JP2558357B2 - Barium titanate-based powder for semiconductor porcelain and its manufacturing method - Google Patents

Barium titanate-based powder for semiconductor porcelain and its manufacturing method

Info

Publication number
JP2558357B2
JP2558357B2 JP1225061A JP22506189A JP2558357B2 JP 2558357 B2 JP2558357 B2 JP 2558357B2 JP 1225061 A JP1225061 A JP 1225061A JP 22506189 A JP22506189 A JP 22506189A JP 2558357 B2 JP2558357 B2 JP 2558357B2
Authority
JP
Japan
Prior art keywords
mol
less
titanate
oxalate
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1225061A
Other languages
Japanese (ja)
Other versions
JPH02289426A (en
Inventor
隆光 榎本
みどり 川原
昇 村田
洋史 上田
直樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP1225061A priority Critical patent/JP2558357B2/en
Priority to DE1990609628 priority patent/DE69009628T2/en
Priority to EP19900116692 priority patent/EP0415428B1/en
Publication of JPH02289426A publication Critical patent/JPH02289426A/en
Priority to US07/841,210 priority patent/US5219811A/en
Application granted granted Critical
Publication of JP2558357B2 publication Critical patent/JP2558357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、著しい正の温度特性を有し、しかも比抵抗
が十分に低いと同時に耐電圧、抵抗温度係数に優れたチ
タン酸バリウム系半導体磁器組成物の原料となる粉末お
よびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention has a barium titanate-based semiconductor having a remarkably positive temperature characteristic, a sufficiently low specific resistance, and an excellent withstand voltage and resistance temperature coefficient. The present invention relates to a powder which is a raw material of a porcelain composition and a method for producing the powder.

[従来技術とその解決しようとする課題] 従来、チタン酸バリウム系半導体磁器はチタン酸バリ
ウムを主成分とし、これに半導化剤としてY,La,Ceなど
の希土類元素、Nb,Sbのうち少なくとも1種を微量含有
させたもので、常温における比抵抗を低くし、抵抗急変
点(キュリー点)を越えると著しい正の抵抗温度特性を
示すという特徴を有している。
[Prior Art and Problems to Be Solved] Conventionally, barium titanate-based semiconductor porcelain is mainly composed of barium titanate, and a rare earth element such as Y, La, or Ce as a semiconducting agent, or Nb, Sb. It contains a trace amount of at least one kind, and has a characteristic that it has a low specific resistance at room temperature and shows a remarkable positive resistance-temperature characteristic when it exceeds a sudden resistance change point (Curie point).

通常、チタン酸バリウム系半導体磁器はその主成分で
あるチタン酸バリウムの影響によりキュリー点はほぼ12
0℃付近にある。
Normally, the barium titanate-based semiconductor porcelain has a Curie point of approximately 12 due to the effect of its main component barium titanate.
It is around 0 ℃.

かかるチタン酸バリウム系半導体磁器のキュリー点を
高温側に移行させるために、Baの一部をPbで置換するこ
とが知られている。また、キュリー点を低温側に移行さ
せるためや電気的特性を改善するため、Baの一部をSrま
たはCaで置換したり、Tiの一部をZr,Snなどで置換する
ことも知られている。
In order to shift the Curie point of such barium titanate-based semiconductor porcelain to a higher temperature side, it is known to partially replace Ba with Pb. It is also known that part of Ba is replaced with Sr or Ca, and part of Ti is replaced with Zr, Sn, etc., in order to shift the Curie point to the low temperature side or to improve electrical characteristics. I have.

さらに、チタン酸バリウム系半導体磁器にMnやシリ
カ、アルミナ、酸化銅等を添加することにより、キュリ
ー点を越えた後の抵抗温度変化率を改善したり、半導体
磁器の特性を安定化させる等、種々の試みが行われてい
る。(特公昭53−29386、特公昭54−10110、特公昭63−
28324等) そして、かかるチタン酸バリウム系半導体磁器の特性
を利用することにより、定温度発熱用素子、電流制限用
素子、温度制御用素子などとして使用されている。
Furthermore, by adding Mn, silica, alumina, copper oxide, etc. to barium titanate-based semiconductor porcelain, the resistance temperature change rate after exceeding the Curie point can be improved, and the characteristics of the semiconductor porcelain can be stabilized. Various attempts have been made. (Japanese Patent Publication 53-29386, Japanese Patent Publication 54-10110, Japanese Patent Publication 63-
By using the characteristics of the barium titanate-based semiconductor porcelain, it is used as a constant temperature heating element, a current limiting element, a temperature control element, and the like.

そして、上記のような用途において、チタン酸バリウ
ム系半導体磁器ができる限り低比抵抗であることが求め
られる用途も多いが、従来のものにおいては比抵抗が低
くなるに従って、抵抗温度特性、および破壊電圧が極端
に劣化し、例えば比抵抗が5Ω・cm程度のものでは比抵
抗と抵抗温度特性の勾配α(%/℃)が約7程度しかな
く、破壊電圧も約30V/mm前後と低い値に留まり[西井
基:エレクトロニク・セラミクス,88 5月号(1988)pp2
2〜27]このような低比抵抗値を有するチタン酸バリウ
ム系半導体磁器は実際には実用化されていないのが現状
である。
In the above-mentioned applications, the barium titanate-based semiconductor porcelain is often required to have a resistivity as low as possible, but in the conventional one, as the resistivity becomes lower, the resistance-temperature characteristic and the breakdown The voltage is extremely deteriorated. For example, if the specific resistance is about 5 Ω · cm, the gradient α (% / ° C) of the specific resistance and resistance temperature characteristics is only about 7, and the breakdown voltage is a low value of about 30 V / mm. Norimoto [Nishii: Electronic Ceramics, 88 May (1988) pp2
2 to 27] At present, barium titanate-based semiconductor ceramics having such a low specific resistance value have not been put into practical use.

[課題を解決するための手段] 本発明者らはこのような現状に鑑み、上記問題点を解
決するために鋭意検討を行った結果、チタン酸バリウム
系半導体磁器の原料として通常用いられる炭酸塩または
酸化物の代わりに、主成分として使用されるBaTiO3、Sr
TiO3、CaTiO3、PbTiO3の内、少なくともBaTiO3とSrTiO3
を特定の方法によって製造した微細で均一な一次粒子を
有し、平均粒子径が大きいシュウ酸塩を仮焼した形骸二
次粒子を用いることにより比抵抗が8Ω・cm以下と十分
に低く、しかも耐電圧、抵抗温度特性等の他の特性が非
常に優れた正抵抗温度特性を持つ磁器が得られることを
見いだし、本発明に到達したものである。
[Means for Solving the Problems] In view of the present situation as described above, the present inventors have made earnest studies to solve the above-mentioned problems, and as a result, carbonates usually used as a raw material for barium titanate-based semiconductor porcelain. Or instead of oxide, BaTiO 3 , Sr used as the main component
Of TiO 3 , CaTiO 3 , and PbTiO 3 , at least BaTiO 3 and SrTiO 3
Has a fine and uniform primary particle produced by a specific method, and the specific resistance is sufficiently low as 8 Ω · cm or less by using the skeleton secondary particle in which oxalate having a large average particle diameter is calcined, and The present invention has been achieved by finding that a porcelain having a positive resistance temperature characteristic which is extremely excellent in other characteristics such as withstand voltage and resistance temperature characteristic can be obtained.

すなわち本発明は、0.2μm以下の一次粒子が互に繋
がった開基孔を有する形骸二次粒子でその大きさが平均
150〜250μmであり、かつ50μm以下の形骸二次粒子が
5wt%以下であることを特徴とするチタン酸バリウム粉
末、およびBa/Ti(モル比)=1.02〜1.05、BaCl2:10wt
%以下の濃度の四塩化チタンおよび塩化バリウムを含む
水溶液を、シュウ酸水溶液に添加する際、シュウ酸/Ti
(モル比)=2.1〜2.3、生成するシュウ酸チタン酸バリ
ウム4水塩の濃度が10〜12wt%になるように設定し、添
加をシャワー状、4時間以上の時間で行いかつ撹拌周速
2.5m/sec以上、添加中の液温を55〜75℃の温度範囲で定
温に維持して得たシュウ酸チタン酸バリウムを700〜900
℃で焼成することを特徴とする上記チタン酸バリウム粉
末の製造法、次に、0.1μm以下の一次粒子が互に繋が
った開基孔を有する形骸二次粒子でその大きさが平均70
〜180μmであり、かつそのBET比表面積が20〜30m2/gで
あることを特徴とするチタン酸ストロンチウム粉末、お
よびSr/Ti(モル)=1.2以上、SrCl2:15wt%以下の四塩
化チタンおよび塩化ストロンチウムを含む水溶液を、シ
ュウ酸の水溶液に添加する際、シュウ酸/Ti=(モル
比)=2.1〜2.3、生成するシュウ酸チタン酸ストロンチ
ウム5水塩の濃度が10.0〜14.0wt%に設定し、添加をシ
ャワー状、2時間以上の時間で行いかつ撹拌周速3.0m/s
ec以上、添加中の液温を60〜80℃以上の温度範囲で定温
に維持して得たシュウ酸チタン酸ストロンチウムを、70
0〜900℃で焼成することを特徴とする上記チタン酸スト
ロンチウム粉末の製造法、さらに0.2μm以下の一次粒
子が互に繋がった開気孔を有する形骸二次粒子でその大
きさが平均50〜150μmであり、かつ20μm以下の形骸
二次粒子が5wt%以下であることを特徴とするチタン酸
鉛粉末、および四塩化チタンをアンモニアにより中和し
た後濾過洗浄し、シュウ酸に溶解したシュウ酸/Ti(モ
ル比)=2.1〜2.3、TiO2:4wt%以下の水溶液を硝酸鉛の
水溶液に添加する際、Pb/T(モル比)=1.01〜1.03、生
成するシュウ酸チタン酸鉛4水塩の濃度10〜18wt%にな
るよう設定し、かつ添加をシャワー状、撹拌周速2.0m/s
ec、液温45〜55℃で一定温度に維持しながら、1〜2時
間で添加することにより得たシュウ酸チタン酸鉛を、60
0〜800℃で焼成することを特徴とする上記チタン酸鉛粉
末の製造法、さらには前述の粉末を用いた発明でBaTi
O3、SrTiO3、CaTiO3、PbTiO3の主成分の内、少なくとも
BaTiO3、SrTiO3が前述した粉末よりなり、 その主成分の組成がBaTiO3:45〜85モル%、SrTiO3:1
〜20モル%、CaTiO3:5〜20モル%、PbTiO3:1〜20モル%
であり 前記主成分に対して半導化剤としてY,La,Ceなどの希
土類元素、Nb,Sbのうち少なくとも1種が0.1〜0.3モル
%、 さらにMn:0.006〜0.025モル%、SiO2:0.1〜1モル%
の組成範囲になることを特徴とするチタン酸バリウム系
半導体磁器組成物用原料粉末、およびBaTiO3、SrTiO3
CaTiO3、PbTiO3の主成分のうち、少なくともBaTiO3、Sr
TiO3、PbTiO3が前述した粉末よりなり、同様の組成のチ
タン酸バリウム系半導体磁器組成物用原料粉末を提供す
るものである。
That is, the present invention is a skeleton secondary particle having open base holes in which primary particles of 0.2 μm or less are connected to each other, and the average size thereof is
Secondary particles of 150-250 μm and 50 μm or less
Barium titanate powder characterized by being 5 wt% or less, and Ba / Ti (molar ratio) = 1.02 to 1.05, BaCl 2 : 10 wt
% When adding an aqueous solution containing titanium tetrachloride and barium chloride at a concentration of not more than 10% to the oxalic acid aqueous solution.
(Molar ratio) = 2.1 to 2.3, the concentration of the produced barium oxalate titanate tetrahydrate is set to 10 to 12 wt%, and the addition is carried out in a shower for 4 hours or more and the stirring peripheral speed is
Barium oxalate titanate obtained by maintaining the liquid temperature during addition at a constant temperature in the temperature range of 55 to 75 ° C for 2.5 m / sec or more is 700 to 900
A method for producing the above barium titanate powder, characterized by firing at ℃, and then a secondary particle having an open base hole in which primary particles having a size of 0.1 μm or less are connected to each other, and the average size thereof is 70
˜180 μm, and its BET specific surface area is 20 to 30 m 2 / g, strontium titanate powder, and titanium tetrachloride having Sr / Ti (mol) = 1.2 or more and SrCl 2 : 15 wt% or less When adding an aqueous solution containing strontium chloride and oxalic acid to an aqueous solution of oxalic acid, the concentration of oxalic acid / Ti = (molar ratio) = 2.1 to 2.3, and the concentration of strontium oxalate titanate pentahydrate produced is 10.0 to 14.0 wt%. Set, add in shower for 2 hours or more, and stirrer peripheral speed 3.0m / s
More than ec, strontium oxalate titanate obtained by keeping the liquid temperature during addition at a constant temperature in the temperature range of 60 to 80 ° C.
A method for producing the strontium titanate powder, which is characterized by firing at 0-900 ° C., and secondary particles having open pores in which primary particles of 0.2 μm or less are connected to each other and having an average size of 50-150 μm. And lead secondary particles of titanate characterized by having a secondary particle size of 20 μm or less in an amount of 5 wt% or less, and oxalic acid dissolved in oxalic acid after neutralizing titanium tetrachloride with ammonia Ti (molar ratio) = 2.1-2.3, TiO 2: when the 4 wt% or less of the aqueous solution is added to an aqueous solution of lead nitrate, Pb / T (molar ratio) = 1.01 to 1.03, generation oxalate titanate 4 tetrahydrate The concentration is set to 10 to 18 wt%, and the addition is shower-like, and the stirring peripheral speed is 2.0 m / s.
ec, lead oxalate titanate obtained by adding in 1 to 2 hours while maintaining a constant temperature at a liquid temperature of 45 to 55 ° C.
The method for producing the above-mentioned lead titanate powder, which is characterized by firing at 0 to 800 ° C., and BaTi in the invention using the above-mentioned powder.
At least one of the main components of O 3 , SrTiO 3 , CaTiO 3 , and PbTiO 3
BaTiO 3 and SrTiO 3 are composed of the above-mentioned powder, and the main component composition is BaTiO 3 : 45 to 85 mol%, SrTiO 3 : 1
20 mol%, CaTiO 3: 5 to 20 mol%, PbTiO 3: 1 to 20 mol%
Is a rare earth element such as Y, La, and Ce as a semiconducting agent with respect to the main component, and at least one of Nb and Sb is 0.1 to 0.3 mol%, and further Mn: 0.006 to 0.025 mol%, SiO 2 : 0.1-1 mol%
Barium titanate-based semiconductor porcelain composition raw material powder, and BaTiO 3 , SrTiO 3 ,
Of the main components of CaTiO 3 and PbTiO 3 , at least BaTiO 3 and Sr
TiO 3 and PbTiO 3 are the above-mentioned powders, and provide a raw material powder for a barium titanate-based semiconductor porcelain composition having the same composition.

まず、本発明の基本的原料となる各種シュウ酸塩の製
造方法について述べるが、これらの方法において重要な
事項は、できるだけ純度の高いシュウ酸塩を得ること、
シュウ酸塩中のBa,Sr,Pb,CaとTiのモル比ができるだけ
1に近くかつ各結晶間のばらつきの無いものを得ること
である。そのため純度については原料となるシュウ酸、
四酸化チタンやBa,Sr,Pb,Caの塩ができるだけ高純度で
あることは勿論、反応容器からの混入をさけるため反応
容器はテフロン等の耐酸性のプラスチック容器が好まし
く、最終的に得られたシュウ酸塩はアルカリ土類を除い
た他の金属不純物濃度は数ppm以下、トータルで100ppm
以下が好ましい。またモル比については結晶形状や粒子
径が均一で、できるだけ大きいものを得る必要がある
が、それらは以下のような製造法をとることによりうま
く製造できることがわかった。
First, a method for producing various oxalate salts as a basic raw material of the present invention will be described. An important matter in these methods is to obtain an oxalate salt having a purity as high as possible,
The aim is to obtain one in which the molar ratio of Ba, Sr, Pb, Ca and Ti in the oxalate salt is as close to 1 as possible and there is no variation between crystals. Therefore, regarding the purity, the raw material oxalic acid,
Titanium tetroxide and Ba, Sr, Pb, Ca salts are not only as pure as possible, but acid-resistant plastic containers such as Teflon are preferable as the reaction container in order to avoid contamination from the reaction container. Oxalate has a metal impurity concentration of a few ppm or less, excluding alkaline earth, total 100 ppm
The following are preferred. As for the molar ratio, it is necessary to obtain as large as possible a crystal shape and a particle diameter which are uniform, and it has been found that they can be successfully produced by the following production method.

初めにシュウ酸チタン酸バリウムの製造について述べ
ると、反応はシュウ酸を溶解した水溶液に対し、四塩化
チタンと塩化バリウムを溶解した溶液を添加することに
より行うわけであるが、設定濃度としては生成するシュ
ウ酸チタン酸バリウム4水塩の濃度が10〜12wt%の範囲
内に入るように設定すればよい。従って、両液の水バラ
ンスは設定濃度の範囲内であればどのような濃度でもよ
いが、四塩化チタンと塩化バリウムの溶液で塩化バリウ
ムが析出しないよう溶液中の塩化バリウムの濃度は10wt
%以下にする必要がある。
First, the production of barium oxalate titanate is described. The reaction is carried out by adding a solution in which titanium tetrachloride and barium chloride are dissolved to an aqueous solution in which oxalic acid is dissolved. The concentration of barium oxalate titanate tetrahydrate may be set to fall within the range of 10 to 12 wt%. Therefore, the water balance of both solutions may be any concentration as long as it is within the range of the set concentration, but the concentration of barium chloride in the solution is 10 wt% so that barium chloride does not precipitate in the solution of titanium tetrachloride and barium chloride.
Must be less than or equal to%.

Ba/Ti(モル比)はBaが若干多目の1.02〜1.05に設定
する必要がある。Ba/Ti(モル比)が1.02より小さい場
合は生成するシュウ酸塩のBa/Ti(モル比)が0.998より
小さい値となり好ましくなく、一方Ba/Ti(モル比)が
1.05より大きい場合は、生成するシュウ酸塩のBa/Ti
(モル比)は1.0付近で大きく変化しないが未反応のBa
が多くなるため経済的でない。シュウ酸/Ti(モル比)
のモル比は、収量および経済性の点から2.1〜2.3の範囲
に設定するのが好ましい。また、他の塩の析出を抑えし
かも経済的な濃度、および結晶の形状等からみて、濃度
が10〜12wt%の範囲が好ましい。
Ba / Ti (molar ratio) needs to be set to 1.02 to 1.05, which is slightly larger than Ba. When Ba / Ti (molar ratio) is less than 1.02, the resulting oxalate has a Ba / Ti (molar ratio) of less than 0.998, which is not preferable.
If it is greater than 1.05, the resulting oxalate Ba / Ti
(Molar ratio) does not change much around 1.0, but unreacted Ba
Is not economical because it increases. Oxalic acid / Ti (molar ratio)
Is preferably set in the range of 2.1 to 2.3 from the viewpoint of yield and economy. Further, the concentration is preferably in the range of 10 to 12 wt% in view of the economical concentration, crystal shape, and the like, while suppressing precipitation of other salts.

さらに生成するシュウ酸チタン酸バリウム4水塩の結
晶の大きさ、形状、粒度分布に大きな影響を与えるのは
添加条件、撹拌状態、温度条件であり、添加はなるべく
広い範囲にシャワー状で添加するのがよく、添加時に十
分分散しないと微細な結晶が析出し、また4時間以上か
けてゆっくり、少量づつ添加しないと同様の現象がおこ
り、最終製品の物性が劣化する原因となる。撹拌状態に
ついても同様であり、容器のスケールや形状において若
干異なるが、少なくとも撹拌周速2.5m/secで行う必要が
ある。
Further, the addition conditions, stirring conditions, and temperature conditions greatly affect the size, shape, and particle size distribution of the resulting barium oxalate tetrahydrate tetrahydrate, and the addition should be made in a shower form over a wide range as much as possible. If they are not sufficiently dispersed at the time of addition, fine crystals will precipitate, and if not added slowly and little by little over 4 hours, similar phenomena will occur, and the physical properties of the final product will be degraded. The same is true for the stirring state, and it is necessary to perform the stirring at least at a peripheral speed of 2.5 m / sec, although the scale and shape of the container are slightly different.

次に温度条件であるが、晶析温度およびその温度の変
動は晶析に大きな影響を及ぼし微結晶の析出の大きな原
因となるので、55〜75℃の温度範囲で一定温度に保つ必
要があり、55℃より低い温度では結晶性の悪い結晶が生
成し、Ba/Ti(モル比)が0.998より小さい値となり、一
方75℃より高い場合は晶出した結晶が不安定で結晶中か
らBaが抜けやすく濾過までの時間が長くなった場合、Ba
/Ti(モル比)が0.998より低くなるため好ましくない。
Next is the temperature condition.Since the crystallization temperature and its fluctuation greatly affect the crystallization and become a major cause of the precipitation of microcrystals, it is necessary to maintain a constant temperature in the temperature range of 55 to 75 ° C. At a temperature lower than 55 ° C, crystals with poor crystallinity are formed, and the Ba / Ti (molar ratio) becomes a value smaller than 0.998. On the other hand, when the temperature is higher than 75 ° C, the crystallized crystals are unstable and Ba is contained in the crystal. If it is easy to come off and the time until filtration is long, Ba
/ Ti (molar ratio) is less than 0.998, which is not preferable.

このようにして析出したシュウ酸チタン酸バリウムの
結晶は、Ba/Ti(モル比)が0.998〜1.002の範囲内で、
結晶内部も化学量論的に均一であり、結晶粒径は平均10
0μm以上で揃っており、小さな結晶の少ないものとな
る。
Crystals of barium oxalate titanate precipitated in this way have a Ba / Ti (molar ratio) within the range of 0.998 to 1.002,
The inside of the crystal is also stoichiometrically uniform, with an average crystal grain size of 10
It is uniform at 0 μm or more, and has few small crystals.

次にシュウ酸チタン酸ストロンチウムの製造法である
が、シュウ酸チタン酸バリウムに比較してSr/Ti(モル
比)が1より小さい値になり易いため仕込みのSr/Ti
(モル比)を1.2以上に設定する必要がある。設定Sr/Ti
(モル比)が1.2より小さいと、生成シュウ酸塩のSr/Ti
(モル比)が0.998より小さい値となり好ましくない
が、余り大きすぎても経済的でなく、普通は1.2〜1.3の
範囲で設定する。シュウ酸/Ti(モル比)のモル比は、
収量および経済性の点から2.1〜2.3の範囲に設定するの
が好ましい。また、他の塩の析出を抑えしかも経済的な
濃度、および結晶の形状等からみて、濃度は10〜14wt%
の範囲が好ましい。
Next, a method for producing strontium titanate oxalate is described. Since Sr / Ti (molar ratio) tends to be smaller than 1 as compared with barium oxalate, the charged Sr / Ti
(Molar ratio) must be set to 1.2 or more. Setting Sr / Ti
If (molar ratio) is less than 1.2, the oxalate Sr / Ti
(Molar ratio) is less than 0.998, which is not preferable. However, if it is too large, it is not economical, and it is usually set in the range of 1.2 to 1.3. The molar ratio of oxalic acid / Ti (molar ratio) is
It is preferable to set it in the range of 2.1 to 2.3 from the viewpoint of yield and economy. In addition, the concentration is 10 to 14 wt%, considering the economical concentration and the crystal shape, etc., while suppressing the precipitation of other salts.
Is preferred.

さらに生成するシュウ酸チタン酸ストロンチウム5水
塩の結晶の大きさ、形状、粒度分布に大きな影響を与え
るのは添加条件、撹拌状態、温度条件であり、添加はな
るべく広い範囲にシャワー状で添加するのがよく、添加
時に十分撹拌分散させないと微細な結晶が析出し、また
2時間以上かけてゆっくり、少量づつ添加しないと同様
の現象がおこり、結晶のSr/Ti(モル比)が0.998より小
さくなり好ましくない。撹拌条件についても同様であ
り、容器のスケールや形状において若干異なるが、少な
くとも撹拌周速3.0m/secで行う必要がある。
Further, it is the addition conditions, stirring conditions, and temperature conditions that greatly affect the size, shape, and particle size distribution of the resulting strontium oxalate titanate pentahydrate, and the addition is performed in a shower form over a wide range as much as possible. If not sufficiently stirred and dispersed at the time of addition, fine crystals will precipitate, and the same phenomenon will occur if the addition is not carried out little by little over 2 hours, and the Sr / Ti (molar ratio) of the crystals will be less than 0.998. It is not preferable. The same applies to the stirring conditions, and although the scale and shape of the container are slightly different, it is necessary to perform the stirring at least at a peripheral speed of 3.0 m / sec.

次に温度条件であるが、晶析温度およびその温度の変
動は晶析に大きな影響を及ぼし微結晶の析出の大きな原
因となるので、60〜80℃とシュウ酸チタン酸バリウムに
比較してより高い温度範囲で一定温度に保つ必要があ
り、シュウ酸チタン酸バリウムと同様の理由で、上記範
囲より高い場合も低い場合もSr/Ti(モル比)が0.998よ
り小さい値となり好ましくない。
Next is the temperature condition.Since the crystallization temperature and fluctuations in the temperature greatly affect the crystallization and become a major cause of the precipitation of microcrystals, the temperature is 60 to 80 ° C, which is higher than that of barium oxalate titanate. It is necessary to maintain a constant temperature in a high temperature range, and for the same reason as for barium oxalate titanate, the Sr / Ti (molar ratio) value is less than 0.998 both above and below the above range, which is not preferable.

このようにして析出したシュウ酸チタン酸ストロンチ
ウムの結晶も、Sr/Ti(モル比)が0.998〜1.002の範囲
内で、結晶内部も化学量論的に均一であり、結晶粒径は
平均70μm以上で揃っており小さな結晶の少ないものと
なる。
The crystals of strontium oxalate titanate precipitated in this manner also have a Sr / Ti (molar ratio) within the range of 0.998 to 1.002, the inside of the crystals is stoichiometrically uniform, and the average crystal grain size is 70 μm or more. They are all aligned and there are few small crystals.

シュウ酸チタン酸ストロンチウムの場合は、反応温度
の60〜80℃では収率が約80wt%と低いため反応後に冷却
することにより収率を90wt%以上に上げることができ
る。しかし、冷却速度によりその後析出するシュウ酸塩
のSr/Ti(モル比)が変わってくるためその冷却速度は
5℃/hr〜30℃/Hrの範囲内で行う必要がある。
In the case of strontium titanate oxalate, the yield is as low as about 80 wt% at the reaction temperature of 60 to 80 ° C., so that the yield can be increased to 90 wt% or more by cooling after the reaction. However, since the Sr / Ti (molar ratio) of the oxalate precipitated thereafter changes depending on the cooling rate, it is necessary to perform the cooling rate within the range of 5 ° C./hr to 30 ° C./Hr.

更に、シュウ酸チタン酸鉛の製造法であるが、この場
合四塩化チタンを使用すると鉛の塩を溶解させた場合、
塩化鉛の沈殿を生成するため、シュウ酸チタン酸バリウ
ムの場合のような方法は使えず、四塩化チタンを一旦ア
ンモニアにより中和して水酸化チタンのゲルを生成さ
せ、十分濾過洗浄を行った後シュウ酸に溶解すれば溶液
状となるので、この溶液を使用することができる。シュ
ウ酸チタン酸鉛の場合、条件によってPb/Ti(モル比)
が変動するので種々の条件を一定にする必要があるが、
完全な溶液とするためおよび後のシュウ酸塩生成時の収
率等を考え、かつモル比が1に近い条件では、シュウ酸
/Ti(モル比)は2.1〜2.3、TiO2:4wt%以下とする必要
がある。トータルの水バランスから考えると、生成する
シュウ酸チタン酸鉛の濃度が10〜18wt%になるように設
定すればよくその範囲内になるよう、Tiがシュウ酸に溶
解した溶液と硝酸鉛の濃度を設定すればよい。
Furthermore, a method for producing lead oxalate titanate, in which case the use of titanium tetrachloride dissolves the lead salt,
The method used in the case of barium oxalate cannot be used to generate the precipitate of lead chloride, and titanium tetrachloride was neutralized once with ammonia to form a gel of titanium hydroxide, which was thoroughly filtered and washed. After dissolving in oxalic acid, a solution is obtained, and this solution can be used. For lead oxalate titanate, Pb / Ti (molar ratio) depending on conditions
Varies, so it is necessary to keep various conditions constant.
In order to obtain a complete solution and considering the yield at the time of oxalate formation later, and under conditions where the molar ratio is close to 1, oxalic acid
/ Ti (molar ratio) must be 2.1 to 2.3 and TiO 2 : 4 wt% or less. Considering the total water balance, it is sufficient to set the concentration of the generated lead oxalate titanate to be 10 to 18 wt%, so that the concentration of the solution of Ti dissolved in oxalic acid and the concentration of lead nitrate are within the range. Should be set.

また、シュウ酸チタン酸鉛の濃度が10〜18wt%に設定
した場合、粒径が大きくかつ均一な結晶を得ることがで
きる。
In addition, when the concentration of lead oxalate titanate is set to 10 to 18 wt%, a crystal having a large particle size and uniformity can be obtained.

Pb/Ti(モル比)が1に近いシュウ酸塩を得るために
は、設定Pb/Ti(モル比)は1.01〜1.03にする必要があ
り、設定Pb/Ti(モル比)が1.01より低いとシュウ酸塩
のPb/Ti(モル比)が0.99以下と下がり、一方設定Pb/Ti
(モル比)が1.03より大きい場合は、反対にシュウ酸塩
のモル比が1.01と大きすぎる値となる。設定シュウ酸/T
i(モル比)についても同様である。反応時の液温につ
いては、45〜55℃の範囲で行う必要があり、この範囲外
ではいずれもモル比が0.99より低くなり好ましくない。
In order to obtain an oxalate having a Pb / Ti (molar ratio) close to 1, the set Pb / Ti (molar ratio) needs to be 1.01 to 1.03, and the set Pb / Ti (molar ratio) is lower than 1.01. Pb / Ti (molar ratio) of oxalate and oxalate decreased to below 0.99, while set Pb / Ti
When the (molar ratio) is greater than 1.03, the molar ratio of the oxalate is conversely 1.01 which is too large. Set oxalic acid / T
The same applies to i (molar ratio). It is necessary to carry out the reaction at a liquid temperature in the range of 45 to 55 ° C., and outside of this range, the molar ratio is lower than 0.99, which is not preferable.

シュウ酸チタン酸鉛を得る場合も、液中の拡散状態は
結晶状態に大きな影響を及ぼし、なるべく均一かつ早い
拡散が起こるよう、添加はシャワー状態で行い、撹拌周
速は2.0m/sec以上で行う必要がある。
Also in the case of obtaining lead oxalate titanate, the diffusion state in the liquid has a great effect on the crystal state, and the addition is performed in the shower state so that the diffusion is as uniform and fast as possible, and the stirring peripheral speed is 2.0 m / sec or more. There is a need to do.

このようにして析出したシュウ酸チタン酸鉛の結晶
も、Pb/Ti(モル比)が0.998〜1.002の範囲内で、結晶
内部も化学量論的に均一であり、結晶粒径は平均50μm
以上で揃っており、小さな結晶の少ないものとなる。
The thus-precipitated lead oxalate titanate crystal also had a Pb / Ti (molar ratio) within the range of 0.998 to 1.002, the inside of the crystal was stoichiometrically uniform, and the average crystal grain size was 50 μm.
As a result, the crystals are small and have few small crystals.

本発明の粉末組成物の一つであるチタン酸カルシウム
についても、チタン酸ストロンチウム等を製造するのと
同様に、Ca/Ti(モル比)、CaCl2の濃度、シュウ酸/Ti
(モル比)、生成するシュウ酸塩の濃度、液の温度、添
加の方法、撹拌の条件等を設定することにより、Ca/Ti
(モル比)が1に近く結晶粒径が同様に大きく整ったシ
ュウ酸チタン酸カルシウムを得ることができる。
As for the calcium titanate, which is one of the powder compositions of the present invention, Ca / Ti (molar ratio), CaCl 2 concentration, oxalic acid / Ti
(Molar ratio), the concentration of the resulting oxalate, the temperature of the liquid, the method of addition, and the conditions of stirring, etc.
It is possible to obtain calcium oxalate titanate having a (molar ratio) close to 1 and a similarly large crystal grain size.

前述の方法により得られたそれぞれのシュウ酸塩は、
有機酸のプロトンが金属または金属酸化物で置き換えら
れた形になっており、これを十分酸素の存在する雰囲気
中、普通の焼成を行う温度よりは若干低い温度で仮焼成
することにより有機物が酸化分解し、BaTiO3、SrTiO3
PbTiO3、CaTiO3のような形の酸化物となるわけである
が、この際の分解前の有機物の結晶状態が焼成後の酸化
物の粒径、粒度分布、モル比等の物性に大きな影響を与
え、さらに上記物性が最終的な焼結体の電気的性質にも
大きく影響する。
Each oxalate obtained by the above method,
The protons of the organic acid are replaced with metals or metal oxides.The organic matter is oxidized by pre-baking it in an atmosphere with sufficient oxygen and at a temperature slightly lower than the temperature at which normal baking is performed. Decomposes, BaTiO 3 , SrTiO 3 ,
Although it becomes an oxide in the form of PbTiO 3 and CaTiO 3 , the crystalline state of the organic matter before decomposition at this time has a great influence on the physical properties such as the particle size, particle size distribution and molar ratio of the oxide after firing. In addition, the above physical properties have a great influence on the electrical properties of the final sintered body.

本発明で得られたシュウ酸塩の仮焼体は、0.2μm程
度以下の均一で微細な粒子が軽く焼結してお互いに結合
力を持ち、分解前のシュウ酸塩の形を保持したいわゆる
形骸粒子の構造をとっておりしかもその粒子は原子分布
の片寄りがなく均一に分布しており、このような仮焼体
を使用して後述する場合、焼成工程により焼結体を得る
ことにより焼結体自体も均一な組織を持ち、低比抵抗で
抵抗温度係数が高くかつ耐電圧の高い磁器となる。
The calcined body of the oxalate obtained in the present invention is a so-called oxalate shape in which uniform and fine particles of about 0.2 μm or less are lightly sintered and have a binding force to each other and retain the shape of the oxalate before decomposition. It has a structure of skeletal particles and the particles are evenly distributed without deviation of atomic distribution.When using such a calcined body as described later, it is possible to obtain a sintered body by a firing process. The sintered body itself also has a uniform structure, and has a low specific resistance, a high temperature coefficient of resistance, and a high withstand voltage.

まずシュウ酸チタン酸バリウム、シュウ酸チタン酸ス
トロンチウム、シュウ酸チタン酸カルシウムの仮焼成に
ついて具体的に述べると、得られたそれぞれのシュウ酸
塩は、結晶水が飛散しない程度の温度で乾燥されており
含水塩となっているが、これを有機物が炭化せずかつ粒
子が適当な大きさに留まる程度の温度で焼成する。従っ
て焼成時の炉内は酸素が十分供給される雰囲気中で行う
必要があるが、有機酸塩は急激な分解燃焼を起こす場合
があるので余り過剰な酸素は必要でなく、適度な酸素雰
囲気で行うことが好ましい。仮焼成温度は700〜900℃が
好ましく、700℃より低い場合は十分に酸化分解が進行
せず、炭素等が残留するため好ましくなく。一方900℃
より高い場合、不均一な粒成長が起きやすく、局所的な
異常粒成長が認められる場合が多く好ましくない。
First, the calcination of barium oxalate, strontium oxalate, and calcium oxalate is specifically described.Each oxalate obtained is dried at a temperature at which water of crystallization does not scatter. Although it is a hydrated salt, it is calcined at such a temperature that the organic matter is not carbonized and the particles remain in an appropriate size. Therefore, the firing must be performed in an atmosphere in which oxygen is sufficiently supplied.However, organic acid salts may cause rapid decomposition and combustion, so that excessive oxygen is not necessary. It is preferred to do so. The calcination temperature is preferably from 700 to 900 ° C. If the calcination temperature is lower than 700 ° C, oxidative decomposition does not proceed sufficiently and carbon and the like remain, which is not preferable. 900 ° C
If it is higher, uneven grain growth is likely to occur, and local abnormal grain growth is often observed, which is not preferable.

このようにして得たシュウ酸塩の仮焼体は、チタン酸
バリウム、チタン酸カルシウムについては0.2μm以下
の一次粒子が互に繋がった開気孔を有する形骸二次粒子
で、その大きさが平均粒径150〜250μmであり、50μm
以下の形骸二次粒子が5wt%以下、BET比表面積が6〜10
m2/gの整った二次粒子径を有する仮焼体となる。
The calcined oxalate thus obtained is a secondary particle of barium titanate or calcium titanate having open pores in which primary particles of 0.2 μm or less are connected to each other, and the average size thereof is Particle size is 150-250μm, 50μm
The following secondary particles are 5 wt% or less, BET specific surface area is 6-10
A calcined body having a uniform secondary particle diameter of m 2 / g is obtained.

またチタン酸ストロンチウム仮焼体については、0.1
μm以下の一次粒子が互に繋がった開気孔を有する形骸
二次粒子でその大きさが平均70〜180μmであるが、こ
の場合シュウ酸塩の製造方法により生成した仮焼体のBE
T比表面積が大きく変化し、焼結磁器が優れた特性を示
す粉末はBET比表面積が20〜30m2/gの範囲内である。
For the strontium titanate calcined body, 0.1%
A secondary particle of a skeleton having open pores in which primary particles having a size of μm or less are connected to each other and having an average size of 70 to 180 μm. In this case, the BE of the calcined body produced by the method for producing an oxalate salt is used.
The powder whose T specific surface area is greatly changed and the sintered porcelain exhibits excellent characteristics has a BET specific surface area in the range of 20 to 30 m 2 / g.

シュウ酸チタン酸鉛の場合、上記したシュウ酸塩に比
べ酸化分解の温度が低く、粒成長しやすいため仮焼成は
600〜800℃が好ましく、600℃より低い温度では同様に
十分に酸化分解が進行せず、炭素等が残留するため好ま
しくなく。一方800℃より高い場合、不均一な粒成長が
起きやすく、局所的な異常粒成長が認められる場合が多
く好ましくない。このようにして得たシュウ酸チタン酸
鉛の仮焼体も、0.2μm以下の一次粒子が互に繋がった
開気孔を有すつ形骸二次粒子で、その大きさが平均50〜
150μmであり、20μm以下の形骸二次粒子が5wt%以
下、BET比表面積が6〜10m2/gの整った二次粒子径を有
する仮焼体となる。
In the case of lead oxalate titanate, the temperature of oxidative decomposition is lower than that of the oxalate described above, and grain growth is easy.
The temperature is preferably from 600 to 800 ° C., and if the temperature is lower than 600 ° C., the oxidative decomposition similarly does not proceed sufficiently and carbon and the like remain, which is not preferable. On the other hand, when the temperature is higher than 800 ° C., uneven grain growth tends to occur, and local abnormal grain growth is often observed, which is not preferable. The thus obtained calcined body of lead oxalate titanate is also a secondary particle of a skeleton having open pores in which primary particles of 0.2 μm or less are connected to each other, and the size thereof is 50 to 50 on average.
The calcined body has a uniform secondary particle diameter of 150 μm, 5% by weight or less of secondary particles having a shape of 20 μm or less, and a BET specific surface area of 6 to 10 m 2 / g.

以上のような方法で得られたシュウ酸塩仮焼体を原料
して、後述する方法により混合、焼成を行うわけである
が、この場合必ずしもすべてシュウ酸塩の仮焼体を使用
する必要はなく、少なくともBaTiO3、SrTiO3についてシ
ュウ酸塩の仮焼体を使用すればよい。
The oxalate calcined body obtained by the above method is used as a raw material, and the mixture and firing are performed by the method described below. In this case, it is not always necessary to use the calcined oxalate body. Instead, a calcined body of oxalate may be used for at least BaTiO 3 and SrTiO 3 .

この場合、他のPbTiO3、CaTiO3は所謂普通の固相法に
より製造して使用してもよく、普通はそれぞれの原料粉
末、例えばPbTiO3の場合はPb3O4とTiO2を混合、焼成、
粉砕することにより製造したPbTiO3と同様の方法で製造
したCaTiO3をシュウ酸塩仮焼体と混合して使用すること
になるが、シュウ酸塩仮焼体と平均粒径、不純物濃度と
も近似している必要があり、平均粒径は2μm以下、ア
ルカリ土類金属を除いた他の金属不純物は100ppm以下で
ある必要がある。
In this case, other PbTiO 3 , CaTiO 3 may be produced and used by a so-called ordinary solid phase method, usually each raw material powder, for example in the case of PbTiO 3 Pb 3 O 4 and TiO 2 are mixed, Firing,
CaTiO 3 produced by the same method as PbTiO 3 produced by crushing will be used as a mixture with the calcined oxalate body. It is necessary that the average particle diameter is 2 μm or less, and the metal impurities other than the alkaline earth metal are 100 ppm or less.

次に本発明の組成について説明すると、本発明は上記
主成分としてのBaTiO3、SrTiO3、CaTiO3、PbTiO3がBaTi
O3:45〜85モル%、SrTiO3:1〜20モル%、CaTiO3:5〜20
モル%、PbTiO3:1〜20モル%からなり、これに対して半
導化剤としてY,La,Ceなどの希土類元素、Nb,Sbのうち少
なくとも1種が0.1〜0.3モル%、さらにMn:0.006〜0.02
5モル%、SiO2:0.1〜1モル%が添加されている組成で
ある。
Next, the composition of the present invention will be described. In the present invention, BaTiO 3 , SrTiO 3 , CaTiO 3 and PbTiO 3 as the main components are BaTi 3 .
O 3: 45 to 85 mol%, SrTiO 3: 1~20 mol%, CaTiO 3: 5~20
Mol%, PbTiO 3 : 1 to 20 mol%, while at least one of rare earth elements such as Y, La, and Ce, Nb, and Sb as a semiconducting agent, 0.1 to 0.3 mol%, and Mn. : 0.006-0.02
The composition is such that 5 mol% and SiO 2 : 0.1 to 1 mol% are added.

本発明の主成分のBaTiO3、SrTiO3、CaTiO3、PbTiO3
4成分系の磁器は、チタン酸バリウムのBaの一部をCa,S
r,Pbで同時に置換したものである。Pb,Srは単独ではキ
ュリー点をそれぞれ高温側、低温側へ移行させるもので
あり、これらCa,Sr,Pbを共存状態で主成分に含有させる
ことにより、耐電圧値が高くなり、また突入大電流への
耐久性が向上することが知られているが、従来法におい
ては比抵抗が8(Ω・cm)以下で優れた耐電圧特性を有
するものは得られていない。
The four-component porcelain of the main components of the present invention, BaTiO 3 , SrTiO 3 , CaTiO 3 , and PbTiO 3 , uses a part of Ba of barium titanate as Ca, S
It is a substitution at the same time with r and Pb. Pb and Sr individually shift the Curie points to the high temperature side and the low temperature side, respectively.By including these Ca, Sr, and Pb in the main component in the coexisting state, the withstand voltage value becomes high, and the inrush voltage is large. It is known that the durability against electric current is improved, but in the conventional method, one having a specific resistance of 8 (Ω · cm) or less and excellent withstand voltage characteristics has not been obtained.

本発明の主成分は、BaTiO3:45〜85モル%、SrTiO3:1
〜20モル%、CaTiO3:5〜20モル%、PbTiO3:1〜20モル%
よりなるが、上記範囲に主成分を限定したのは以下の理
由によるためである。
The main components of the present invention are: BaTiO 3 : 45 to 85 mol%, SrTiO 3 : 1
20 mol%, CaTiO 3: 5 to 20 mol%, PbTiO 3: 1 to 20 mol%
However, the main component was limited to the above range for the following reason.

まず、BaTiO3が45%未満の場合、半導体化が困難にな
り、比抵抗も高くなる。一方、85%を越えると、電気的
特性が劣化するため好ましくない。
First, if BaTiO 3 is less than 45%, it becomes difficult to form a semiconductor and the specific resistance becomes high. On the other hand, if it exceeds 85%, the electrical characteristics are deteriorated, which is not preferable.

SrTiO3が1モル%未満では、焼結体の粒子が粗大とな
ってしまい、電気的特性改善の効果が現れず、20モル%
を越えると、部分的粒成長が起こり電気的特性が劣化し
てしまう。
If the amount of SrTiO 3 is less than 1 mol%, the particles of the sintered body become coarse, and the effect of improving the electrical characteristics does not appear.
If it exceeds, partial grain growth occurs and electrical characteristics are degraded.

CaTiO3が5モル%未満では、その耐電圧特性等が優れ
ず、20モル%を越えた場合、上記耐電圧特性が劣化して
しまう。
If the content of CaTiO 3 is less than 5 mol%, the withstand voltage characteristics are not excellent, and if it exceeds 20 mol%, the withstand voltage characteristics are deteriorated.

PbTiO3については、1モル%未満では電気的特性が満
足できるものではなく、20モル%を越えた場合、焼成時
にPbが飛散するため焼結しにくくまた半導体化が困難に
なる。
When the content of PbTiO 3 is less than 1 mol%, the electrical characteristics are not satisfactory. When the content exceeds 20 mol%, Pb is scattered at the time of sintering, so that sintering is difficult, and it is difficult to form a semiconductor.

なお、このとき主成分のBa,Sr,Ca,Pbの合計とTiのモ
ル比については、0.99〜1.03の範囲内で調整すれば、製
造された磁器の物性に殆ど影響をおよぼさないものを製
造できる。
At this time, if the total of Ba, Sr, Ca, Pb as the main components and the molar ratio of Ti are adjusted within the range of 0.99 to 1.03, the physical properties of the manufactured porcelain are hardly affected. Can be manufactured.

チタン酸バリウム系半導体磁器を製造するためには、
半導体化剤を微量含有させる必要があり、半導体化剤と
してY,La,Ceなどの希土類元素、Nb,のうち少なくとも1
種を0.1〜0.3モル%添加、含有させればよい。添加量が
0.1モル%より少ない場合は、半導体化がうまくいか
ず、0.3モル%より多い場合も逆に比抵抗は高くなり好
ましくない。添加の際は、シュウ酸塩か酸化物の形で添
加するのが好ましい。
In order to manufacture barium titanate-based semiconductor porcelain,
It is necessary to contain a small amount of a semiconducting agent, and at least 1 of rare earth elements such as Y, La, and Ce, and Nb, is used as the semiconducting agent.
The seed may be added and contained in an amount of 0.1 to 0.3 mol%. Addition amount
If the amount is less than 0.1 mol%, semiconductor formation will not be successful, and if the amount is more than 0.3 mol%, the specific resistance will be increased, which is not preferable. In the case of addition, it is preferable to add in the form of an oxalate or an oxide.

さらに、上記組成にMn,SiO2を添加することにより、
抵抗温度特性を改善させることができる。
Furthermore, by adding Mn, SiO 2 to the above composition,
The resistance temperature characteristic can be improved.

本発明においては、固相法に比較して微量のMn、SiO2
の添加で大きな特性の向上が図られているが、これもシ
ュウ酸塩仮焼体を主原料として用いたため、添加剤が非
常に均一に分散し、上記効果を奏するものと考えられ
る。
In the present invention, compared to the solid phase method, a small amount of Mn, SiO 2
However, since the oxalate calcinated body is used as the main raw material, it is considered that the additive is very uniformly dispersed and the above-mentioned effect is exhibited.

この場合、Mnの添加量は、Mn:0.006〜0.025モル%
で、これらの割合で磁器中に含ませる。Mnを添加するこ
とにより、キュリー点を越えた正の抵抗温度特性におい
て、その抵抗温度変化率を著しく増大させることができ
る。
In this case, the amount of Mn added is Mn: 0.006 to 0.025 mol%
Then, these ratios are included in the porcelain. By adding Mn, the resistance temperature change rate can be remarkably increased in the positive resistance temperature characteristic exceeding the Curie point.

上記特性を表わすパラメーターとして、抵抗温度係数
(以下、α値と略す。)があるが、Mnが0.006モル%よ
り少ない場合、α値が小さくなり、耐電圧特性が劣化す
る。一方、Mnが0.025モル%より多い場合は、α値は上
がるが室温での比抵抗が高くなり、低電圧で使用する場
合、作動しなくなるので好ましくない。Mnの添加もシュ
ウ酸塩か酸化物の形で添加すればよい。
There is a temperature coefficient of resistance (hereinafter abbreviated as α value) as a parameter representing the above characteristics, but when Mn is less than 0.006 mol%, the α value becomes small and the withstand voltage characteristic deteriorates. On the other hand, when Mn is more than 0.025 mol%, the α value is increased, but the specific resistance at room temperature is increased, and when used at a low voltage, it does not operate, which is not preferable. Mn may be added in the form of oxalate or oxide.

次にSiO2の添加であるが、その量としては、SiO2:0.1
〜1モル%の範囲が好ましい。
Next is the addition of SiO 2 , the amount of which is SiO 2 : 0.1
The range of 1 mol% is preferable.

SiO2の添加により、半導体化剤の添加のわずかな変動
によって生じる比抵抗の変化を抑制し、常温において低
い比抵抗値にしようとするものであり、SiO2が0.1モル
%より少ない場合、粒成長しやすく、耐電圧特性が劣化
し、α値が小さくなり、一方SiO2が1モル%より多い場
合、比抵抗が高くなり、好ましくない。SiO2の添加は、
なるべく粒子径の小さい酸化物を使用すればよい。
The addition of SiO 2 suppresses the change in the specific resistance caused by a slight change in the addition of the semiconducting agent, and tries to obtain a low specific resistance value at room temperature. When SiO 2 is less than 0.1 mol%, It easily grows, the withstand voltage characteristic deteriorates, and the α value becomes small. On the other hand, when SiO 2 is more than 1 mol%, the specific resistance becomes high, which is not preferable. The addition of SiO 2 is
An oxide having as small a particle size as possible may be used.

上述のような割合で各原料粉末を秤量し、金属不純物
の混入しにくいプラスチック等のボールミル用ポットを
密度が高くしかも不純物として少量混入した場合も電気
的特性に影響を与えないジルコニア等のボールを使用し
て混合、解砕を行う。
Each raw material powder is weighed in the ratio as described above, and a ball mill pot made of plastic or the like, which is hard to mix with metal impurities, has a high density and a ball such as zirconia that does not affect the electrical characteristics even when a small amount is mixed as an impurity. Use to mix and disintegrate.

この場合、解砕効果を上げるために水、有機溶剤等の
液体を添加してもよい。この工程の後、液体を除去し、
造粒を行い、0.3〜1.0t/cm3の圧力で成型を行う。成型
後は、5〜10℃/minで昇温を行い、1300〜1400℃で5分
〜2時間焼成した後に、昇温と同様の速度で降温し、本
発明の磁器を得る。成型圧力が所定より低すぎると比抵
抗が上がり、一方高すぎると比抵抗は下がるがα値が下
がり好ましくない。また、昇温速度が遅すぎると比抵抗
が上がる、一方速すぎる場合は比抵抗は下がるがα値も
下がり好ましくない。焼成温度については、温度が低す
ぎても高すぎても比抵抗が上がり好ましくない。
In this case, a liquid such as water or an organic solvent may be added to enhance the crushing effect. After this step, remove the liquid,
Granulation is performed and molding is performed under a pressure of 0.3 to 1.0 t / cm 3 . After the molding, the temperature is raised at 5 to 10 ° C./min, and after baking at 1300 to 1400 ° C. for 5 minutes to 2 hours, the temperature is lowered at the same rate as the temperature rising to obtain the porcelain of the present invention. If the molding pressure is lower than a predetermined value, the specific resistance increases. On the other hand, if the molding pressure is too high, the specific resistance decreases, but the α value decreases. On the other hand, if the rate of temperature rise is too slow, the specific resistance increases, while if it is too fast, the specific resistance decreases but the α value also decreases, which is not preferable. Regarding the firing temperature, if the temperature is too low or too high, the specific resistance increases, which is not preferable.

以上のような方法で製造した本発明の磁器は、密度が
5.2〜5.6g/cm3、比抵抗値が8(Ω・cm)以下、α値が
9(%/℃)以上、耐電圧が60(V/mm)以上という低比
抵抗で耐電圧が高く、且つα値も高い優れたチタン酸バ
リウム系半導体磁器となる。
The porcelain of the present invention manufactured by the above method has a density of
5.2 to 5.6g / cm 3 , low specific resistance of 8 (Ω · cm) or less, α value of 9 (% / ° C) or more, and withstand voltage of 60 (V / mm) or more, high withstand voltage Further, it becomes an excellent barium titanate-based semiconductor ceramic having a high α value.

このように、原料として主成分にシュウ酸塩から製造
されたものを用いたために優れた電気的特性を有するよ
うになった理由としては、原料の純度がアルカリ土類元
素を除いたトータルの金属元素が100ppm以下と非常に高
いため微量元素の添加により特性がコントロールしやす
くその特性改善の効果が大きいこと、磁器中の組織がグ
レインサイズが10μm以下で平均サイズがおよそ5μm
に制御された整った粒径の焼結体からなる均一微細組織
となっているため耐電圧特性が向上したことが考えられ
る。
As described above, the reason why the raw material produced from oxalate as the main component has excellent electrical characteristics is that the purity of the raw material is the total metal excluding alkaline earth elements. Since the elements are very high (100ppm or less), the characteristics can be easily controlled by adding trace elements, and the effect of improving the characteristics is great. The grain size of the porcelain structure is 10μm or less and the average size is about 5μm.
It is conceivable that the withstand voltage characteristics were improved due to the uniform microstructure consisting of a sintered body with a controlled grain size.

さらに主成分のシュウ酸塩仮焼体が適当な強度を有す
る微細で均一な一次粒子が結合した形骸粒子であるため
混合解砕時に形骸粒子が順次解砕されながら混合される
ので非常に混合性がよく、そのため焼結時に均一に各原
子が固溶し、磁器とした場合原子の分布もより均一とな
り、磁器中での局所的な特性の変化がなく、全体が均一
な特性を示すことなどが考えられるが、実際には本発明
の原料の選択および製造性、混合解砕方法、焼結方法等
で最も最適な条件になるよう種々の条件を検討した結
果、総合的な効果としてこのような格段の電気的特性を
有する磁器を得ることができたものである。
Furthermore, since the oxalate calcined body of the main component is a skeleton particle in which fine and uniform primary particles having an appropriate strength are combined, the skeleton particles are sequentially crushed and mixed at the time of mixing and crushing, so that the mixing property is very high. As a result, each atom is uniformly solid-soluted during sintering, and the distribution of atoms becomes more uniform when made into porcelain, and there is no local change in the characteristics in the porcelain, and the whole shows uniform characteristics. However, in actuality, as a result of examining various conditions such that selection and manufacturability of raw materials of the present invention, mixing crushing method, sintering method, and the like are optimal conditions, the overall effect is as follows. It was possible to obtain a porcelain having outstanding electrical characteristics.

これらは、定温度発熱用素子、電流制限用素子、温度
制御用素子等の用途として極めて有用である。
These are extremely useful for applications such as constant temperature heating elements, current limiting elements, and temperature controlling elements.

[実施例] 以下、実施例により本発明に具体的に説明するが、本
発明は係る実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the Examples.

実施例1 容量が5m3のグムライニング製タンクAに、Ti(OH)
換算で27.6wt%のTiイオン、HCl換算で32.8wt%のCl
イオンを含有するTi溶液650Kg、塩化バリウム2水塩389
Kgおよび純水2980Kgをゆっくり混合して添加用の溶液と
した。一方容量が7m3のゴムライニング製タンクBに、
シュウ酸429Kgを2055Kgの純水に溶解し、温度を60℃ま
で昇温し、その温度に維持した。
Example 1 Ti (OH) was added to a tank A made of gum lining with a capacity of 5 m 3.
27.6 wt% Ti ion in terms of 4 and 32.8 wt% Cl in terms of HCl
650 kg Ti solution containing ions, barium chloride dihydrate 389
Kg and 2980 Kg of pure water were slowly mixed to prepare a solution for addition. On the other hand, the rubber-lined tank B the capacity 7m 3,
429 Kg of oxalic acid was dissolved in 2055 Kg of pure water, and the temperature was raised to 60 ° C and maintained at that temperature.

この時のBa/Ti(モル比)=1.03、シュウ酸/Ti(モル
比)=2.2、BaCl2=8.25wt%であった。
At this time, Ba / Ti (molar ratio) was 1.03, oxalic acid / Ti (molar ratio) was 2.2, and BaCl 2 was 8.25 wt%.

タンクAからタンクBへの溶液の添加はチャージポン
プによって行い、添加方法はパイプの先端に約200個の
穴を設けて、シャワー状で液面に添加することにより行
った。
The addition of the solution from the tank A to the tank B was performed by a charge pump, and the addition was performed by providing about 200 holes at the end of the pipe and adding the solution to the liquid surface in a shower.

この際の撹拌は平板状の2枚の羽根を有する撹拌羽根
を50rpmで回転させることにより行い、この時の撹拌周
速は2.9m/secであった。反応中の溶液は60℃に維持し、
添加時間は4時間であった。
The stirring at this time was performed by rotating a stirring blade having two flat blades at 50 rpm, and the stirring peripheral speed at this time was 2.9 m / sec. The solution during the reaction was maintained at 60 ° C,
The addition time was 4 hours.

またこの時に生成するシュウ酸チタン酸バリウムの設
定濃度は11wt%であった。
The set concentration of barium oxalate titanate produced at this time was 11 wt%.

添加終了後、反応液は遠心分離機により濾過し洗浄し
た後、50℃で乾燥することによりシュウ酸チタン酸バリ
ウムの結晶592Kgを得た。この時の収率は85.3wt%で、
そのBa/Ti(モル比)は0.999であった。
After the addition was completed, the reaction solution was filtered by a centrifuge, washed, and dried at 50 ° C. to obtain 592 kg of barium oxalate titanate crystals. The yield at this time was 85.3 wt%,
Its Ba / Ti (molar ratio) was 0.999.

得られた粉末は磁器製のるつぼに入れ、空気中900
℃、2hrで焼成してチタン酸バリウム仮焼粉末を得た。
得られた粉末は、アルカリ土類以外の金属不純物がいず
れも10ppm以下で、平均粒径が200μmで、50μm以下の
粒子が約2wt%であった。この時得られた粉末の走査型
電子顕微鏡写真(SEM写真)を第2図に、さらに一部を
採取して一次粒子の様子を観察した透過型電子顕微鏡写
真(TEM写真)を第3図に示す。
The resulting powder is placed in a porcelain crucible and 900 in air.
Calcination was performed at 2 ° C. for 2 hours to obtain a barium titanate calcined powder.
The resulting powder contained 10 ppm or less of metal impurities other than alkaline earth, had an average particle diameter of 200 μm, and contained about 2 wt% of particles of 50 μm or less. A scanning electron micrograph (SEM photograph) of the powder obtained at this time is shown in Fig. 2, and a transmission electron micrograph (TEM photograph) of a part of the powder is observed and observed in Fig. 3. Show.

実施例2 容量が5m3のゴムライニング製タンクAに、Ti(OH)
換算で39.9wt%のTiイオン、HCl換算で31.9wt%のCl
イオンを含有するTi溶液449Kg、塩化ストロンチウム6
水塩516Kg、純水1590Kgをゆっくり混合して添加用の溶
液とした。一方容量が7m3のゴムライニング製タンクB
にシュウ酸429Kgを2147Kgの純水に溶解し、温度を75℃
まで昇温し、その温度に維持した。
Example 2 In a tank A made of rubber lining having a capacity of 5 m 3 , Ti (OH)
4 converted to 39.9wt% Ti ion, HCl converted to 31.9wt% Cl
Ti solution containing ion 449Kg, strontium chloride 6
A solution for addition was prepared by slowly mixing 516 kg of water salt and 1590 kg of pure water. On the other hand, a tank B made of rubber lining with a capacity of 7 m 3.
Dissolve 429 Kg of oxalic acid in 2147 Kg of pure water and keep the temperature at 75 ° C.
And maintained at that temperature.

この時のSr/Ti(モル比)=1.25、シュウ酸/Ti(モル
比)=2.2、SrCl2=12.0wt%であった。
At this time, Sr / Ti (molar ratio) = 1.25, oxalic acid / Ti (molar ratio) = 2.2, and SrCl 2 = 12.0 wt%.

タンクAからタンクBへの溶液の添加はチャージポン
プによって行い、添加方法はパイプの先端に約200個の
穴を設けて、シャワー状で液面に添加することにより行
った。
The addition of the solution from the tank A to the tank B was performed by a charge pump, and the addition was performed by providing about 200 holes at the end of the pipe and adding the solution to the liquid surface in a shower.

この際の撹拌は平板状の2枚の羽根を有する撹拌羽根
を用い、この時の撹拌周速は4.1m/secであった。反応中
の溶液は75℃に維持し、添加時間は2.5時間であった。
またこの時に生成するシュウ酸チタン酸ストロンチウム
の設定濃度は12wt%であった。
The stirring at this time used a stirring blade having two flat blades, and the stirring peripheral speed at this time was 4.1 m / sec. The solution during the reaction was maintained at 75 ° C., and the addition time was 2.5 hours.
The set concentration of strontium oxalate titanate generated at this time was 12 wt%.

添加終了後、反応液を20℃/hrの速度で室温まで冷却
した後、遠心分離機により濾過し洗浄し、さらに50℃で
乾燥することによりシュウ酸チタン酸ストロンチウム5
水塩の結晶600Kgを得た。このシュウ酸塩のSr/Ti(モル
比)=0.999、収率は93wt%であった。
After completion of the addition, the reaction solution was cooled to room temperature at a rate of 20 ° C./hr, filtered and washed with a centrifuge, and dried at 50 ° C. to obtain strontium oxalate 5
600 kg of crystals of hydrate salt were obtained. The oxalate salt had an Sr / Ti (molar ratio) of 0.999 and a yield of 93 wt%.

得られた粉末は磁器製のるつぼに入れ、空気中900
℃、2hrで焼成してチタン酸ストロンチウム仮焼粉末を
得た。得られた粉末は、アルカリ土類以外の金属不純物
がいずれも10ppm以下で、二次粒子の平均粒子径が150μ
m、50μm以下の二次粒子が2.5wt%、BET比表面積が2
6.0m2/gであった。
The resulting powder is placed in a porcelain crucible and 900 in air.
Calcination was performed at 2 ° C. for 2 hours to obtain a strontium titanate calcined powder. The resulting powder has a metal impurity other than alkaline earth of 10 ppm or less, and the average particle size of the secondary particles is 150 μm.
m, 2.5 wt% of secondary particles of 50 μm or less, BET specific surface area of 2
6.0 m 2 / g.

実施例3 TiCl4:10wt%の溶液を40℃以下になるよう冷却しなが
ら、アンモニウム水溶液でPH7になるまで中和し、ゲル
状の水酸化チタンを得た後、これを濾過、純水により洗
浄する。洗浄後のゲルは直ちにシュウ酸により溶解し、
Tiイオンの濃度を測定した後、純水およびシュウ酸によ
りTiイオンの濃度2.4wt%、シュウ酸/Ti(モル比)=2.
15に調整し、この溶液2378Kgを添加用溶液として容量7m
3のゴムライニング製タンクAに移液した。一方、容量
が5m3のゴムライニング製タンクBに硝酸鉛402Kgと純水
1086Kgを入れ溶液とした。この時のPb/Ti(モル比)=
1.02、生成するシュウ酸チタン酸鉛の設定濃度:16.0wt
%であった。
Example 3 A 10 wt% TiCl 4 solution was cooled to 40 ° C. or lower, neutralized to pH 7 with an aqueous ammonium solution to obtain gel titanium hydroxide, which was then filtered and purified with pure water. To wash. The gel after washing is immediately dissolved by oxalic acid,
After measuring the concentration of Ti ion, the concentration of Ti ion was 2.4 wt% with pure water and oxalic acid, and oxalic acid / Ti (molar ratio) = 2.
Adjusted to 15, 2378Kg of this solution as a solution for addition volume 7m
The solution was transferred to the rubber-lined tank A of No. 3 . On the other hand, in a rubber-lined tank B with a capacity of 5 m 3 , 402 kg of lead nitrate and pure water
1086 Kg was added to make a solution. Pb / Ti (molar ratio) at this time =
1.02, set concentration of generated lead oxalate titanate: 16.0wt
%Met.

タンクAからタンクBへの溶液の添加はチャージポン
プによって行い、添加方法はパイプの先端に約200個の
穴を設けて、シャワー状で液面に添加することにより行
った。
The addition of the solution from the tank A to the tank B was performed by a charge pump, and the addition was performed by providing about 200 holes at the end of the pipe and adding the solution to the liquid surface in a shower.

この際の撹拌は平板状の2枚の羽根を有する撹拌羽根
を用い、この時の撹拌周速は2.0m/secであった。反応中
の溶液は50℃に維持し、添加時間は2.0時間であった。
For stirring at this time, a stirring blade having two flat blades was used, and the stirring peripheral speed at this time was 2.0 m / sec. The solution during the reaction was maintained at 50 ° C., and the addition time was 2.0 hours.

添加終了後、溶液を濾過洗浄し、さらに50℃で乾燥し
てシュウ酸チタン酸鉛4水塩を得た。収率は97.0wt%、
シュウ酸チタン酸鉛のPb/Ti(モル比)は0.998であっ
た。
After the addition was completed, the solution was filtered and washed, and dried at 50 ° C. to obtain lead oxalate titanate tetrahydrate. The yield is 97.0wt%,
Pb / Ti (molar ratio) of lead oxalate titanate was 0.998.

得られた粉末は磁器製のるつぼに入れ、空気中600
℃、2hrで焼成してチタン酸鉛の仮焼粉末を得た。得ら
れた粉末は、アルカリ土類以外の金属不純物がいずれも
10ppm以下で、二次粒子の平均粒子径が140μm、50μm
以下の二次粒子が3wt%であった。
The obtained powder is placed in a porcelain crucible and placed in air for 600
Calcination at 2 ° C. for 2 hours gave a calcined powder of lead titanate. The resulting powder is free of any metallic impurities other than alkaline earths.
10ppm or less, the average particle diameter of the secondary particles 140μm, 50μm
The following secondary particles were 3 wt%.

実施例4〜19 主成分原料として、BaTiO3、SrTiO3、PbTiO3は実施例
1〜3により製造したシュウ酸塩仮焼粉末を用い、CaTi
O3としてはCaCO3とTiO2から固相法により製造した、ア
ルカリ土類以外の金属不純物がいずれも10ppm以下、平
均粒径が0.5μmの粉末を用いた。
As examples 4-19 main ingredient material, BaTiO 3, SrTiO 3, PbTiO 3 is used oxalate calcined powder prepared according to Example 1 to 3, CaTi
As O 3 , a powder produced from CaCO 3 and TiO 2 by a solid-phase method and containing 10 ppm or less of metal impurities other than alkaline earth and having an average particle size of 0.5 μm was used.

次に、微量成分として酸化ランタン、シュウ酸マンガ
ン、無水ケイ酸を用いたが、酸化ランタンと無水ケイ酸
については、10μm以下の粒径の粒子を用いた。これら
の各原料を第1表に示すような組成比になるように配合
し、バインダーを添加して50のポリエチレン製のボー
ルミル用ポットおよびジルコニア製ボールを使用し、ア
ルコール溶媒を添加し、24時間湿式混合を行った。
Next, lanthanum oxide, manganese oxalate, and silicic acid anhydride were used as the minor components, but for lanthanum oxide and silicic acid anhydride, particles having a particle size of 10 μm or less were used. Each of these raw materials was blended so as to have a composition ratio as shown in Table 1, a binder was added, 50 polyethylene ball mill pots and zirconia balls were used, and an alcohol solvent was added for 24 hours. Wet mixing was performed.

これを脱水乾燥し造粒した後、成形圧力1000kg/cm2
円盤状に成形した。さらにこれを1350℃、2時間焼成
し、13mmφの直径で2.5mmの厚さの円盤状焼結体を得
た。得られた半導体磁器につき両主表面にIn−Ga合金の
電極を付与し、これを試料とした。これらの試料につ
き、キュリー点、比抵抗値、α値、耐電圧値を測定し
た。その結果を第1表に示す。
This was dehydrated and dried, granulated, and then molded into a disc at a molding pressure of 1000 kg / cm 2 . Further, this was fired at 1350 ° C. for 2 hours to obtain a disk-shaped sintered body having a diameter of 13 mmφ and a thickness of 2.5 mm. An electrode of an In-Ga alloy was provided on both main surfaces of the obtained semiconductor ceramic, and this was used as a sample. Curie points, specific resistance values, α values, and withstand voltage values were measured for these samples. The results are shown in Table 1.

比較例1〜9 実施例1〜3のそれぞれの方法において、一つの条件
だけを変化させてそれぞれシュウ酸塩を製造し、同様の
方法で仮焼し、その仮焼粉末を使用した他は、実施例4
〜19と全く同様の組成、方法で磁器を製造してその電気
的特性を測定した。
Comparative Examples 1 to 9 In each method of Examples 1 to 3, oxalate was produced by changing only one condition, calcined in the same manner, and the calcined powder was used. Example 4
The porcelain was manufactured with the same composition and method as those of ~ 19 and its electrical characteristics were measured.

その時の条件および電気的特性を第2表に示す。 Table 2 shows the conditions and electrical characteristics at that time.

比較例10〜24 原料の配合組成を第3表で示す割合に設定した他は、
実施例4〜19と同様の操作を行った。得られた磁器の物
性値を第3表に示す。
Comparative Examples 10 to 24, except that the composition of the raw materials was set to the ratio shown in Table 3,
The same operation as in Examples 4 to 19 was performed. Table 3 shows the physical properties of the obtained porcelain.

比較例25,26 原料として、その主成分にはBaCO3、CaCO3、SrCO3、P
b3O4、TiO2、半導体化剤としてはLa2O3、添加剤として
はMnCO3、SiO2を第3表に示す磁器組成になるよう配合
した後、実施例4〜19と全く同じ操作を行った。
Comparative Examples 25 and 26 As raw materials, the main components were BaCO 3 , CaCO 3 , SrCO 3 and P.
b 3 O 4, TiO 2, La 2 O 3 as the semiconductor-forming agent, after Additives formulated so as to be ceramic composition showing a MnCO 3, SiO 2 in Table 3, exactly the same as in Example 4 to 19 The operation was performed.

本比較例での各成分の組成、および得られた磁器の物
性値を第3表に示す。
Table 3 shows the composition of each component and the physical properties of the obtained porcelain in this comparative example.

上述の特性において、耐電圧については試料に電圧を
印加した後、徐々にその電圧を上昇させてゆき、試料の
破壊が生じる手前の最高印加電圧値を示したものであ
る。
In the above-mentioned characteristics, the withstand voltage indicates the maximum applied voltage value before the destruction of the sample by gradually increasing the voltage after applying the voltage to the sample.

第1図は、実施例10、実施例18、実施例19で得られた
磁器の抵抗温度特性を図に示したものであるが、図から
わかるようにキュリー点を様々に設定できるとともにそ
れらの抵抗温度特性をいずれも低比抵抗でかつ高いα値
にたもつことができる。
FIG. 1 shows the resistance temperature characteristics of the porcelains obtained in Example 10, Example 18 and Example 19, and as can be seen from the figure, the Curie points can be set variously and All of the resistance temperature characteristics can have a low specific resistance and a high α value.

[発明の効果] 本発明の原料粉末は微細で粒子径の整った一次粒子よ
りなる独特の形状を有する二次粒子であり、この原料を
使用して焼結することにより得られたチタン酸バリウム
系半導体磁器組成物は、電流制限用素子、温度制御用素
子、定温度発熱用素子等の広範囲な用途が考えられると
同時に、比抵抗値が8(Ω・cm)以下、α値が9(%/
℃)以上、耐電圧が60(V/mm)以上という低抵抗で耐電
圧が高く、且つα値も高いという優れた電気的特性を示
すため、特に低電圧用の電流制限用素子としての種々の
用途へ、応用できるものである。
[Effects of the Invention] The raw material powder of the present invention is secondary particles having a unique shape composed of fine primary particles having a regular particle size, and barium titanate obtained by sintering using this raw material. The system-based semiconductor porcelain composition can be used in a wide range of applications such as a current limiting element, a temperature control element, and a constant temperature heating element, and at the same time, has a specific resistance value of 8 (Ω · cm) or less and an α value of 9 ( % /
℃) and withstand voltage of 60 (V / mm) or more, low resistance, high withstand voltage, and high α value. It can be applied to.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のチタン酸バリウム系半導体磁器組成
物の抵抗温度特性図であり、第2図は、シュウ酸チタン
酸バリウム仮焼体の粒子構造を示すSEM写真であり、第
3図は第2図と同様の粉末の粒子構造を示すTEM写真で
ある。
FIG. 1 is a resistance temperature characteristic diagram of a barium titanate-based semiconductor ceramic composition of the present invention, and FIG. 2 is an SEM photograph showing a particle structure of a barium oxalate titanate calcinated body, and FIG. 3 is a TEM photograph showing the particle structure of the same powder as in FIG.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−146710(JP,A) 特開 昭62−283816(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 61-146710 (JP, A) JP 62-283816 (JP, A)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】0.2μm以下の一次粒子が互に繋がった開
気孔を有する形骸二次粒子でその大きさが平均粒径150
〜250μmであり、かつ50μm以下の形骸二次粒子が5wt
%以下であることを特徴とするチタン酸バリウム粉末。
1. A secondary particle having a shape of open pores in which primary particles having a diameter of 0.2 μm or less are connected to each other and having an average particle size of 150.
~ 250μm, 5wt of secondary particles of 50μm or less
% Or less, barium titanate powder.
【請求項2】Ba/Ti(モル比)=1.02〜1.05、BaCl2:10w
t%以下の濃度の四塩化チタンおよび塩化バリウムを含
む水溶液を、シュウ酸水溶液に添加する際、シュウ酸/T
i(モル比)=2.1〜2.3、生成するシュウ酸チタン酸バ
リウム4水塩の濃度が10〜12wt%になるように設定し、
添加をシャワー状、4時間以上の時間で行いかつ撹拌周
速2.5m/sec以上、添加中の液温を55〜75℃の温度範囲で
定温に維持して得たシュウ酸チタン酸バリウムを700〜9
00℃で焼成することを特徴とする請求項(1)記載のチ
タン酸バリウム粉末の製造法。
2. Ba / Ti (molar ratio) = 1.02 to 1.05, BaCl 2 : 10w
When adding an aqueous solution containing titanium tetrachloride and barium chloride at a concentration of t% or less to the oxalic acid aqueous solution,
i (molar ratio) = 2.1 to 2.3, and the concentration of the produced barium oxalate titanate tetrahydrate is set to 10 to 12 wt%,
The barium oxalate titanate obtained by maintaining the liquid temperature during the addition in the shower for 4 hours or more and maintaining the stirring peripheral speed at 2.5 m / sec or more and the liquid temperature during the addition at a constant temperature range of 55 to 75 ° C is 700 ~ 9
The method for producing barium titanate powder according to claim 1, wherein the barium titanate powder is fired at 00 ° C.
【請求項3】0.1μm以下の一次粒子が互に繋がった開
気孔を有する形骸二次粒子でその大きさが平均粒径70〜
180μmであり、かつそのBET比表面積が20〜30m2/gであ
ることを特徴とするチタン酸ストロンチウム粉末。
3. A skeleton secondary particle having open pores in which primary particles having a diameter of 0.1 μm or less are connected to each other, and the size thereof is 70 to 70 μm.
Strontium titanate powder having a BET specific surface area of 180 μm and a BET specific surface area of 20 to 30 m 2 / g.
【請求項4】Sr/Ti(モル)=1.2以上、SrCl2:15wt%以
下の四塩化チタンおよび塩化ストロンチウムを含む水溶
液を、シュウ酸の水溶液に添加する際、シュウ酸/Ti=
(モル比)=2.1〜2.3、生成するシュウ酸チタン酸スト
ロンチウム5水塩の濃度が10.0〜14.0wt%に設定し、添
加をシャワー状、2時間以上の時間で行いかつ撹拌周速
3.0m/sec以上、添加中の液温を60〜80℃の温度範囲で定
温に維持して得たシュウ酸チタン酸ストロンチウムを、
700〜900℃で焼成することを特徴とする請求項(3)記
載のチタン酸ストロンチウム粉末の製造法。
4. When adding an aqueous solution containing titanium tetrachloride and strontium chloride in an amount of Sr / Ti (mol) of 1.2 or more and SrCl 2 : 15 wt% or less, to the aqueous solution of oxalic acid, oxalic acid / Ti =
(Mole ratio) = 2.1-2.3, the concentration of strontium oxalate titanate pentahydrate to be formed is set to 10.0-14.0wt%, and the addition is performed in a shower for 2 hours or more and the stirring peripheral speed
Strontium oxalate titanate obtained by maintaining the liquid temperature during addition at a constant temperature in the temperature range of 60 to 80 ° C. for 3.0 m / sec or more,
The method for producing a strontium titanate powder according to claim 3, wherein the firing is performed at 700 to 900 ° C.
【請求項5】0.2μm以下の一次粒子が互に繋がった開
気孔を有する形骸二次粒子でその大きさが平均50〜150
μmであり、かつ20μm以下の形骸二次粒子が5wt%以
下であることを特徴とするチタン酸鉛粉末。
5. A shaped secondary particle having open pores in which primary particles having a size of 0.2 μm or less are connected to each other and having an average size of 50 to 150.
Lead titanate powder, characterized in that secondary particles having a size of 20 μm or less are 5 wt% or less.
【請求項6】四塩化チタンをアンモニアにより中和した
後濾過洗浄し、シュウ酸に溶解したシュウ酸/Ti(モル
比)=2.1〜2.3、TiO2:4wt%以下の水溶液を硝酸鉛の水
溶液に添加する際、Pb/Ti(モル比)=1.01〜1.03、生
成するシュウ酸チタン酸鉛4水塩の濃度10〜18wt%にな
るよう設定し、かつ添加をシャワー状、撹拌周速2.0m/s
ec、液温45〜55℃で一定温度に維持しながら、1〜2時
間で添加することにより得たシュウ酸チタン酸鉛を、60
0〜800℃で焼成することを特徴とする請求項(5)記載
のチタン酸鉛粉末の製造法。
6. Titanium tetrachloride is neutralized with ammonia, then filtered and washed, and an aqueous solution of oxalic acid / Ti (molar ratio) = 2.1 to 2.3 and TiO 2 : 4 wt% or less dissolved in oxalic acid is an aqueous solution of lead nitrate. Pb / Ti (molar ratio) = 1.01 to 1.03, and the concentration of the produced lead oxalate titanate tetrahydrate is 10 to 18 wt%, and the addition is shower-like and the stirring peripheral speed is 2.0 m. / s
ec, lead oxalate titanate obtained by adding in 1 to 2 hours while maintaining a constant temperature at a liquid temperature of 45 to 55 ° C.
The method for producing lead titanate powder according to claim 5, wherein the firing is performed at 0 to 800 ° C.
【請求項7】BaTiO3、SrTiO3、CaTiO3、PbTiO3の主成分
の内、少なくともBaTiO3が請求項(1)または(2)記
載のチタン酸バリウム粉末、SrTiO3が請求項(3)また
は(4)記載のチタン酸ストロンチウム粉末よりなり、 その主成分の組成がBaTiO3:45〜85モル%、SrTiO3:1〜2
0モル%、CaTiO3:5〜20モル%、PbTiO3:1〜20モル%で
あり 前記主成分に対して半導化剤としてY,La,Ceなどの希土
類元素、Nb,Sbのうち少なくとも1種が0.1〜0.3モル
%、 さらにMn:0.006〜0.025モル%、SiO2:0.1〜1モル%の
組成範囲よりなることを特徴とするチタン酸バリウム系
半導体磁器組成物用原料粉末。
7. Among the main components of BaTiO 3 , SrTiO 3 , CaTiO 3 , and PbTiO 3 , at least BaTiO 3 is the barium titanate powder according to claim (1) or (2), and SrTiO 3 is claim (3). Alternatively, it is composed of the strontium titanate powder described in (4), and the composition of the main components is BaTiO 3 : 45 to 85 mol%, SrTiO 3 : 1 to 2
0 mol%, CaTiO 3 : 5 to 20 mol%, PbTiO 3 : 1 to 20 mol% and Y, La, rare earth elements such as Ce as a semiconducting agent with respect to the main component, at least Nb, Sb A raw material powder for a barium titanate-based semiconductor porcelain composition, characterized in that one kind has a composition range of 0.1 to 0.3 mol%, Mn: 0.006 to 0.025 mol%, and SiO 2 : 0.1 to 1 mol%.
【請求項8】BaTiO3、SrTiO3、CaTiO3、PbTiO3の主成分
の内、少なくともBaTiO3が請求項(1)または(2)記
載のチタン酸バリウム粉末、SrTiO3が請求項(3)また
は(4)記載のチタン酸ストロンチウム粉末、PbTiO3
請求項(5)または(6)記載のチタン酸鉛よりなり、 その主成分の組成がBaTiO3:45〜85モル%、SrTiO3:1〜2
0モル%、CaTiO3:5〜20モル%、PbTiO3:1〜20モル%で
あり 前記主成分に対して半導化剤としてY,La,Ceなどの希土
類元素、Nb,Sbのうち少なくとも1種が0.1〜0.3モル
%、 さらにMn:0.006〜0.025モル%、SiO2:0.1〜1モル%の
組成範囲よりなることを特徴とするチタン酸バリウム系
半導体磁器組成物用原料粉末。
8. Among the main components of BaTiO 3 , SrTiO 3 , CaTiO 3 , and PbTiO 3 , at least BaTiO 3 is the barium titanate powder according to claim (1) or (2), and SrTiO 3 is claim (3). Alternatively, the strontium titanate powder according to (4) and PbTiO 3 are composed of lead titanate according to claim (5) or (6), and the main component composition is BaTiO 3 : 45 to 85 mol%, SrTiO 3 : 1 ~ 2
0 mol%, CaTiO 3 : 5 to 20 mol%, PbTiO 3 : 1 to 20 mol% and Y, La, rare earth elements such as Ce as a semiconducting agent with respect to the main component, at least Nb, Sb A raw material powder for a barium titanate-based semiconductor porcelain composition, characterized in that one of them has a composition range of 0.1 to 0.3 mol%, Mn: 0.006 to 0.025 mol%, and SiO 2 : 0.1 to 1 mol%.
JP1225061A 1989-02-22 1989-08-31 Barium titanate-based powder for semiconductor porcelain and its manufacturing method Expired - Lifetime JP2558357B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1225061A JP2558357B2 (en) 1989-02-22 1989-08-31 Barium titanate-based powder for semiconductor porcelain and its manufacturing method
DE1990609628 DE69009628T2 (en) 1989-08-31 1990-08-30 Powder composition for sintering in a modified barium titanate semiconducting ceramic.
EP19900116692 EP0415428B1 (en) 1989-08-31 1990-08-30 Powder composition for sintering into modified barium titanate semiconductive ceramic
US07/841,210 US5219811A (en) 1989-08-31 1992-02-27 Powder composition for sintering into modified barium titanate semiconductive ceramic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4280289 1989-02-22
JP1-42802 1989-02-22
JP1225061A JP2558357B2 (en) 1989-02-22 1989-08-31 Barium titanate-based powder for semiconductor porcelain and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH02289426A JPH02289426A (en) 1990-11-29
JP2558357B2 true JP2558357B2 (en) 1996-11-27

Family

ID=26382544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225061A Expired - Lifetime JP2558357B2 (en) 1989-02-22 1989-08-31 Barium titanate-based powder for semiconductor porcelain and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2558357B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507153A (en) * 2007-12-05 2011-03-03 エプコス アクチエンゲゼルシャフト Method for heating fluid and injection-molded molded body
US9034210B2 (en) 2007-12-05 2015-05-19 Epcos Ag Feedstock and method for preparing the feedstock

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960025915A (en) * 1994-12-28 1996-07-20 윤종용 Hot electron-emitting oxide cathode and method of manufacturing same
JP4841202B2 (en) * 2005-08-30 2011-12-21 株式会社田中化学研究所 Method for producing titanium oxide
JP6447841B2 (en) * 2014-11-26 2019-01-09 株式会社村田製作所 Barium titanate semiconductor ceramic, barium titanate semiconductor ceramic composition, and temperature sensitive positive temperature coefficient thermistor
CN105883910B (en) * 2016-05-13 2017-10-13 浙江大学 A kind of perovskite SrTiO3The preparation method and product of porous nano particle
DE102021213863A1 (en) * 2021-01-15 2022-07-21 Ngk Insulators, Ltd. CERAMIC BODY AND PROCESS OF PRODUCTION, HEATING ELEMENT, HEATING UNIT, HEATING SYSTEM AND CLEANING SYSTEM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507153A (en) * 2007-12-05 2011-03-03 エプコス アクチエンゲゼルシャフト Method for heating fluid and injection-molded molded body
US9034210B2 (en) 2007-12-05 2015-05-19 Epcos Ag Feedstock and method for preparing the feedstock

Also Published As

Publication number Publication date
JPH02289426A (en) 1990-11-29

Similar Documents

Publication Publication Date Title
US9005568B2 (en) Process for production of powder of perovskite compound
GB2163142A (en) A process for producing a composition which includes perovskite compound
KR100358974B1 (en) Method of producing semiconductor ceramic having positive temperature coefficient
GB2097778A (en) Barium titanate composition
JP2558357B2 (en) Barium titanate-based powder for semiconductor porcelain and its manufacturing method
EP0415428B1 (en) Powder composition for sintering into modified barium titanate semiconductive ceramic
EP0428387B1 (en) Process for producing powder material for lead perovskite ceramic
JPH0559068B2 (en)
JPS6329408A (en) Dielectric ceramic body and making thereof
JP2569208B2 (en) Raw material powders for porcelain-based semiconductor porcelain composition and porcelain composition
JP2569205B2 (en) Raw material powder for barium titanate-based semiconductor porcelain composition and porcelain composition comprising the same
JPH075363B2 (en) PTC porcelain composition and method for producing the same
JP3154513B2 (en) Spherical barium titanate-based semiconductor ceramic material powder and method for producing the same
JPH0660721A (en) Dielectric porcelain and its manufacture
JP2004210601A (en) Dielectric material having high dielectric constant, and its manufacturing method
JP2649341B2 (en) Grain boundary insulated semiconductor porcelain
JP2885599B2 (en) Barium titanate-based powder composition and method for producing semiconductor porcelain composition using the same
JPH0612917A (en) Dielectric porcelain and its manufacture
JP3254316B2 (en) Barium titanate-based semiconductor porcelain composition
JPH0590063A (en) Semiconductor ceramic capacitor and manufacture of the same
WO2000026924A1 (en) PREPARATION METHOD FOR LOW-TEMPERATURE-SINTERABLE Pb-BASED PEROVSKITE DIELECTRIC POWDERS
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JP3581620B2 (en) Beta alumina electrolyte and method for producing the same
JP2538439B2 (en) Method for producing lead-based dielectric ceramic composition
JPH0210090B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

EXPY Cancellation because of completion of term