3粉末、上記(1)、(2)
で表わされる粉末を原料とし、その主成分の組成がBa
TiO_3:45〜85モル%、SrTiO_3:1〜
20モル%、CaTiO_3:5〜20モル%、PbT
iO_3:1〜20モル%であり 前記主成分に対して半導体化剤としてY,La,Ceな
どの希土類元素、Nb,Sbのうち少なくとも1種が酸
化物として0.05〜0.14モル%、さらにCuO:
0.005〜0.03モル%、Mn:0.005〜0.
03モル%、SiO_2:0.5〜2.0モル%の組成
範囲よりなることを特徴とするチタバリ系半導体磁器組
成物。 (4)BaTiO_3、SrTiO_3、CaTiO_
3、PbTiO_3の主成の内、少なくともBaTiO
_3、SrTiO_3、PbTiO_3が、 (1)BaTiO_3:0.2μm以下の一次粒子が互
に繋がった開気孔を有する形骸二次粒子でその大きさが
平均粒径150〜250μmであり、かつ50μm以下
の形骸二次粒子が5wt%以下であるBaTiO_3粉
末、(2)SrTiO_3:0.1μm以下の一次粒子
が互に繋がった開気孔を有する形骸二次粒子でその大き
さが平均粒径70〜180μmであり、かつそのBET
比表面積が20〜30d/gであるSrTiO_3粉末
、(3)PbTiO_3:0.2μm以下の一次粒子が
互に繋がった開気孔を有する形骸二次粒子で、その大き
さが平均50〜150μmであり、かつ20μm以下の
形骸二次粒子が5wt%以下であるPbTiO_3粉末
、上記(1)、(2)、(3)で表わされる粉末を原料
とし、その主成分の組成がBaTiO_3:45〜85
モル%、SrTiO_3:1〜20モル%、CaTiO
_3:5〜20モル%、PbTiO_3:1〜20モル
%であり 前記主成分に対して半導体化剤としてY,La,Ceな
どの希土類元素、Nb,Sbのうち少なくとも1種が酸
化物として0.05〜0.14モル%、さらにCuO:
0.005〜0.03モル%、Mn:0.005〜0.
03モル%、SiO_2:0.5〜2.0モル%の組成
範囲よりなることを特徴とするチタバリ系半導体磁器組
成物。 (5)請求項(3)または(4)記載の半導体磁器組成
物からなり、比抵抗値が10(Ω・cm)以下、抵抗温
度係数が9(%/℃)以上、耐電圧が50(V/mm)
以上であることを特徴とするチタバリ系サーミスター。
[Claims] (1) BaTiO_3, SrTiO_3, CaTiO_
3. Among the main components of PbTiO_3, at least BaTi
O_3, SrTiO_3 is (1) BaTiO_3:0
.. A skeleton secondary particle with open pores in which primary particles of 2 μm or less are connected to each other, and the average particle size is 150 to 250 μm.
m, and 5wt% of skeletal secondary particles of 50 μm or less
BaTiO_3 powder, (2) SrTiO_3
: Formative secondary particles that have open pores in which primary particles of 0.1 μm or less are connected to each other and have an average particle size of 70 to 180.
μm, and its BET specific surface area is 20 to 30 m^
2/g SrTiO_3 powder, (1) and (2) above
The main component is BaT.
iO_3: 45-85 mol%, SrTiO_3: 1-2
0 mol%, CaTiO_3: 5-20 mol%, PbTi
O_3: 1 to 20 mol%, and 0.05 to 0.14 mol% of at least one of rare earth elements such as Y, La, Ce, Nb, and Sb as a semiconductor agent as an oxide based on the main component. , and further CuO:
0.005-0.03 mol%, Mn: 0.005-0.
A raw material powder for a Chitavari-based semiconductor ceramic composition, characterized by having a composition range of 0.03 mol% and SiO_2: 0.5 to 2.0 mol%. (2) BaTiO_3, SrTiO_3, CaTiO_
3. Among the main components of PbTiO_3, at least BaTiO
_3, SrTiO_3, and PbTiO_3 are: (1) BaTiO_3: Primary particles of 0.2 μm or less are connected to each other to form secondary particles having open pores with an average particle size of 150 to 250 μm and 50 μm or less. BaTiO_3 powder with 5 wt% or less of skeletal secondary particles; (2) SrTiO_3: skeletal secondary particles having open pores in which primary particles of 0.1 μm or less are connected to each other, with an average particle size of 70 to 180 μm. Yes, and the BET
SrTiO_3 with a specific surface area of 20 to 30 m^2/g
Powder, (3) PbTiO_3: skeletal secondary particles having open pores in which primary particles of 0.2 μm or less are connected to each other, the average size of which is 50 to 150 μm, and 5wt of skeletal secondary particles of 20 μm or less % or less of PbTiO_3
Powder, consisting of powders represented by (1), (2), and (3) above, whose main component composition is BaTiO_3:45-8
5 mol%, SrTiO_3: 1-20 mol%, CaTi
O_3: 5 to 20 mol%, PbTiO_3: 1 to 20 mol%, and at least one of rare earth elements such as Y, La, Ce, Nb, and Sb is added as an oxide to the main components as a semiconductor agent. .05 to 0.14 mol%, further CuO:
0.005-0.03 mol%, Mn: 0.005-0.
A raw material powder for a Chitavari-based semiconductor ceramic composition, characterized by having a composition range of 0.03 mol% and SiO_2: 0.5 to 2.0 mol%. (3) BaTiO_3, SrTiO_3, CaTiO_
3. Among the main components of PbTiO_3, at least BaTi
O_3, SrTiO_3 is (1) BaTiO_3:0
.. A skeleton secondary particle with open pores in which primary particles of 2 μm or less are connected to each other, and the average particle size is 150 to 250 μm.
m, and 5wt% of skeletal secondary particles of 50 μm or less
BaTiO_3 powder, (2) SrTiO_3
: Formative secondary particles that have open pores in which primary particles of 0.1 μm or less are connected to each other and have an average particle size of 70 to 180.
μm, and its BET specific surface area is 20 to 30 m^
2/g SrTiO_3 powder, (1) and (2) above
The powder represented by is used as raw material, and its main component composition is Ba
TiO_3: 45-85 mol%, SrTiO_3: 1-
20 mol%, CaTiO_3: 5-20 mol%, PbT
iO_3: 1 to 20 mol%, and 0.05 to 0.14 mol% of at least one of rare earth elements such as Y, La, Ce, Nb, and Sb as a semiconductor agent as an oxide based on the main component. , and further CuO:
0.005-0.03 mol%, Mn: 0.005-0.
1. A Chitavari-based semiconductor ceramic composition characterized by having a composition range of 0.03 mol% and SiO_2: 0.5 to 2.0 mol%. (4) BaTiO_3, SrTiO_3, CaTiO_
3. Among the main components of PbTiO_3, at least BaTiO
_3, SrTiO_3, and PbTiO_3 are: (1) BaTiO_3: Primary particles of 0.2 μm or less are connected to each other to form secondary particles having open pores with an average particle size of 150 to 250 μm and 50 μm or less. BaTiO_3 powder with 5 wt% or less of skeletal secondary particles; (2) SrTiO_3: skeletal secondary particles having open pores in which primary particles of 0.1 μm or less are connected to each other, with an average particle size of 70 to 180 μm. Yes, and the BET
SrTiO_3 powder with a specific surface area of 20 to 30 d/g, (3) PbTiO_3: A skeletal secondary particle having open pores in which primary particles of 0.2 μm or less are connected to each other, and the average size is 50 to 150 μm. , and PbTiO_3 powder containing 5 wt% or less of skeletal secondary particles of 20 μm or less, using powders represented by (1), (2), and (3) above as raw materials, and having a main component composition of BaTiO_3:45-85.
Mol%, SrTiO_3: 1-20 mol%, CaTiO
_3: 5 to 20 mol%, PbTiO_3: 1 to 20 mol%, and at least one of rare earth elements such as Y, La, Ce, Nb, and Sb is added as an oxide to the main component as a semiconductor agent. .05 to 0.14 mol%, further CuO:
0.005-0.03 mol%, Mn: 0.005-0.
1. A Chitavari-based semiconductor ceramic composition characterized by having a composition range of 0.03 mol% and SiO_2: 0.5 to 2.0 mol%. (5) Comprised of the semiconductor ceramic composition according to claim (3) or (4), which has a specific resistance value of 10 (Ω·cm) or less, a resistance temperature coefficient of 9 (%/°C) or more, and a withstand voltage of 50 (Ω·cm) or less. V/mm)
A Chitabari thermistor characterized by the above characteristics.
JP2172654A 1989-08-31 1990-07-02 Raw material powders for porcelain-based semiconductor porcelain composition and porcelain composition Expired - Fee Related JP2569208B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2172654A JP2569208B2 (en) 1990-07-02 1990-07-02 Raw material powders for porcelain-based semiconductor porcelain composition and porcelain composition
US07/841,210 US5219811A (en) 1989-08-31 1992-02-27 Powder composition for sintering into modified barium titanate semiconductive ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172654A JP2569208B2 (en) 1990-07-02 1990-07-02 Raw material powders for porcelain-based semiconductor porcelain composition and porcelain composition

Publications (2)

Publication Number Publication Date
JPH0465356A true JPH0465356A (en) 1992-03-02
JP2569208B2 JP2569208B2 (en) 1997-01-08

Family

ID=15945905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172654A Expired - Fee Related JP2569208B2 (en) 1989-08-31 1990-07-02 Raw material powders for porcelain-based semiconductor porcelain composition and porcelain composition

Country Status (1)

Country Link
JP (1) JP2569208B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963963A1 (en) * 1996-11-20 1999-12-15 Murata Manufacturing Co., Ltd. Barium titanate-base semiconducting ceramic composition
KR100313324B1 (en) * 1999-11-01 2001-11-09 박호군 Low temperature firable dielectric ceramic compositions having ultrafine grains
JP2007063050A (en) * 2005-08-30 2007-03-15 Tanaka Chemical Corp Method for manufacturing titanium oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963963A1 (en) * 1996-11-20 1999-12-15 Murata Manufacturing Co., Ltd. Barium titanate-base semiconducting ceramic composition
EP0963963A4 (en) * 1996-11-20 2003-03-19 Murata Manufacturing Co Barium titanate-base semiconducting ceramic composition
KR100313324B1 (en) * 1999-11-01 2001-11-09 박호군 Low temperature firable dielectric ceramic compositions having ultrafine grains
JP2007063050A (en) * 2005-08-30 2007-03-15 Tanaka Chemical Corp Method for manufacturing titanium oxide

Also Published As

Publication number Publication date
JP2569208B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
TW200946476A (en) Dielectric ceramic composition
US6221800B1 (en) Method of producing PTC semiconducting ceramic
JPH0388770A (en) Barium titanate-based semiconductor porcelain composition and thermistor
JP2558357B2 (en) Barium titanate-based powder for semiconductor porcelain and its manufacturing method
JPH0354165A (en) Ptc ceramic composition and production thereof
JPH0465356A (en) Raw material powder for barium titanate series semiconducting ceramic composition and ceramic composition
JP3154513B2 (en) Spherical barium titanate-based semiconductor ceramic material powder and method for producing the same
JP2569205B2 (en) Raw material powder for barium titanate-based semiconductor porcelain composition and porcelain composition comprising the same
JP2885599B2 (en) Barium titanate-based powder composition and method for producing semiconductor porcelain composition using the same
JP3254316B2 (en) Barium titanate-based semiconductor porcelain composition
JP4058140B2 (en) Barium titanate semiconductor porcelain
JPH05254928A (en) Production of barium titanate-based semiconductor porcelain having positive temperature coefficient
JPS6243522B2 (en)
JPH05294625A (en) Production of barium titanate based semiconductor ceramic having positive characteristic
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JPH1072254A (en) Production of barium titanate-base semiconductor porcelain
JPS63117914A (en) Production of metal oxide powder for ptc-thermistor
WO2015115421A1 (en) Manufacturing method for semiconductor ceramic composition, semiconductor ceramic composition, ptc element, and heating element module
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH04160050A (en) Ceramic semiconductor composition and its production
JPH01289205A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JPH04202049A (en) Grain boundary insulated semiconductor porcelain composition
JPH04238860A (en) Production of barium titanate-based porcelain semiconductor
JPH07118062A (en) Barium titanate-based semiconductor porcelain composition and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees