JP2004210601A - Dielectric material having high dielectric constant, and its manufacturing method - Google Patents

Dielectric material having high dielectric constant, and its manufacturing method Download PDF

Info

Publication number
JP2004210601A
JP2004210601A JP2003000208A JP2003000208A JP2004210601A JP 2004210601 A JP2004210601 A JP 2004210601A JP 2003000208 A JP2003000208 A JP 2003000208A JP 2003000208 A JP2003000208 A JP 2003000208A JP 2004210601 A JP2004210601 A JP 2004210601A
Authority
JP
Japan
Prior art keywords
dielectric constant
crystal
bati
single crystal
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003000208A
Other languages
Japanese (ja)
Other versions
JP4049315B2 (en
Inventor
Takashi Goto
孝 後藤
Takaya Akashi
孝也 明石
Ryokichi Hashizume
良吉 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2003000208A priority Critical patent/JP4049315B2/en
Publication of JP2004210601A publication Critical patent/JP2004210601A/en
Application granted granted Critical
Publication of JP4049315B2 publication Critical patent/JP4049315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a BaTi<SB>2</SB>O<SB>5</SB>single crystal exhibiting an extremely high dielectric constant, and to provide its manufacturing method. <P>SOLUTION: The dielectric material exhibiting the high dielectric constant is a plate-like piece of the BaTi<SB>2</SB>O<SB>5</SB>single crystal. The surface parallel to the electrode surface is (010)-plane of the crystal. The dielectric material is manufactured by mixing powdery raw materials so that the atomic concentration ratio of Ti to Ba is in a range of 1.8 to 2.2, then sintering the resulting mixture into a solidified body, preparing the BaTi<SB>2</SB>O<SB>5</SB>single crystal by melting and solidifying the solidified body with a solidification speed of 5-50 mm/h by a floating zone melting method, and cutting out cut pieces from the crystal so that the surface parallel to the (010)-plane of the crystal becomes the electrode surface. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、BaTiの単結晶からなる高い誘電率を有する誘電体およびその誘電体の材料として用いられる単結晶の製造方法、並びに上記誘電体の製造方法に関する。
【0002】
【従来の技術】
高い誘電率を示すBaOとTiOとの比が1:1の組成物であるチタン酸バリウム(BaTiO)が発見されて以来、BaTiO系セラミックス組成物は高誘電率コンデンサー材料として実用化され、種々の改良や開発が進められてきた。
【0003】
このBaTiOで代表されるBaO−TiOセラミックスの中では、他にBaTiあるいはBaTi20などがマイクロ波帯用として研究されたが、BaTiO系を超える高誘電率の組成物は未だ見出されていない。
【0004】
また、この系のセラミックスの基本になるBaO−TiOの状態図の研究も数多くおこなわれている。しかし、不安定な相があり、未だ最終的な確立された状態図とはなっていない。その不安定なものの一つは、組成比がBaTiOとBaTi1740との間にある、BaOとTiOとの比が1:2の組成物、すなわちBaTiである。
【0005】
BaTiは準安定相と考えられるが、安定な低温相であるとする報告もある。通常、酸化物の原子濃度組成比Ti/Baを2.0として高温で溶融後冷却すると、他の相と混合して現れて単相としては得られず、焼結などの固相反応では生成しない。ただし、1073Kの低温での加水分解により単体の粉体が得られており、結晶構造や格子定数は測定されているが、それ以上の物性についてはほとんど知られていない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、極めて高い誘電率を示すBaTi単結晶からなる誘電体、その誘電体の素材となるとなるBaTi単結晶の製造方法、および上記誘電体の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、BaO−TiO系のセラミックスに関し、その物性を明確にし、誘電性能の改善をはかるべく種々調査検討をおこなった。その際、BaO−TiO系の、とくにTiOが50モル%を超える領域にて現れる各相の物性を調査するため、単相の単結晶の作製を試みていたところ、原子量比にてBa:Tiが1:2のとき、浮遊帯溶融法を用いればBaTiの単結晶が製造可能であることを見出した。
【0008】
BaTiの結晶構造は常温で底心単斜格子であるが、得られた単結晶により誘電率を測定する際、低い面指数の種々の面に平行に板状の試験片を切り出し、誘電率を測定した結果、(010)面に垂直な方向に電位を印加したとき、極めて高い誘電率を示すことがあきらかになった。
【0009】
BaTiOの場合、相転移を生じるキュリー温度の390K近傍に最大誘電率を示すピークがあり、その値は6000〜10000である。実用的なコンデンサー材料としては、これに種々の添加物を利用して、誘電率がピークを示す温度を室温付近にずらすとともにピークの幅を広げ、室温における誘電率を高くし、かつ温度依存性を小さくしようとしている。しかし、ピーク温度以上では相変態により強誘電性が失われて常誘電体に変化するので、強誘電体メモリーなどへの応用が困難である。このためキュリー温度が高い高誘電率を有する材料が求められている。
【0010】
得られたBaTi単結晶の誘電率を調べてみると、(010)面に垂直な方向では750K近傍にピークがあって、そのときの誘電率は100kHzで25000を超えている。この値はBaTiOのピーク値よりもはるかに高い値であり、しかもキュリー温度が高いので、高温まで強誘電性が保たれる。このような特性は、BaTiOの場合と同様、種々の添加物の活用によりピーク温度の低下や温度依存性低減の可能性があり、コンデンサー用誘電体として様々な発展が期待される。
【0011】
浮遊帯溶融法を用いることにより、BaTiの単相の単結晶を安定して得ることができた理由については、必ずしもあきらかではないが、一つには浮遊帯溶融法は、種結晶を接触させ、その上に溶融体を凝固させていく一方向凝固により結晶を育成させるため、凝固後、他の相に分離できず、そのままの形で残ったのではないかと考えられる。種結晶はBaTiの単結晶がなかったため、Ba:Tiの原子量比が1:2の溶融凝固結晶を用いたが、初期の凝固の過程で単結晶が生成され、それがそのまま成長していったのであろう。
【0012】
もう一つは、浮遊帯溶融法では、るつぼなど他の物体とは一切接触しないので、溶製中に不純物の混入がないことも単相の結晶生成を容易にしたのではないかと思われる。
【0013】
このように、単結晶の(010)面に垂直な方向にて示されたピーク値の誘電率は、従来のBaTiO系では得られなかった高い値を示しており、コンデンサー用材料などにて、より高い誘電率を要求される場合、効果的に適用できる可能性がある。すなわち、本発明の要旨は次のとおりである。
【0014】
(1) BaTiの単結晶の板状片であって、電極面と平行な面が結晶の(010)面であることを特徴とする高誘電率誘電体。
【0015】
(2) 原料粉末を、そのTiとBaの原子濃度比(Ti/Ba)を1.8〜2.2の範囲として混合し、焼結して固体とした後、浮遊帯域溶融法により凝固速度を5〜50mm/hとして溶解および凝固をおこなうことを特徴とするBaTiの単結晶の製造方法。
【0016】
(3) 上記(2)に記載の方法にて製造した単結晶を用い、結晶の(010)面と平行な面が電極面となるように裁片を切り出すことを特徴とする上記(1)の高誘電率誘電体の製造方法。
【0017】
【発明の実施の形態】
本発明の誘電体は、BaTiの単結晶の板状片であって、電極面と平行な面が結晶の(010)面であることを特徴とする。BaTiの単結晶は、結晶の(010)面に垂直な方向に電位が印加されるとき、極めて高い誘電率を示すが、他の方位に印加されるときは高い誘電率は現れない。
【0018】
コンデンサーなどに用いられる板状の誘電体を、セラミックスの単結晶とする場合、直接板状単結晶を製造するのは困難なので、単結晶を作製し、単結晶の結晶方位を確認の上、(010)面が電極面と平行になり、かつ(010)面に垂直に電位が加わるように板状裁片を切り出すとよい。
【0019】
単結晶の製造には、半導体集積回路の基板用の高純度シリコン単結晶の製造に用いられる、浮遊帯溶融法を用いる。原料は、TiとBaとの含有原子量比Ti/Baが1.8〜2.2となる組成とするが、最終的にBaO・2TiOの形になるのであれば、たとえばルチルやアナターゼの粉末、BaCOの粉末などを用いればよい。Ti/Baを1.8〜2.2とするのは、1.8を下回る場合、BaTiの中にBaTiOの量が増し、2.2を超える場合はBaTi1740の量が増してきて、いずれの場合も誘電率の低下をもたらすからである。
【0020】
原料は、浮遊帯溶融をおこなうため、あらかじめ粉末を焼結する手法で棒状の素材を成形しておくとよい。この場合、たとえば、原料粉末を混錬し、要すればバインダーを添加して所要形状に加圧成形し、加熱温度は1200〜1600Kとして大気中にて焼成する。
【0021】
浮遊帯溶融法では、素材の焼結棒を垂直に配置し、下端から加熱溶融して種結晶に接触融着させた後、溶融部を次第に上端の方に移動させながら下方側を凝固させつつ単結晶を育成していくが、そのときの凝固育成速度は5〜50mm/hとするのがよい。これは、単結晶の径にもよるが、5mm/h未満の育成速度では溶融部からの融液の落下を起こしやすく、50mm/hを超える速度では多結晶化を生じ、単結晶が得られなくなるおそれがあるからである。
【0022】
種結晶は単結晶が得られた後は、結晶成長方向に好ましい方位のものを切り出して用いればよいが、Ti/Baが1.8〜2.2の焼結体あるいは溶融凝固体を用いてもよい。
【0023】
【実施例】
それぞれ純度が99.9%のBaCOおよびTiOの粉末を用い、原子濃度比Ti/Baが2.0となるように混合し、エタノールを少量添加して乳鉢中で混錬した。混錬物を直径約8mmの棒状に10MPaにて加圧して成形し、空気中で1500K、12時間加熱して焼結した。
【0024】
焼結した棒を素材とし、キセノンランプを加熱源とする浮遊帯溶融装置にて、種結晶は同じ組成の焼結体とし、酸素が21容積%で残部がアルゴンの気流中、20mm/hの凝固速度で一方向凝固をおこなった。
【0025】
得られた結晶は直径約5mmの無色透明な粒界のない単結晶であった。粉末を作成してX線回折により相の同定をおこない、単結晶はX線極点回折法(ラウエ法)により結晶方位を調べた。単結晶の(100)面、(010)面または(001)面に平行にそれぞれ幅2mm、長さ3mm、厚さ1mmの板状試験片を切り出し、板面に垂直な方向での誘電率をACインピーダンスアナライザー(Solartron社製1260,1296)を用いて周波数100kHzにて測定した。測定は大気中とし、温度範囲は293〜1073Kとした。
【0026】
比較のため、上記の原子濃度比Ti/Baが2.0の混錬物、および同じ原料粉末にて原子濃度比Ti/Baを1.0とした混錬物を用い、直径10mm、厚さ3mmの円板を面に垂直に10MPaにて加圧して成形し、いずれの円板も大気中にて1500K、12時間の焼成をおこなって焼結した。これら焼結後の試片についても上記と同様にして、293〜1073Kにおける温度による誘電率変化を測定した。
【0027】
Ti/Baが2.0の場合の浮遊帯溶融後の結晶および焼成後の焼結体について、粉末X線回折図形を図1および図2にそれぞれ示す。図1に示されるように浮遊帯溶融後の結晶では、すべてのピークがBaTiとして指数付けされ、単相のBaTiが得られていることがわかる。これに対し、図2の同じ組成の焼結体では、BaTiOとBaTi1740の二相が混在したものとなっており、BaTiの生成は認められない。
【0028】
単結晶の誘電率は、結晶の(010)面に平行に切り出した試料では、面に垂直に電位を印加して測定した場合、700Kから急激に増加し、748Kで最大値27000を示した。これに対し、(100)面に平行な試料では誘電率が約140、(001)面に平行な試料では約70で、いずれの場合も温度による変化はほとんどなかった。
【0029】
図3に単結晶の(010)面に平行に切り出した試料、(001)面に平行に切り出した試料、Ti/Baが2.0の場合の焼結体、およびTi/Baが1.0のBaTiO焼結体についての、293〜1073Kにおける誘電率変化の測定結果を示す。これからわかるように、BaTiO焼結体では393Kにおけるピークの誘電率が7000であるのに対し、本発明誘電体のBaTi単結晶の(010)面に垂直な方向では748Kで27000あり、3倍以上の高い値を示している。
【0030】
また、Ti/Baを2.0とした焼結体(組成比としてはBaTi)では、393Kに誘電率のピークがあるが、それは3000程度であり、焼結体中のBaTiO相の誘電率と考えられる。
【0031】
【発明の効果】
本発明の誘電体は、従来、BaO−TiO系セラミックスの中で最も高い誘電率を示すとして知られているBaTiOよりも、はるかに高い誘電率を示すものである。この高い誘電率を示す温度の移動方法、あるいは温度依存性の改善は、今後の検討課題であるが、到達し得る最高誘電率がBaTiOよりもはるかに高いので、新しい高誘電率コンデンサー材料が期待される。
【0032】
また、この誘電体は、既にシリコン単結晶等で実用化されている浮遊帯溶融法を応用すれば容易に製造できるので、このBaTi系材料の特性改良や実用生産にさらなる展開が容易である。
【図面の簡単な説明】
【図1】浮遊帯溶融法にて作製したBaTiの粉末X線回折図形である。
【図2】焼結法にて作製したBaTiの粉末X線回折図形である。
【図3】293〜1073Kの温度範囲で測定した、試作誘電体の誘電率(100kHzにて測定)の測定結果である。
[0001]
[Technical field to which the invention belongs]
The present invention relates to a dielectric having a high dielectric constant made of a single crystal of BaTi 2 O 5 , a method for producing a single crystal used as a material for the dielectric, and a method for producing the dielectric.
[0002]
[Prior art]
Since the discovery of barium titanate (BaTiO 3 ), a composition having a 1: 1 ratio of BaO to TiO 2 that exhibits a high dielectric constant, BaTiO 3 -based ceramic compositions have been put into practical use as high dielectric constant capacitor materials. Various improvements and developments have been made.
[0003]
Among the BaO-TiO 2 ceramics represented by the BaTiO 3 is other like BaTi 4 O 9 or Ba 2 Ti 9 O 20 was studied as a microwave band, a high dielectric constant of greater than BaTiO 3 system The composition has not yet been found.
[0004]
In addition, many studies have been conducted on the phase diagram of BaO—TiO 2 which is the basis of this type of ceramics. However, there is an unstable phase and it is not yet the final established state diagram. One of the unstable ones is a composition having a composition ratio of BaO to TiO 2 of 1: 2 between BaTiO 3 and Ba 6 Ti 17 O 40 , that is, BaTi 2 O 5 .
[0005]
BaTi 2 O 5 is considered a metastable phase, but there is a report that it is a stable low-temperature phase. Normally, when the oxide atomic concentration composition ratio Ti / Ba is 2.0 and it is melted at high temperature and then cooled, it appears mixed with other phases and cannot be obtained as a single phase. do not do. However, a single powder was obtained by hydrolysis at a low temperature of 1073 K, and the crystal structure and lattice constant were measured, but little more is known about the physical properties beyond that.
[0006]
[Problems to be solved by the invention]
An object of the present invention, a dielectric consisting of BaTi 2 O 5 single crystal showing a very high dielectric constant, a method of manufacturing thereof becomes becomes a dielectric material BaTi 2 O 5 single crystal, and a production method of the dielectric There is to do.
[0007]
[Means for Solving the Problems]
The present inventors relates to ceramic BaO-TiO 2 system, to clarify the physical properties thereof were subjected to various research studies to improve the dielectric performance. At that time, in order to investigate the physical properties of each phase appearing in the BaO-TiO 2 system, particularly in the region where TiO 2 exceeds 50 mol%, an attempt was made to produce a single-phase single crystal. It was found that when Ti is 1: 2, a single crystal of BaTi 2 O 5 can be produced by using the floating zone melting method.
[0008]
The crystal structure of BaTi 2 O 5 is a bottom-centered monoclinic lattice at room temperature, but when measuring the dielectric constant with the obtained single crystal, plate-like test pieces are cut out parallel to various surfaces having a low surface index, As a result of measuring the dielectric constant, it was clear that when a potential was applied in a direction perpendicular to the (010) plane, an extremely high dielectric constant was exhibited.
[0009]
In the case of BaTiO 3 , there is a peak indicating the maximum dielectric constant in the vicinity of 390 K of the Curie temperature causing the phase transition, and the value is 6000 to 10,000. As a practical capacitor material, various additives are used to shift the temperature at which the dielectric constant reaches a peak to near room temperature, widen the peak, increase the dielectric constant at room temperature, and temperature dependence. Trying to make it smaller. However, since the ferroelectricity is lost due to phase transformation and changes to a paraelectric material above the peak temperature, it is difficult to apply it to a ferroelectric memory or the like. Therefore, a material having a high dielectric constant with a high Curie temperature is required.
[0010]
When obtained BaTi 2 O 5 Examining the dielectric constant of the single crystal, exceeds 25000 peaked near 750K in a direction perpendicular to the (010) plane, a dielectric constant is 100kHz at that time. This value is much higher than the peak value of BaTiO 3 and the Curie temperature is high, so that the ferroelectricity is maintained up to a high temperature. As in the case of BaTiO 3 , such characteristics have the possibility of lowering the peak temperature and reducing temperature dependence by utilizing various additives, and various developments are expected as dielectrics for capacitors.
[0011]
The reason why the single phase single crystal of BaTi 2 O 5 can be stably obtained by using the floating zone melting method is not necessarily clear, but for one thing, the floating zone melting method is a seed crystal. Since the crystal is grown by unidirectional solidification in which the melt is solidified on it, it cannot be separated into other phases after solidification, and it may be left as it is. Because the seed crystals did not have a single crystal of BaTi 2 O 5, Ba: atomic weight ratio of Ti is 1: was used 2 of melting and solidification crystals, single crystals in the course of initial solidification is produced, it directly grown Probably it was.
[0012]
The other is that the floating zone melting method does not come into contact with other objects such as crucibles, so the absence of impurities during the melting process may have facilitated single-phase crystal formation.
[0013]
Thus, the dielectric constant of the peak value are generated in the direction perpendicular to the (010) plane of the single crystal, the conventional BaTiO 3 system showed a high value not obtained, the material in such a condenser If a higher dielectric constant is required, it may be effectively applied. That is, the gist of the present invention is as follows.
[0014]
(1) A high-dielectric-constant dielectric, characterized in that it is a BaTi 2 O 5 single crystal plate-like piece, and the plane parallel to the electrode surface is the (010) plane of the crystal.
[0015]
(2) The raw material powder is mixed with the Ti / Ba atomic concentration ratio (Ti / Ba) in the range of 1.8 to 2.2 and sintered to form a solid, and then solidified by the floating zone melting method. A method for producing a single crystal of BaTi 2 O 5 , wherein melting and solidification are performed at 5 to 50 mm / h.
[0016]
(3) The above (1), wherein the single crystal produced by the method described in (2) above is used, and a piece is cut out so that a plane parallel to the (010) plane of the crystal becomes an electrode surface. A method for producing a high dielectric constant dielectric.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric of the present invention is a single crystal plate-like piece of BaTi 2 O 5 , wherein a plane parallel to the electrode surface is a (010) plane of the crystal. A single crystal of BaTi 2 O 5 exhibits a very high dielectric constant when a potential is applied in a direction perpendicular to the (010) plane of the crystal, but does not exhibit a high dielectric constant when applied in other directions. .
[0018]
When a plate-like dielectric used for a capacitor or the like is a ceramic single crystal, it is difficult to directly produce a plate-like single crystal. Therefore, after producing a single crystal and confirming the crystal orientation of the single crystal, ( The plate-shaped piece may be cut out so that the (010) plane is parallel to the electrode plane and the potential is applied perpendicularly to the (010) plane.
[0019]
For manufacturing the single crystal, a floating zone melting method used for manufacturing a high-purity silicon single crystal for a substrate of a semiconductor integrated circuit is used. Raw material is a composition containing atomic weight ratio Ti / Ba of Ti and Ba is 1.8 to 2.2, and finally if the takes the form of BaO · 2TiO 2, for example, rutile and anatase powder BaCO 3 powder or the like may be used. When Ti / Ba is set to 1.8 to 2.2, the amount of BaTiO 3 is increased in BaTi 2 O 5 when it is less than 1.8, and Ba 6 Ti 17 O 40 is exceeded when it exceeds 2.2. This is because, in any case, the dielectric constant decreases.
[0020]
Since the raw material melts in the floating zone, a rod-shaped material is preferably formed in advance by a method of sintering powder. In this case, for example, the raw material powder is kneaded, and if necessary, a binder is added and pressure-molded into a required shape and fired in the atmosphere at a heating temperature of 1200 to 1600K.
[0021]
In the floating zone melting method, the sintered rod of the material is arranged vertically, heated and melted from the lower end and contact fused to the seed crystal, and then the lower part is solidified while moving the melting part gradually toward the upper end Single crystals are grown, and the solidification growth rate at that time is preferably 5 to 50 mm / h. This depends on the diameter of the single crystal, but at a growth rate of less than 5 mm / h, it is easy for the melt to fall from the melted part, and at a rate exceeding 50 mm / h, polycrystallization occurs and a single crystal is obtained. It is because there is a risk of disappearing.
[0022]
After the single crystal is obtained, a seed crystal having a preferred orientation in the crystal growth direction may be cut out and used. However, using a sintered body or a molten solid body having a Ti / Ba of 1.8 to 2.2. Also good.
[0023]
【Example】
BaCO 3 and TiO 2 powders each having a purity of 99.9% were mixed so that the atomic concentration ratio Ti / Ba was 2.0, and a small amount of ethanol was added and kneaded in a mortar. The kneaded material was pressed into a rod shape having a diameter of about 8 mm and molded at 10 MPa, and sintered in air at 1500 K for 12 hours.
[0024]
In a floating zone melting apparatus using a sintered rod as a raw material and a xenon lamp as a heat source, the seed crystal is a sintered body having the same composition, oxygen is 21% by volume, and the balance is 20 mm / h in an argon stream. Unidirectional solidification was performed at the solidification rate.
[0025]
The obtained crystal was a single crystal having a diameter of about 5 mm and no colorless and transparent grain boundaries. The powder was prepared and the phase was identified by X-ray diffraction, and the crystal orientation of the single crystal was examined by the X-ray pole diffraction method (Laue method). A plate-shaped test piece having a width of 2 mm, a length of 3 mm, and a thickness of 1 mm was cut out in parallel to the (100) plane, (010) plane, or (001) plane of the single crystal, and the dielectric constant in the direction perpendicular to the plane of the plate was measured. Measurement was performed at a frequency of 100 kHz using an AC impedance analyzer (Solartron 1260, 1296). The measurement was performed in the atmosphere, and the temperature range was 293-1073K.
[0026]
For comparison, a kneaded material having an atomic concentration ratio Ti / Ba of 2.0, and a kneaded material having an atomic concentration ratio Ti / Ba of 1.0 using the same raw material powder, a diameter of 10 mm, a thickness A 3 mm disk was pressed and molded at 10 MPa perpendicular to the surface, and each disk was sintered in the atmosphere by firing at 1500 K for 12 hours. For these sintered specimens, the change in dielectric constant with temperature at 293 to 1073 K was measured in the same manner as described above.
[0027]
FIG. 1 and FIG. 2 show the powder X-ray diffraction patterns of the crystal after floating zone melting and the sintered body after firing when Ti / Ba is 2.0, respectively. The floating zone after melt crystallization as shown in Figure 1, all of the peaks are indexed as BaTi 2 O 5, it can be seen that BaTi 2 O 5 single phase is obtained. In contrast, in the sintered body of the same composition of Figure 2, serves as the secondary phase of BaTiO 3 and Ba 6 Ti 17 O 40 are mixed, the generation of BaTi 2 O 5 is not observed.
[0028]
The dielectric constant of the single crystal increased sharply from 700K and showed a maximum value of 27000 at 748K when measured by applying a potential perpendicular to the surface of the sample cut out parallel to the (010) plane of the crystal. On the other hand, the dielectric constant was about 140 for the sample parallel to the (100) plane and about 70 for the sample parallel to the (001) plane, and there was almost no change with temperature in either case.
[0029]
FIG. 3 shows a sample cut out parallel to the (010) plane of the single crystal, a sample cut out parallel to the (001) plane, a sintered body when Ti / Ba is 2.0, and a Ti / Ba of 1.0. for BaTiO 3 sintered body, showing the measurement results of the change in dielectric constant in 293~1073K. As can be seen, the BaTiO 3 sintered body has a peak dielectric constant of 7000 at 393 K, whereas it is 27000 at 748 K in the direction perpendicular to the (010) plane of the BaTi 2 O 5 single crystal of the dielectric of the present invention. 3 times higher value is shown.
[0030]
Further, in the sintered body with Ti / Ba of 2.0 (composition ratio BaTi 2 O 5 ), there is a dielectric constant peak at 393 K, which is about 3000, and the BaTiO 3 phase in the sintered body The dielectric constant is considered.
[0031]
【The invention's effect】
The dielectric of the present invention exhibits a dielectric constant far higher than BaTiO 3 which is conventionally known to exhibit the highest dielectric constant among BaO—TiO 2 ceramics. Method of moving the temperature indicating this high dielectric constant or temperature-dependent improvement, is for further study, since maximum dielectric constant attainable is much higher than BaTiO 3, a new high dielectric constant capacitor materials Be expected.
[0032]
In addition, since this dielectric can be easily manufactured by applying the floating zone melting method that has already been put into practical use with silicon single crystals and the like, it is easy to further develop the characteristics of BaTi 2 O 5 -based materials and practical production. It is.
[Brief description of the drawings]
FIG. 1 is a powder X-ray diffraction pattern of BaTi 2 O 5 produced by a floating zone melting method.
FIG. 2 is a powder X-ray diffraction pattern of BaTi 2 O 5 produced by a sintering method.
FIG. 3 is a measurement result of a dielectric constant (measured at 100 kHz) of a prototype dielectric measured in a temperature range of 293 to 1073K.

Claims (3)

BaTiの単結晶の板状片であって、電極面と平行な面が結晶の(010)面であることを特徴とする高誘電率誘電体。A plate-like piece of single crystals of BaTi 2 O 5, high-k dielectric to the electrode surface and the plane parallel is characterized in that it is a (010) plane of the crystal. 原料粉末を、そのTiとBaの原子濃度比(Ti/Ba)を1.8〜2.2の範囲として混合し、焼結して固体とした後、浮遊帯域溶融法により凝固速度を5〜50mm/hとして溶解および凝固をおこなうことを特徴とするBaTiの単結晶の製造方法。The raw material powder is mixed so that the atomic concentration ratio of Ti and Ba (Ti / Ba) is in the range of 1.8 to 2.2 and sintered to form a solid. A method for producing a single crystal of BaTi 2 O 5 , wherein melting and solidification are performed at 50 mm / h. 請求項2に記載の方法にて製造した単結晶を用い、結晶の(010)面と平行な面が電極面となるように誘電体を切り出すことを特徴とする請求項1に記載の高誘電率誘電体の製造方法。2. The high dielectric according to claim 1, wherein the dielectric is cut out using a single crystal produced by the method according to claim 2 so that a plane parallel to the (010) plane of the crystal becomes an electrode surface. A method for manufacturing a dielectric constant.
JP2003000208A 2003-01-06 2003-01-06 Dielectric having high dielectric constant and method for manufacturing the same Expired - Fee Related JP4049315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000208A JP4049315B2 (en) 2003-01-06 2003-01-06 Dielectric having high dielectric constant and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000208A JP4049315B2 (en) 2003-01-06 2003-01-06 Dielectric having high dielectric constant and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004210601A true JP2004210601A (en) 2004-07-29
JP4049315B2 JP4049315B2 (en) 2008-02-20

Family

ID=32818591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000208A Expired - Fee Related JP4049315B2 (en) 2003-01-06 2003-01-06 Dielectric having high dielectric constant and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4049315B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103209A (en) * 2008-10-22 2010-05-06 Hitachi Ltd Piezoelectric element
JP2011219351A (en) * 2010-03-25 2011-11-04 Seiko Instruments Inc BaTi2O5-BASED COMPOSITE OXIDE AND METHOD FOR PRODUCING BaTi2O5-BASED COMPOSITE OXIDE
JP2013193921A (en) * 2012-03-19 2013-09-30 Seiko Instruments Inc Ferroelectric material and method of producing the same
JP2015160765A (en) * 2014-02-26 2015-09-07 セイコーインスツル株式会社 Barium dititanate and method for manufacturing the same
JP2017183320A (en) * 2016-03-28 2017-10-05 Tdk株式会社 Dielectric thin film element
US9988310B2 (en) 2016-01-05 2018-06-05 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition, multilayer ceramic capacitor containing the same, and method for manufacturing multilayer ceramic capacitor
US10991510B2 (en) 2018-03-28 2021-04-27 Tdk Corporation Dielectric membrane and dielectric element
US11462339B2 (en) 2018-03-28 2022-10-04 Tdk Corporation Dielectric film, dielectric element, and electronic circuit board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103209A (en) * 2008-10-22 2010-05-06 Hitachi Ltd Piezoelectric element
JP2011219351A (en) * 2010-03-25 2011-11-04 Seiko Instruments Inc BaTi2O5-BASED COMPOSITE OXIDE AND METHOD FOR PRODUCING BaTi2O5-BASED COMPOSITE OXIDE
JP2013193921A (en) * 2012-03-19 2013-09-30 Seiko Instruments Inc Ferroelectric material and method of producing the same
JP2015160765A (en) * 2014-02-26 2015-09-07 セイコーインスツル株式会社 Barium dititanate and method for manufacturing the same
US9988310B2 (en) 2016-01-05 2018-06-05 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition, multilayer ceramic capacitor containing the same, and method for manufacturing multilayer ceramic capacitor
JP2017183320A (en) * 2016-03-28 2017-10-05 Tdk株式会社 Dielectric thin film element
US10991510B2 (en) 2018-03-28 2021-04-27 Tdk Corporation Dielectric membrane and dielectric element
US11462339B2 (en) 2018-03-28 2022-10-04 Tdk Corporation Dielectric film, dielectric element, and electronic circuit board

Also Published As

Publication number Publication date
JP4049315B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
Fuierer et al. La2Ti2O7 ceramics
Akashi et al. Dielectric property of single crystalline BaTi2O5 prepared by a floating zone method
Kim et al. Microwave Dielectric Properties of Low‐Fired Ba5Nb4O15
Kim et al. Low-temperature sintering and microwave dielectric properties of Ca (Li1/3Nb2/3) O3-δ ceramics
Zhang et al. Glass-free low-temperature sintering and microwave dielectric properties of CaWO4–Li2WO4 ceramics
Dou et al. Effect of Ga3+ substitution on the microwave dielectric properties of 0.67 CaTiO3–0.33 LaAlO3 ceramics
JP5327677B2 (en) BaTi2O5 ferroelectric ceramic manufacturing method
Yang et al. Relaxor behavior of (K0. 5Bi0. 5) TiO3 ceramics derived from molten salt synthesized single-crystalline nanowires
JP2010285336A (en) Sintered material for dielectric substance and method for producing the same, and sintered material for dielectric substance which has core-shell fine structure and method for producing the same
Wu et al. Synthesis of a low-firing BaSi2O5 microwave dielectric ceramics with low dielectric constant
Lai et al. Effects of CaO–B2O3–SiO2 glass additive on the microstructure and electrical properties of BCZT lead-free ceramic
JP4049315B2 (en) Dielectric having high dielectric constant and method for manufacturing the same
Akishige Synthesis and physical properties of single crystals and ceramics of new ferroelectric BaTi2O5
Tyagi Synthesis and characterization of ceramic dielectric resonator materials for microwave communication technology
Ma et al. Microwave dielectric properties of SnO2-doped CaSiO3 ceramics
JP2012517955A (en) Sintered precursor powder for dielectric production and method for producing the same
Fu et al. Fabrication nanopowders by high-energy ball-milling and low temperature sintering Li2TiO3 microwave dielectrics
Lin et al. Microwave dielectric properties of (Ba1− xSrx)(Mg0. 5W0. 5) O3 ceramics
JPH1192144A (en) Platy ceramic particles
Kim et al. Microwave dielectric properties of (1− x)(Ca0. 7Nd0. 2) TiO3–x (Li0. 5Nd0. 5) TiO3 ceramics
Nurmi et al. The effect of titanium excess and deficiency on the microstructure and dielectric properties of lanthanum doped Ba0. 55Sr0. 45TiO3 with colossal permittivity
Berbecaru et al. Structural and electrical properties of BNT-BT0. 08 ceramics processed by spark plasma sintering
JP2005001989A (en) Method for manufacturing barium titanate particulate
Yue et al. Dielectric properties of (010) oriented polycrystalline Ta2O5 substituted BaTi2O5 prepared by arc melting
Ma et al. Improving the Dielectric Properties of the‎ Ba (Zr0. 1Ti0. 9) O3-based Ceramics by Adding‎ a Li2O–SiO2 Sintering Agent Step by Step‎

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071122

R150 Certificate of patent or registration of utility model

Ref document number: 4049315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees