JPH02289426A - Powder for barium titanate-based semiconductor ceramics and its production - Google Patents

Powder for barium titanate-based semiconductor ceramics and its production

Info

Publication number
JPH02289426A
JPH02289426A JP1225061A JP22506189A JPH02289426A JP H02289426 A JPH02289426 A JP H02289426A JP 1225061 A JP1225061 A JP 1225061A JP 22506189 A JP22506189 A JP 22506189A JP H02289426 A JPH02289426 A JP H02289426A
Authority
JP
Japan
Prior art keywords
mol
titanate
less
molar ratio
oxalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1225061A
Other languages
Japanese (ja)
Other versions
JP2558357B2 (en
Inventor
Takamitsu Enomoto
榎本 隆光
Midori Kawahara
川原 みどり
Noboru Murata
昇 村田
Yoji Ueda
洋史 上田
Naoki Okada
直樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP1225061A priority Critical patent/JP2558357B2/en
Priority to DE1990609628 priority patent/DE69009628T2/en
Priority to EP19900116692 priority patent/EP0415428B1/en
Publication of JPH02289426A publication Critical patent/JPH02289426A/en
Priority to US07/841,210 priority patent/US5219811A/en
Application granted granted Critical
Publication of JP2558357B2 publication Critical patent/JP2558357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the raw material powder capable of producing a semiconductor ceramic composition having a remarkably positive temp. characteristic, sufficiently low resistivity and an excellent withstand voltage resistance temp. coefficient by forming the powder with secondary grains having open pores formed by the linkage of primary grains to one another and having specified grain diameter distribution and specific surface. CONSTITUTION:The BaTiO3 powder of the secondary grains (having 150-250mum average diameter and contg. <=5% grains having <=50mum diameter) having open pores formed by the linkage of the primary grains having <=0.2mum diameter to one another, the SrTiO3 powder of the secondary grains (having 70-180mum average diameter and 20-30m<2>/g BET specific surface) having open pores formed by the linkage of the primary grains having <=0.1mum diameter to one another, etc., are used as the powder for the barium titanate-based semiconductor ceramics. The molar ratio of Ba to Ti in the BaTiO3 is controlled to 1.02-1.05, an aq. soln. contg. <=10wt.% BaCl2 and TiCl4 is added to an oxalic acid soln. (where the molar ratio of oxalic acid to Ti is controlled to 2.1-2.3), and the precipitated barium oxalate titanate is calcined at 700-900 deg.C to produce the BaTiO3 powder.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、著しい正の温度特性を有し、しかも比抵抗が
十分に低いと同時に耐電圧、抵抗温度係数に優れたチタ
ン酸バリウム系半導体磁器組成物の原料となる粉末およ
びその製造法に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention is directed to a barium titanate-based semiconductor which has remarkable positive temperature characteristics, has sufficiently low specific resistance, and has excellent withstand voltage and temperature coefficient of resistance. This invention relates to a powder that is a raw material for a porcelain composition and a method for producing the same.

[従来技術とその解決しようとする課題]従来、チタン
酸バリウム系半導体磁器はチタン酸バリウムを主成分と
し、これに半導化剤としてY、La、Ceなどの希土類
元素、Nb、Sbのうち少なくとも1種を微看含有させ
たもので、常温における比抵抗を低くし、抵抗急変点(
キュリー点)を越えると著しい正の抵抗温度特性を示す
という特徴を存している。
[Prior art and problems to be solved] Conventionally, barium titanate-based semiconductor porcelain has barium titanate as its main component, and rare earth elements such as Y, La, and Ce, among them Nb and Sb, are added as semiconducting agents. Contains a small amount of at least one kind, lowers the specific resistance at room temperature, and lowers the resistance sudden change point (
Curie point), it exhibits a significantly positive resistance-temperature characteristic.

通常、チタン酸バリウム系半導体磁器はその主成分であ
るチタン酸バリウムの影響によりキュリー点はほぼ12
0℃付近にある。
Normally, barium titanate-based semiconductor porcelain has a Curie point of approximately 12 due to the influence of its main component, barium titanate.
It is around 0℃.

かかるチタン酸バリウム系半導体磁器のキュリー点を高
温側に移行させるために、Baの一部をpbで置換する
ことが知られている。また、キュリー点を低温側に移行
させるためや電気的特性を改善するため、Baの一部を
SrまたはCaで置換したり、Tiの一部をZr、Sn
などで置換することも知られている。
In order to shift the Curie point of such barium titanate-based semiconductor ceramics to a high temperature side, it is known to replace a part of Ba with Pb. In addition, in order to shift the Curie point to a lower temperature side and improve electrical characteristics, a part of Ba is replaced with Sr or Ca, and a part of Ti is replaced with Zr or Sn.
It is also known to replace with

さらに、チタン酸バリウム系半導体iff器にMnやシ
リカ、アルミナ、酸化銅等を添加することにより、キュ
リー点を越えた後の抵抗温度変化率を改善したり、半導
体磁器の特性を安定化させる等、種々の試みが行われて
いる。(特公昭53−29386、特公昭54−101
)0.特公昭63−28324等)そして、かかるチタ
ン酸バリウム系半導体磁器の特性を利用することにより
、定温度発熱用素子、電流制限用素子、温度制御用素子
などとして使用されている。
Furthermore, by adding Mn, silica, alumina, copper oxide, etc. to barium titanate-based semiconductor IF devices, it is possible to improve the rate of change in resistance temperature after exceeding the Curie point, stabilize the characteristics of semiconductor ceramics, etc. , various attempts have been made. (Tokuko Sho 53-29386, Sho 54-101
)0. (Japanese Patent Publication No. 63-28324, etc.) By utilizing the characteristics of such barium titanate-based semiconductor porcelain, it is used as a constant temperature heating element, a current limiting element, a temperature controlling element, etc.

そして、上記のような用途において、チタン酸バリウム
系半導体Mi器ができる限り低比抵抗であることが求め
られる用途も多いが、従来のものにおいては比抵抗が低
くなるに従って、抵抗温度特性、および破壊電圧が極端
に劣化し、例えば比抵抗が5Ω・CI程度のものでは比
抵抗と抵抗温度特性の勾配α(Z/ ’C)が約7程度
しかなく、破壊電圧も約30V/mi前後と低い値に留
まり[西井基:エレクトロニク・セラミクス、885月
号(1988) pp22〜27]このような低比抵抗
値を有するチタン酸バリウム系半導体磁器は実際には実
用化されていないのが現状である。
In many of the above-mentioned applications, barium titanate-based semiconductor Mi devices are required to have as low a resistivity as possible, but with conventional products, as the resistivity decreases, the resistance-temperature characteristics and The breakdown voltage deteriorates extremely; for example, in the case of a resistor with a resistivity of about 5 Ω CI, the gradient α (Z/'C) of resistivity and resistance temperature characteristics is only about 7, and the breakdown voltage is about 30 V/mi. The value remains low [Moto Nishii: Electronic Ceramics, May 88 (1988) pp. 22-27] At present, barium titanate-based semiconductor porcelain with such a low resistivity value has not actually been put into practical use. It is.

[課題を解決するための手段] 本発明者らはこのような現状に鑑み、上記問題点を解決
するために鋭意検討を行った結果、チタン酸バリウム系
半導体磁器の原料として通常用いられる炭酸塩または酸
化物の代わりに、主成分として使用される BaTiO
3、SrTiO3、 CaTiO3、PbTiO3の内
、少なくともBaTi03とSrTiO3を特定の方法
によって製造した微細で均一な一次粒子を有し、平均粒
子径が大きいシュウ酸塩を仮焼した形骸二次粒子を用い
ることにより比抵抗が8Ω・cm以下と十分に低く、し
かも耐電圧、抵抗温度特性等の他の特性が非常に優れた
正抵抗温度特性を持つMi器が得られることを見いだし
、本発明に到達したものである。
[Means for Solving the Problems] In view of the current situation, the present inventors conducted intensive studies to solve the above problems, and as a result, carbonate, which is commonly used as a raw material for barium titanate semiconductor ceramics, was developed. or used as main component instead of oxide BaTiO
3. Out of SrTiO3, CaTiO3, and PbTiO3, at least BaTiO3 and SrTiO3 have fine and uniform primary particles produced by a specific method, and the use of temporary secondary particles obtained by calcining oxalate with a large average particle size. The inventors have discovered that it is possible to obtain an Mi device with a sufficiently low specific resistance of 8 Ω cm or less and excellent positive resistance-temperature characteristics in other properties such as withstand voltage and resistance-temperature characteristics, and have arrived at the present invention. It is something.

すなわち本発明は、0.2μm以下の一次粒子が互に繋
がった開気孔を存する形骸二次粒子でその大きさが平均
150〜250μmであり、かつ50μm以下の形骸二
次粒子が5wt%以下であることを特徴とするチタン酸
バリウム粉末、およびBa/Ti(モル比)=1.02
〜1.05、BaCl2 : 10wt%以下の濃度の
四塩化チタンおよび塩化バリウムを含む水Neを、シュ
ウ酸水溶液に添加する際、シュウ酸パi(モル比)=2
.1〜2.3、生成するシュウ酸チタン酸バリウム4水
塩の濃度が10〜12wt%になるように設定し、添加
をシャワー状、4時間以上の時間で行いかつ攪拌周速2
.5m/see以上、添加中の液温を55〜75℃の温
度範囲で定温に維持して得たシュウ酸チタン酸バリウム
を700〜900℃で焼成することを特rBtきする上
記チタン酸バリウム粉末の製造法、次に0.1βm以下
の一次粒子が互に繋がった開気孔を有する形骸二次粒子
でその大きさが平均70〜180μmであり、かつその
BET比表面積が20〜30rrr/gであることを特
徴とするチタン酸ストロンチウム粉末、およびSr/T
i (−1: ル)−1,2以上、5rCI2 :15
wt%以下の四塩化チタンおよび塩化ストロンチウムを
含む水溶液を、シュウ酸の水溶液に添加する際、シュウ
酸/Ti= (モル比)・2.1〜2,3、生成するシ
ュウ酸チタン酸ストロンチウム5水塩の濃度力10.0
〜f4.owt%に設定し、添加をシャワー状、2時間
以上の時間で行いかつ撹拌周速3.Q■/see以上、
添加中の液温を60〜80℃以上の温度範囲で定温に維
持して得たシュウ酸チタン酸ストロンチウムを、700
〜900℃で焼成することを特徴とする上記チタン酸ス
トロンチウム粉末の製造法、さらに02μm以下の一次
粒子が互に繋がった開気孔を有する形骸二次粒子でその
大きさが平均50〜150μmであり、かつ20μm以
下の形骸二次粒子が5wt%以下であることを特徴とす
るチタン酸鉛粉末、および四塩化チタンをアンモニアに
より中和した後濾過洗浄し、シュウ酸に溶解したシュウ
酸/Ti(モル比)=2.1〜2.3、TiO2: 4
wt%以下の水溶液を硝酸鉛の水溶液に添加する際、P
b/T (モル比)=1.01〜1.03、生成するシ
ュウ酸チタン酸鉛4水塩の濃度10=18wt%になる
よう設定し、かつ添加をシャワー状、撹拌周速2.0m
/see、液温45〜55℃で一定温度に維持しながら
、1〜2時間で添加することにより得たシュウ酸チタン
酸鉛を、600〜800℃で焼成することを特徴とする
上記チタン酸鉛粉末の製造法、さらには前述の粉末を用
いた発明でBaTi03.SrTiO3 、CaTiO
3、PbTiO3の主成分の内、少な(ともBaTiO
3、SrTiO3が前述した粉末よりなり、 その主成分の組成がBaTiO3: 45〜85モル%
、SrTiO3  :1〜20モル%、 CaTiO3
:5〜20モル%、PbTiO3: 1〜20モル%で
あり前記主成分に対して半導化剤としてY、La、Ce
などの希土類元素、Nb、Sbのうち少なくとも1種が
0.1〜0.3モル%、 さらにMn : 0.006〜0.025モル%、Si
O2 : 0.1〜1モル%の組成範囲になることを特
徴とするチタン酸バリウム系半導体磁器組成物用原料粉
末、およびBaTiO3、SrTiO3、CaTiO3
、PbTiO3の主成分のうち、少なくともBaTiO
3、SrTiO3 、PbTi03が前述した粉末より
なり、同様の組成のチタン酸バリウム系半導体磁器組成
物用原料粉末を堤供するものである。
That is, the present invention provides skeletal secondary particles having open pores in which primary particles of 0.2 μm or less are connected to each other, the average size of which is 150 to 250 μm, and 5 wt% or less of skeletal secondary particles of 50 μm or less. Barium titanate powder, and Ba/Ti (molar ratio)=1.02
~1.05, BaCl2: When adding water Ne containing titanium tetrachloride and barium chloride at a concentration of 10 wt% or less to an oxalic acid aqueous solution, oxalate pi (molar ratio) = 2
.. 1 to 2.3, the concentration of barium oxalate titanate tetrahydrate to be produced is set to be 10 to 12 wt%, and the addition is performed in a shower over a period of 4 hours or more, and the stirring peripheral speed is 2.
.. 5 m/see or more, the above-mentioned barium titanate powder is characterized in that barium oxalate titanate obtained by maintaining the liquid temperature during addition at a constant temperature in the temperature range of 55 to 75 °C is calcined at 700 to 900 °C. Next, the production method is to use skeletal secondary particles having open pores in which primary particles of 0.1 βm or less are connected to each other, the average size of which is 70 to 180 μm, and the BET specific surface area of 20 to 30 rrr/g. Strontium titanate powder, and Sr/T
i (-1: le) -1,2 or more, 5rCI2: 15
When adding an aqueous solution containing titanium tetrachloride and strontium chloride in wt% or less to an aqueous solution of oxalic acid, oxalic acid/Ti = (molar ratio) 2.1 to 2.3, strontium oxalate titanate 5 Water salt concentration power 10.0
~f4. owt%, the addition was carried out in a shower over a period of 2 hours or more, and the peripheral stirring speed was 3. Q■/see or more,
Strontium oxalate titanate obtained by maintaining the liquid temperature during addition at a constant temperature in the temperature range of 60 to 80 ° C.
The above-mentioned method for producing strontium titanate powder is characterized by firing at ~900°C, and the method further comprises forming secondary particles having open pores in which primary particles of 02 μm or less are connected to each other and having an average size of 50 to 150 μm. , and oxalic acid/Ti ( molar ratio) = 2.1 to 2.3, TiO2: 4
When adding wt% or less of an aqueous solution to an aqueous solution of lead nitrate, P
b/T (mole ratio) = 1.01 to 1.03, the concentration of lead oxalate titanate tetrahydrate to be produced was set to 10 = 18 wt%, and the addition was carried out in the form of a shower, with stirring at a circumferential speed of 2.0 m.
/see, the above titanic acid characterized in that the lead oxalate titanate obtained by adding it for 1 to 2 hours while maintaining the liquid temperature at a constant temperature of 45 to 55 ° C. is fired at 600 to 800 ° C. BaTi03. SrTiO3, CaTiO
3. Among the main components of PbTiO3, a small amount (also known as BaTiO
3. SrTiO3 is composed of the powder mentioned above, and its main component is BaTiO3: 45 to 85 mol%.
, SrTiO3: 1 to 20 mol%, CaTiO3
: 5 to 20 mol%, PbTiO3: 1 to 20 mol%, and Y, La, Ce as a semiconducting agent to the main component.
At least one of rare earth elements such as Nb and Sb is 0.1 to 0.3 mol%, further Mn: 0.006 to 0.025 mol%, Si
O2: Barium titanate-based semiconductor ceramic composition raw material powder characterized by a composition range of 0.1 to 1 mol%, and BaTiO3, SrTiO3, CaTiO3
, among the main components of PbTiO3, at least BaTiO
3. SrTiO3 and PbTi03 are made of the powders mentioned above, and raw material powder for a barium titanate semiconductor ceramic composition having a similar composition is provided.

まず、本発明の基本的原料となる各種シュウ酸塩の製造
方法について述べるが、これらの方法において重要な事
項は、できるだけ純度の高いシュウ酸塩を得ること、シ
ュウ酸塩中のBa、Sr、Pb、CaとTiのモル比が
できるだけlに近くかつ各結晶間のばらつきの無いもの
を得ることである。そのため純度については原料となる
シュウ酸、四塩化チタンやBa、Sr、Pb、Caの塩
ができるだけ高純度であることは勿論、反応容器からの
混入をさけるため反応容器はテフロン等の耐酸性のプラ
スチック容器が好ましく、最終的に得られたシュウ酸塩
はアルカリ土類を除いた他の金属不純物濃度は数pμm
以下、トータルで100pp−以下が好ましい、またモ
ル比については結晶形状や粒子径が均一で、できるだけ
大きいものを得る必要があるが、それらは以下のような
製造法をとることによりうまく製造できることがわかっ
た。
First, we will describe the methods for producing various oxalates, which are the basic raw materials of the present invention.The important points in these methods are to obtain oxalates with as high a purity as possible, and to reduce the concentration of Ba, Sr, and The objective is to obtain a crystal in which the molar ratio of Pb, Ca and Ti is as close to 1 as possible and there is no variation between crystals. Therefore, in terms of purity, it is of course important that the raw materials, oxalic acid, titanium tetrachloride, and salts of Ba, Sr, Pb, and Ca, be as pure as possible.In order to avoid contamination from the reaction container, the reaction container must be made of acid-resistant material such as Teflon. A plastic container is preferable, and the finally obtained oxalate has a concentration of metal impurities other than alkaline earth metals of several ppm.
Below, a total of 100 pp- or less is preferable, and regarding the molar ratio, it is necessary to obtain particles with uniform crystal shape and particle size and as large as possible, but these can be successfully manufactured by using the following manufacturing method. Understood.

初めにシュウ酸チタン酸バリウムの製造について述べる
と、反応はシュウ酸を溶解した水溶液に対し、四塩化チ
タンと塩化バリウムを溶解した溶液を添加することによ
り行うわけであるが、設定濃度としては生成するシュウ
酸チタン酸バリウム4水塩の濃度が10〜12wt%の
範囲内に入るように設定すればよい、従って、両液の水
バランスは設定濃度の範囲内であればどのような濃度で
もよいが、四塩化チタンと塩化バリウムの溶液で塩化バ
リウムが析出しないよう溶液中の塩化バリウムの濃度は
10wt%以下にする必要がある。
First, let's talk about the production of barium titanate oxalate.The reaction is carried out by adding a solution containing titanium tetrachloride and barium chloride to an aqueous solution containing oxalic acid. The concentration of barium oxalate titanate tetrahydrate may be set within the range of 10 to 12 wt%. Therefore, the water balance of both solutions may be at any concentration as long as it is within the set concentration range. However, in order to prevent barium chloride from precipitating in a solution of titanium tetrachloride and barium chloride, the concentration of barium chloride in the solution needs to be 10 wt % or less.

Ba/Ti(モル比)は8aが若干多口の1.02〜1
.05に設定する必要がある。 Ba/Ti(モル比)
力月、02より小さい場合は生成するシュウ酸塩のBa
/T i (モル比)が0.998より小さい値となり
好ましくなく、一方Ba/T i (モル比)が1.0
5より大きい場合は、生成するシュウ酸塩のBa/T 
i (モル比)は1.0付近で大きく変化しないが未反
応のBaが多くなるため経済的でない、シュう酸/Ti
(モル比)のモル比は、収量および経済性の・点から2
.1〜2.3の範囲に設定するのが好ましい、また、他
の塩の析出を抑えしかも経済的な濃度、および結晶の形
状等からみて、濃度が10〜12wt%の範囲が好まし
い。
Ba/Ti (molar ratio) is 1.02 to 1, with 8a being slightly larger.
.. It is necessary to set it to 05. Ba/Ti (molar ratio)
If the power is smaller than 02, the Ba of the oxalate produced
/T i (molar ratio) is less than 0.998, which is undesirable, while Ba/T i (molar ratio) is 1.0.
If it is larger than 5, the Ba/T of the oxalate produced
i (molar ratio) does not change much around 1.0, but it is not economical because there is a large amount of unreacted Ba, oxalic acid/Ti
The molar ratio of (molar ratio) is 2 from the viewpoint of yield and economic efficiency
.. It is preferable to set the concentration in the range of 1 to 2.3, and the concentration is preferably in the range of 10 to 12 wt%, from the viewpoint of suppressing precipitation of other salts, economical concentration, crystal shape, etc.

さらに生成するシュウ酸チタン酸バリウム4水塩の結晶
の大きさ、形状、粒度分布に大きな影響を与えるのは添
加条件、攪拌状態、温度条件であり、添加はなるべく広
い範囲にシャワー状で添加するのがよく、添加時に十分
分散しないと微細な結晶が析出し、また4時間以上かけ
てゆっくり、少量づつ添加しないと同様の現象がおこり
、最終製品の物性が劣化する原因となる。撹拌状態につ
いても同様であり、容器のスケールや形状において若干
異なるが、少なくとも攪拌周速2.5膳/secで行う
必要がある。
Furthermore, the addition conditions, stirring conditions, and temperature conditions have a major influence on the crystal size, shape, and particle size distribution of the barium oxalate titanate tetrahydrate crystals that are formed, so addition should be done in a shower over as wide a range as possible. If it is not sufficiently dispersed during addition, fine crystals will precipitate, and if it is not added slowly and in small amounts over 4 hours or more, a similar phenomenon will occur, causing deterioration of the physical properties of the final product. The same applies to the stirring state, and although it differs slightly depending on the scale and shape of the container, it is necessary to perform stirring at a peripheral speed of at least 2.5 servings/sec.

次に温度条件であるが、晶析温度およびその温度の変動
は晶析に大きな影響を及ぼし微結晶の析出の大きな原因
となるので、55〜75℃の温度範囲で一定温度に保つ
必要があり、55℃より低い温度では結晶性の悪い結晶
が生成し、Ba/T i (モル比)が0.998より
小さい値となり、一方75℃より高い場合は晶出した結
晶が不安定で結晶中からBaが抜けやすく濾過までの時
間が長くなった場合、Ba/Ti(モル比)が0.99
8より低くなるため好ましくない。
Next, regarding temperature conditions, the crystallization temperature and its temperature fluctuations have a great effect on crystallization and are a major cause of precipitation of microcrystals, so it is necessary to maintain a constant temperature within the temperature range of 55 to 75 degrees Celsius. If the temperature is lower than 55℃, crystals with poor crystallinity will be formed and the Ba/Ti (molar ratio) will be smaller than 0.998, while if the temperature is higher than 75℃, the crystals formed will be unstable and If the time until filtration is long, Ba/Ti (molar ratio) is 0.99.
It is not preferable because it becomes lower than 8.

このようにして析出したシュウ酸チタン酸バリウムの結
晶は、Ba/Ti (モル比)が0.998〜1.00
2の範囲内で、結晶内部も化学量論的に均一であり、結
晶粒径は平均100μm以上で揃っており、小さな結晶
の少ないものとなる。
The barium titanate oxalate crystals precipitated in this way have a Ba/Ti (molar ratio) of 0.998 to 1.00.
Within the range of 2, the inside of the crystal is also stoichiometrically uniform, the crystal grain size is uniform with an average of 100 μm or more, and there are few small crystals.

次にシュウ酸チタン酸ストロンチウムの製造法であるが
、シュウ酸チタン酸バリウムに比較してSr/Ti (
モル比)が1より小さい値になり易いため仕込みのSr
/Ti(モル比)を1.2以上に設定する必要がある。
Next, regarding the production method of strontium oxalate titanate, compared to barium oxalate titanate, Sr/Ti (
Since the molar ratio) tends to be less than 1, the Sr of the preparation
/Ti (molar ratio) must be set to 1.2 or more.

設定Sr/T L (モル比)が1.2より小さいと、
生成シュウ酸塩のSr/T i (モル比)が0.99
8より小さい値となり好ましくないが、余り大きすぎて
も経済的でなく、普通は1,2〜1.3の範囲で設定す
る。シュウ酸/Ti(モル比)のモル比は、収量および
経済性の点から2.1〜2.3の範囲に設定するのが好
ましい、また、他の塩の析出を抑えしかも経済的な濃度
、および結晶の形状等からみて、濃度は10〜14wt
%の範囲が好ましい。
If the setting Sr/T L (molar ratio) is smaller than 1.2,
Sr/T i (molar ratio) of the generated oxalate is 0.99
A value smaller than 8 is not preferable, but if it is too large, it is not economical, so it is usually set in the range of 1.2 to 1.3. The molar ratio of oxalic acid/Ti (molar ratio) is preferably set in the range of 2.1 to 2.3 from the viewpoint of yield and economic efficiency. , and the shape of the crystals, the concentration is 10 to 14 wt.
A range of % is preferred.

さらに生成するシュウ酸チタン酸ストロンチウム5水塩
の結晶の大きさ、形状、粒度分布に大きな影響を与える
のは添加条件、攪拌状態、温度条件であり、添加はなる
べく広い範囲にシャワー状で添加するのがよく、添加時
に十分攪拌分散させないと微細な結晶が析出し、また2
時間以上かけてゆっくり、少量づつ添加しないと同様の
現象がおこり、結晶のSr/Ti (モル比)が0.9
98より小さくなり好ましくない、攪拌条件についても
同様であり、容器のスケールや形状において若干異なる
が、少なくとも攪拌周速3.01/secで行う必要が
ある。
Furthermore, the addition conditions, stirring conditions, and temperature conditions have a major influence on the size, shape, and particle size distribution of the crystals of strontium oxalate titanate pentahydrate that are formed, so addition should be done in a shower over as wide a range as possible. If the addition is not sufficiently stirred and dispersed, fine crystals will precipitate, and
A similar phenomenon will occur if the Sr/Ti (molar ratio) of the crystals is not added slowly and in small amounts over a period of time to 0.9.
The same applies to the stirring conditions, which are less than 98, which is undesirable.Although the scale and shape of the container are slightly different, it is necessary to perform the stirring at at least a peripheral speed of 3.01/sec.

次に温度条件であるが、晶析温度およびその温度の変動
は晶析に大きな影響を及ぼし微結晶の析出の大きな原因
となるので、60〜80℃とシ工つ酸チタン酸バリウム
に比較してより高い温度範囲で一定温度に保つ必要があ
り、シュウ酸チタン酸バリウムと同様の理由で、上記範
囲より高い場合も低い場合もSr/Ti (モル比)が
0.998より小さい値となり好ましくない。
Next, regarding temperature conditions, the crystallization temperature and temperature fluctuations have a large effect on crystallization and are a major cause of precipitation of microcrystals, so we recommend a temperature of 60 to 80°C compared to barium titanate siloxate. It is necessary to maintain a constant temperature in a higher temperature range, and for the same reason as barium oxalate titanate, the Sr/Ti (molar ratio) is preferably smaller than 0.998 whether it is higher or lower than the above range. do not have.

このようにして析出したシュウ酸チタン酸ストロンチウ
ムの結晶も、Sr/Ti (モル比)が0.998〜1
.002の範囲内で、結晶内部も化学量論的に均一であ
り、結晶粒径は平均70μm以上で揃っており小さな結
晶の少ないものとなる。
The crystals of strontium titanate oxalate thus precipitated also have a Sr/Ti (molar ratio) of 0.998 to 1.
.. Within the range of 002, the inside of the crystal is also stoichiometrically uniform, the crystal grain size is uniform with an average of 70 μm or more, and there are few small crystals.

シュウ酸チタン酸ストロンチウムの場合は、反応温度の
60〜80℃では収率が約80wt%と低いため反応後
に冷却することにより収率を90wt%以上に上げるこ
とができる。しかし、冷却速度によりその後析出するシ
ュウ酸塩のSr/Ti(モル比)が変わってくるためそ
の冷却速度は5℃/hr〜30℃/Hrの範囲内で行う
必要がある。
In the case of strontium oxalate titanate, the yield is as low as about 80 wt% at a reaction temperature of 60 to 80°C, so the yield can be increased to 90 wt% or more by cooling after the reaction. However, since the Sr/Ti (molar ratio) of the oxalate that is subsequently precipitated changes depending on the cooling rate, the cooling rate must be within the range of 5°C/hr to 30°C/hr.

更に、シュウ酸チタン酸鉛の製造法であるが、この場合
四塩化チタンを使用すると鉛の塩を溶解させた場合、塩
化鉛の沈殿を生成するため、シュウ酸チタン酸バリウム
の場合のような方法は使えず、四塩化チタンを−Hアン
モニアにより中和して水酸化チタンのゲルを生成させ、
十分濾過洗浄を行った後シュウ酸に溶解すれば溶液状と
なるので、この溶液を使用することができる。シュウ酸
チタン酸鉛の場合、条件によってPb/Ti(モル比)
が変動するので種々の条件を一定にする必要があるが、
完全な溶液とするためおよび後のシュウ酸塩生成時の収
率等を考え、かつモル比が1に近い条件では、シュウ酸
/Ti(モル比)は2.1〜2.3、TiO2: 4w
t%以下とする必要がある。トータルの水バランスから
考えると、生成するシュウ酸チタン酸鉛の濃度が10〜
18wt%になるように設定すればよくその範囲内にな
るよう、Tiがシュウ酸に溶解した溶液と硝酸鉛の濃度
を設定すればよい。
Furthermore, regarding the manufacturing method of lead oxalate titanate, if titanium tetrachloride is used in this case, lead chloride precipitates will be generated when the lead salt is dissolved, so it is difficult to produce lead titanate oxalate as in the case of barium titanate oxalate. method cannot be used, titanium tetrachloride is neutralized with -H ammonia to produce a titanium hydroxide gel,
After thorough filtration and washing, it becomes a solution by dissolving it in oxalic acid, and this solution can be used. In the case of lead oxalate titanate, Pb/Ti (molar ratio)
varies, so it is necessary to keep various conditions constant,
In order to obtain a complete solution and considering the yield during subsequent oxalate production, and under conditions where the molar ratio is close to 1, the oxalic acid/Ti (molar ratio) is 2.1 to 2.3, TiO2: 4w
It is necessary to keep it below t%. Considering the total water balance, the concentration of lead oxalate titanate produced is 10~
The concentration of the solution of Ti dissolved in oxalic acid and the concentration of lead nitrate may be set so that it is within this range.

また、シュウ酸チタン酸鉛の濃度が10〜18wt%に
設定した場合、粒径が大きくかつ均一な結晶を得ること
ができる。
Further, when the concentration of lead oxalate titanate is set to 10 to 18 wt%, it is possible to obtain uniform crystals with large particle size.

Pb/T i (モル比)が1に近いシュウ酸塩を得る
ためには、設定Pb/Ti(モル比)は1.01〜1.
03にする必要があり、設定Pb/T i (モル比)
が1.01より低いとシュウ酸塩のPb/T i (モ
ル比)が0.99以下と下がり、一方設定Pb/T i
 (モル比)が1.03より大きい場合は、反対にシュ
ウ酸塩のモル比が1.01と大きすぎる債となる。設定
シュウ酸/Ti(モル比)についても同様である0反応
時の液温については、45〜55℃の範囲で行う必要が
あり、この範囲外ではいずれもモル比が0.99より低
くなり好ましくない。
In order to obtain oxalate with a Pb/Ti (molar ratio) close to 1, the set Pb/Ti (molar ratio) should be 1.01 to 1.
03, setting Pb/T i (molar ratio)
is lower than 1.01, the Pb/T i (molar ratio) of oxalate decreases to 0.99 or less;
(molar ratio) is larger than 1.03, on the other hand, the molar ratio of oxalate is 1.01, which is too large. The same goes for the setting oxalic acid/Ti (molar ratio).The liquid temperature at the time of 0 reaction needs to be carried out in the range of 45 to 55°C, and outside this range the molar ratio will be lower than 0.99. Undesirable.

シュウ酸チタン酸鉛を得る場合も、液中の拡散状態は結
晶状態に大きな影響を及ぼし、なるべく均一かつ早い拡
散が起こるよう、添加はシャワー状態で行い、攪拌周速
は2,0■/sec以上で行う必要がある。
When obtaining lead oxalate titanate, the diffusion state in the liquid has a great influence on the crystalline state, so to ensure uniform and fast diffusion, addition is performed in a shower state, and the peripheral stirring speed is 2.0 μ/sec. It is necessary to do the above.

このようにして析出したシュウ酸チタン酸鉛の結晶も、
Pb/Ti(モル比)が0.998〜1.002の範囲
内で、結晶内部も化学量論的に均一であり、結晶粒径は
平均50μm以上で揃っており、小さな結晶の少ないも
のとなる。
The lead oxalate titanate crystals precipitated in this way also
When the Pb/Ti (molar ratio) is within the range of 0.998 to 1.002, the inside of the crystal is stoichiometrically uniform, the crystal grain size is uniform at an average of 50 μm or more, and there are few small crystals. Become.

本発明の粉末組成物の一つであるチタン酸カルシウムに
ついても、チタン酸ストロンチウム等を製造するのと同
様に、Ca/Ti(モル比) 、CaCl2の濃度、シ
ュウ酸/Ti(モル比)、生成するシュウ酸塩の濃度、
液の温度、添加の方法、攪拌の条件等を設定することに
より、Ca/T i (モル比)が1に近く結晶粒径が
同様に大きく整ったシュウ酸チタン酸カルシウムを得る
ことができる。
Regarding calcium titanate, which is one of the powder compositions of the present invention, in the same way as in producing strontium titanate, etc., the concentration of Ca/Ti (molar ratio), CaCl2, oxalic acid/Ti (molar ratio), The concentration of oxalate produced,
By setting the liquid temperature, addition method, stirring conditions, etc., it is possible to obtain calcium oxalate titanate having a Ca/T i (molar ratio) close to 1 and a similarly large crystal grain size.

前述の方法により得られたそれぞれのシュウ酸塩は、有
機酸のプロトンが金属または金属酸化物で置き換えられ
た形になっており、これを十分酸素の存在する雰囲気中
、普通の焼結を行う温度よりは若干低い温度で仮焼成す
ることにより有機物が酸化分解し、BaTiO3、Sr
TiO3、PbTiO3、CaTiO3のような形の酸
化物となるわけであるが、この際の分解前の有機物の結
晶状態が焼成後の酸化物の粒径、粒度分布、モル比等の
物性に大きな影響を与え、さらに上記物性が最終的な焼
結体の電気的性質にも大きく影響する。
Each oxalate obtained by the above method is in a form in which the protons of the organic acid are replaced by metals or metal oxides, and this is subjected to ordinary sintering in an atmosphere containing sufficient oxygen. By pre-calcining at a temperature slightly lower than the
Oxides such as TiO3, PbTiO3, and CaTiO3 are formed, but the crystalline state of the organic matter before decomposition has a large effect on the physical properties of the oxide after firing, such as particle size, particle size distribution, and molar ratio. Moreover, the above-mentioned physical properties greatly influence the electrical properties of the final sintered body.

本発明で得られたシュウ酸塩の仮焼体は、0.2μm程
度以下の均一で微細な粒子が軽く焼結してお互いに結合
力を持ち、分解前のシュウ酸塩の形を保持したいわゆる
形骸粒子の構造をとっておりしかもその粒子は原子分布
の片寄りがなく均一に分布しており、このような仮焼体
を使用して後述する混合、焼成工程により焼結体を得る
ことにより焼結体自体も均一な&1IIaを持ち、低比
抵抗で抵抗温度係数が高くかつ耐電圧の高い磁器となる
The calcined body of oxalate obtained in the present invention has homogeneous and fine particles of about 0.2 μm or less that are lightly sintered to have a bonding force with each other and maintain the shape of the oxalate before decomposition. It has the structure of so-called skeleton particles, and the particles are uniformly distributed without uneven atomic distribution, and it is possible to obtain a sintered body using such a calcined body through the mixing and firing processes described later. As a result, the sintered body itself has a uniform &1IIa, and becomes a porcelain having a low resistivity, a high temperature coefficient of resistance, and a high withstand voltage.

まずシュウ酸チタン酸バリウム、シュウ酸チタン酸スト
ロンチウム、シュウ酸チタン酸カルシウムの仮焼成につ
いて具体的に述べると、得られたそれぞれのシュウ酸塩
は、結晶水が飛散しない程度の温度で乾燥されており含
水塩となっているが、これを有g9QIJが炭化せずか
つ粒子が適当な大きさに留まる程度の温度で焼成する。
First, to specifically describe the pre-calcination of barium oxalate titanate, strontium oxalate titanate, and calcium oxalate titanate, each of the obtained oxalates is dried at a temperature that does not allow crystal water to scatter. The resulting hydrated salt is calcined at a temperature that does not carbonize the 9QIJ and keeps the particles at an appropriate size.

従って焼成時の炉内は酸素が十分供給される雰囲気中で
行う必要があるが、有機酸塩は急激な分解燃焼を起こす
場合があるので余り過剰な酸素は必要でなく、適度な酸
素雰囲気で行うことが好ましい。仮焼成温度は700〜
900℃が好ましく、700℃より低い場合は十分に酸
化分解が進行せず、炭素等が残留するため好ましくなく
、一方900″Cより高い場合、不均一な粒成長が起き
やすく、局所的な異常粒成長が認められる場合が多く好
ましくない。
Therefore, it is necessary to carry out firing in an atmosphere that is sufficiently supplied with oxygen in the furnace, but since organic acid salts may cause rapid decomposition and combustion, excessive oxygen is not necessary, and a moderate oxygen atmosphere is necessary. It is preferable to do so. Pre-firing temperature is 700~
The temperature is preferably 900°C. If it is lower than 700°C, oxidative decomposition will not proceed sufficiently and carbon etc. will remain, which is undesirable. On the other hand, if it is higher than 900"C, uneven grain growth will likely occur and local abnormalities will occur. Grain growth is often observed, which is not preferable.

このようにして得たシュウ酸塩の仮焼体は、チタン酸バ
リウム、チタン酸カルシウムについては0.2μm以下
の一次粒子が互に繋がった開気孔を有する形骸二次粒子
で、その大きさが平均粒径150〜250μmであり、
50μm以下の形骸二次粒子が5wt%以下、BET比
表面積が6〜1Onf/gの整った二次粒子径を有する
仮焼体となる。
For barium titanate and calcium titanate, the calcined body of oxalate obtained in this way is a skeletal secondary particle having open pores in which primary particles of 0.2 μm or less are connected to each other, and the size of the calcined body is The average particle size is 150 to 250 μm,
The calcined body has a uniform secondary particle size with a BET specific surface area of 6 to 1 Onf/g and 5 wt % or less of skeletal secondary particles of 50 μm or less.

またチタン酸ストロンチウム仮焼体については、0.1
)Im以下の一次粒子が互に繋がった開気孔を有する形
骸二次粒子でその大きさが平均70〜180μmである
が、この場合シュウ酸塩の製造方法により生成した仮焼
体のBET比表面積が太き(変化し、焼結磁器が優れた
特性を示す粉末はBET比表面積が20〜30rd/g
の範囲内である。
In addition, for the calcined strontium titanate body, 0.1
) A skeletal secondary particle having open pores in which primary particles of Im or less are connected to each other and has an average size of 70 to 180 μm. In this case, the BET specific surface area of the calcined body produced by the oxalate production method Powder that exhibits excellent properties for sintered porcelain has a BET specific surface area of 20 to 30rd/g.
is within the range of

シュウ酸チタン酸鉛の場合、上記したシュウ酸塩に比べ
酸化分解の温度が低く、粒成長しゃすいため仮焼成は6
00〜800℃が好ましく 、600 ”Cより低い温
度では同様に十分に酸化分解が進行せず、炭素等が残留
するため好ましくなく、一方800″Cより高い場合、
不均一な粒成長が起きやすく、局所的な異常粒成長が認
められる場合が多く好ましくない、このようにして得た
シュウ酸チタン酸鉛の仮焼体も、0.2μm以下の一次
粒子が互に繋がった開気孔を有する形骸二次粒子で、そ
の大きさが平均50〜150μmであり、20μm以下
の形骸二次粒子が5wt%以下、BET比表面積が6〜
10m/gの整った二次粒子径を有する仮焼体となる。
In the case of lead oxalate titanate, the oxidative decomposition temperature is lower than the above-mentioned oxalates, and the grain growth is faster, so the pre-calcination is 6
00 to 800°C is preferable, and temperatures lower than 600"C are not preferable because oxidative decomposition does not proceed sufficiently and carbon etc. remain. On the other hand, if the temperature is higher than 800"C,
In the calcined body of lead oxalate titanate obtained in this way, which is undesirable because uneven grain growth tends to occur and localized abnormal grain growth is often observed, the primary particles of 0.2 μm or less are mutually The particle size is 50 to 150 μm on average, the particle size of 20 μm or less is 5 wt% or less, and the BET specific surface area is 6 to 5 wt%.
The calcined body has a uniform secondary particle diameter of 10 m/g.

以上のような方法で得られたシュウ酸塩仮焼体を原料し
て、後述する方法により混合、焼成を行うわけであるが
、この場合必ずしもすべてシュウ酸塩の仮焼体を使用す
る必要はなく、少なくともBaTiO3、SrTiO3
についてシュウ酸塩の仮焼体を使用すればい。
The oxalate calcined body obtained by the above method is used as a raw material, and is mixed and fired by the method described later. However, in this case, it is not necessarily necessary to use all oxalate calcined bodies. At least BaTiO3, SrTiO3
For this purpose, a calcined body of oxalate should be used.

この場合、他のPbTiO3、CaTiO3は所謂普通
の固相法により製造して使用してもよく、普通はそれぞ
れの原料粉末、例えばPbTi0:+の場合はPb3O
4とTiO2を混合、焼成、粉砕することにより製造し
たPbTiO3と同様の方法で製造したCaTiO3を
シュウ酸塩仮焼体と混合して使用することになるが、シ
ュウ酸塩仮焼体と平均粒径、不純物濃度とも近似してい
る必要があり、平均粒径は2μm以下、アルカリ土類金
属を除いた他の金属不純物はIoo pμm以下である
必要がある。
In this case, the other PbTiO3 and CaTiO3 may be produced and used by the so-called ordinary solid phase method, and usually the respective raw material powders, for example, in the case of PbTi0:+, Pb3O
PbTiO3 produced by mixing, firing and pulverizing PbTiO3 and TiO2 and CaTiO3 produced in the same manner as above are mixed with an oxalate calcined body, but the oxalate calcined body and the average grain Both the diameter and the impurity concentration need to be similar, the average particle size needs to be 2 μm or less, and the metal impurities other than alkaline earth metals need to be less than Ioo pμm.

次に本発明の組成について説明すると、本発明は上記主
成分としてのBaT i口3.SrTiO3 、CaT
i03PbTi03がBaTiO3: 45〜85モル
%、SrTiO3 :1〜20モル%、 CaTiO3
: 5〜20モル%、 PbT i03:1〜20モル
%からなり、これに対して半導化剤としてY、La、C
eなどの希土類元素、Nb 、 Sbのうち少なくとも
1種が0,1〜0.3モル%、さらにMn二0.006
〜0.025−モル%、SiO□:0.1〜1モル%が
添加されている組成である。
Next, to explain the composition of the present invention, the present invention comprises BaTi as the main component.3. SrTiO3, CaT
i03PbTi03 is BaTiO3: 45-85 mol%, SrTiO3: 1-20 mol%, CaTiO3
: 5 to 20 mol%, PbTi03: 1 to 20 mol%, and Y, La, C as a semiconducting agent.
At least one of rare earth elements such as e, Nb and Sb is 0.1 to 0.3 mol%, and Mn2 is 0.006
~0.025-mol%, SiO□: 0.1-1 mol% is added.

本発明の主成分のBaTiO3、SrTiO3 、Ca
TiO3、PbTiO3の4成分系の磁器は、チタン酸
バリウムのBaの一部をCa、Sr、Pbで同時に置換
したものである。 Pb、Srは単独ではキュリー点を
それぞれ高温側、低温側へ移行させるものであり、これ
らCa、Sr。
The main components of the present invention are BaTiO3, SrTiO3, and Ca.
The four-component ceramic of TiO3 and PbTiO3 is obtained by replacing a part of Ba in barium titanate with Ca, Sr, and Pb at the same time. Pb and Sr alone shift the Curie point to the high temperature side and low temperature side, respectively, and these Ca and Sr.

pbを共存状態で主成分に含有させることにより、耐電
圧値が高くなり、また突入大電流への耐久性が向上する
ことが知られているが、従来法においては比抵抗が8(
Ω・cm)以下で優れた耐電圧特性を有するものは得ら
れていない。
It is known that by including PB as the main component in a coexisting state, the withstand voltage value increases and the durability against large rush currents improves.However, in the conventional method, the specific resistance is 8 (
No material with excellent withstand voltage characteristics has been obtained with a voltage resistance of Ω·cm or less.

本発明の主成分は、BaTiO3: 45〜85モル%
、SrTiO3  :  1〜20モル%、 CaTi
O3: 5〜20モル%、PbTiO3: 1〜20モ
ル%よりなるが、上記範囲に主成分を限定したのは以下
の理由によるためである。
The main component of the present invention is BaTiO3: 45 to 85 mol%
, SrTiO3: 1 to 20 mol%, CaTi
It consists of O3: 5 to 20 mol% and PbTiO3: 1 to 20 mol%, but the main components are limited to the above ranges for the following reasons.

まず、BaTiO3が45%未満の場合、半導体化が困
難になり、比抵抗も高くなる。一方、85%を越えると
、電気的特性が劣化するため好ましくない。
First, if BaTiO3 is less than 45%, it becomes difficult to make it into a semiconductor and the specific resistance becomes high. On the other hand, if it exceeds 85%, it is not preferable because the electrical characteristics deteriorate.

SrT i03が1モル%未満では、焼結体の粒子が粗
大となってしまい、電気的特性改善の効果が現れず、2
0モル%を越えると、部分的粒成長が起こり電気的特性
が劣化してしまう。
If the SrT i03 content is less than 1 mol%, the particles of the sintered body will become coarse, and the effect of improving electrical properties will not appear.
If it exceeds 0 mol %, partial grain growth will occur and electrical characteristics will deteriorate.

CaTiO3が5モル%未満では、その耐電圧特性等が
優れず、20モル%を越えた場合、上記耐電圧特性が劣
化してしまう。
If CaTiO3 is less than 5 mol%, the withstand voltage characteristics are not excellent, and if it exceeds 20 mol%, the voltage withstand characteristics are deteriorated.

PbTiO3については、1モル%未満では電気的特性
が満足できるものではなり、20モル%を越えた場合、
焼成時にpbが飛散するため焼結しにくくまた半導体化
が困難になる。
Regarding PbTiO3, if it is less than 1 mol%, the electrical properties will not be satisfactory, and if it exceeds 20 mol%,
During firing, PB scatters, making it difficult to sinter and make it difficult to convert into a semiconductor.

なお、このとき主成分のBa 、 Sr 、 Ca 、
 Pbの合計とTiのモル比については、0.99〜l
、03の範囲内で調整すれば、製造された磁器の物性に
殆ど影響をおよぼさないものを製造できる。
In addition, at this time, the main components Ba, Sr, Ca,
The total Pb and Ti molar ratio are 0.99 to 1
, 03, it is possible to produce porcelain that has almost no effect on the physical properties of the produced porcelain.

チタン酸バリウム系半導体磁器を製造するためには、半
導体化剤を微量含有させる必要があり、半導体化剤とし
てY、La、Ceなどの希土類元素、Nb。
In order to manufacture barium titanate-based semiconductor ceramics, it is necessary to contain a small amount of a semiconducting agent, such as rare earth elements such as Y, La, and Ce, and Nb.

のうち少なくとも1種を0.1〜0,3モル%添加、含
有させればよい、添加量が0.1モル%より少ない場合
は、半導体化がうまくいかず、0.3モル%より多い場
合も逆に比抵抗は高くなり好ましくない、添加の際は、
シュウ酸塩か酸化物の形で添加するのが好ましい。
It is sufficient to add or contain at least one of the following in an amount of 0.1 to 0.3 mol%. If the amount added is less than 0.1 mol%, semiconductor formation will not be successful, and it will be more than 0.3 mol%. On the other hand, when adding
Preferably, it is added in the form of oxalate or oxide.

さらに、上記組成にMn、SiO2を添加することによ
り、抵抗温度特性を改善させることができる。
Furthermore, by adding Mn and SiO2 to the above composition, the resistance temperature characteristics can be improved.

本発明においては、固相法に比較して微量のMn、Si
O□の添加で大きな特性の向上が図られているが、これ
もシュウ酸塩仮焼体を主原料として用いたため、添加剤
が非常に均一に分散し、上記効果を奏するものと考えら
れる。
In the present invention, compared to the solid phase method, trace amounts of Mn and Si are
Although the addition of O□ significantly improves the properties, it is thought that because the oxalate calcined body was used as the main raw material, the additive was dispersed very uniformly and the above effect was achieved.

この場合、Mnの添加量は、Mn + 0.006〜0
.025モル%で、これらの割合で磁器中に含ませる。
In this case, the amount of Mn added is Mn + 0.006 to 0
.. 025 mol %, and these proportions are included in the porcelain.

 Mnを添加することにより、キュリー点を越えた正の
抵抗温度特性において、その抵抗温度変化率を著しく増
大させることができる。
By adding Mn, the rate of change in resistance temperature can be significantly increased in the positive resistance temperature characteristic exceeding the Curie point.

上記特性を表わすパラメーターとして、抵抗温度係数(
以下、α値と略す、)があるが、Mnが0.006モル
%より少ない場合、α値が小さくなり、耐電圧特性が劣
化する。一方、Mnが0.025モル%より多い場合は
、α値は上がるが室温での比抵抗が高くなり、低電圧で
使用する場合、作動しなくなるので好ましくない、Mn
の添加もシュウ酸塩か酸化物の形で添加すればよい。
The temperature coefficient of resistance (
(hereinafter abbreviated as α value), but if Mn is less than 0.006 mol %, the α value becomes small and the withstand voltage characteristics deteriorate. On the other hand, if Mn is more than 0.025 mol%, the α value will increase, but the specific resistance at room temperature will increase, and when used at low voltage, it will not work, which is undesirable.
may be added in the form of oxalate or oxide.

次にSiO2の添加であるが、その量としては、SiO
2 : 0.1〜1モル%の範囲が好ましい。
Next is the addition of SiO2, the amount of which is SiO2
2: preferably in the range of 0.1 to 1 mol%.

SiO□の添加により、半導体化剤の添加のわずかな変
動によって生じる比抵抗の変化を抑制し、常温において
低い比抵抗値にしようとするものであり、SiO2が0
.1モル%より少ない場合、粒成長しやすく、耐電圧特
性が劣化し、α値が小さくなり、一方SiO□が1モル
%より多い場合、比抵抗が高くなり、好ましくない、 
 SiO2の添加は、なるべく粒子径の小さい酸化物を
使用すればよい。
By adding SiO□, it is possible to suppress changes in resistivity caused by slight fluctuations in the addition of the semiconducting agent, and to achieve a low resistivity value at room temperature.
.. If it is less than 1 mol%, grain growth tends to occur, voltage resistance characteristics deteriorate, and the α value becomes small, while if SiO□ is more than 1 mol%, the specific resistance becomes high, which is undesirable.
When adding SiO2, it is sufficient to use an oxide with a particle size as small as possible.

上述のような割合で各原料粉末を秤量し、金属不純物の
混入しにくいプラスチック等のボールミル用ポットと密
度が高くしかも不純物として少量混入した場合も電気的
特性に影響を与えないジルコニア等のボールを使用して
混合、解砕を行う。
Weigh each raw material powder in the proportions described above, and use a ball mill pot made of plastic, etc., which is difficult to mix with metal impurities, and balls made of zirconia, etc., which are high in density and do not affect the electrical characteristics even if a small amount of impurities are mixed in. Use for mixing and crushing.

この場合、解砕効果を上げるために水、有a溶剤等の液
体を添加してもよい、この工程の後、液体を除去し、造
粒を行い、0.3〜1.Ot/cm3の圧力で成型を行
う、成型後は、5〜b を行い、1300〜1400℃で5分〜2時間焼成した
後に、昇温と同様の速度で降温し、本発明の磁器を得る
。成型圧力が所定より低すぎると比抵抗が上がり、一方
高すぎると比抵抗は下がるがα値が下がり好ましくない
、また、昇温速度が遅すぎると比抵抗が上がる、一方速
すぎる場合は比抵抗は下がるがα値も下がり好ましくな
い、焼成温度については、温度が低すぎても高すぎても
比抵抗が上がり好ましくない。
In this case, in order to increase the crushing effect, a liquid such as water or an aqueous solvent may be added. After this step, the liquid is removed and granulation is performed. Molding is performed at a pressure of Ot/cm3. After molding, perform steps 5 to b, and after firing at 1300 to 1400°C for 5 minutes to 2 hours, the temperature is lowered at the same rate as the temperature rise to obtain the porcelain of the present invention. . If the molding pressure is too low than the specified value, the specific resistance will increase, while if it is too high, the specific resistance will decrease, but the α value will drop, which is undesirable. Also, if the heating rate is too slow, the specific resistance will increase, while if it is too fast, the specific resistance will decrease. Regarding the firing temperature, if the temperature is too low or too high, the resistivity will increase, which is undesirable.

以上のような方法で製造した本発明の磁器は、密度が5
.2〜5.6 g/cra3、比抵抗値が8(Ω・cm
)以下、α値が9(!/”C)以上、耐電圧が60 (
V/am>以上という低比抵抗で耐電圧が高(、且つα
値も高い優れたチタン酸バリウム系半導体Mi器となる
The porcelain of the present invention produced by the method described above has a density of 5
.. 2 to 5.6 g/cra3, specific resistance value 8 (Ω・cm
) or less, α value is 9 (!/”C) or more, and withstand voltage is 60 (
V/am> or more, low specific resistance and high withstand voltage (and α
This results in an excellent barium titanate-based semiconductor Mi device with a high value.

このように、原料として主成分にシュウ酸塩から製造さ
れたものを用いたために優れた電気的特性を有するよう
になった理由としては、原料の純度がアルカリ土類元素
を除いたトータルの金属元素が100ρρ臆以下と非常
に高いため微量元素の添加により特性がコントロールし
やすくその特性改善の効果が大きいこと、磁器中の組織
がダレインサイズが10μm以下で平均サイズがおよそ
5μmに制御された整った粒径の焼結体からなる均一微
細組織となっているため耐電圧特性が向上したことが考
えられる。
In this way, the reason why it has excellent electrical properties due to the use of materials manufactured from oxalate as the main component is that the purity of the raw materials is the total metal content excluding alkaline earth elements. Since the elemental content is very high at less than 100μm, it is easy to control the properties by adding trace elements, and the effect of improving the properties is large.The structure in the porcelain has a dalein size of less than 10μm and an average size of approximately 5μm. It is thought that this is because the withstand voltage characteristics were improved due to the uniform microstructure consisting of sintered bodies with regular grain sizes.

さらに主成分のシュウ酸塩仮焼体が適当な強度を有する
微細で均一な一次粒子が結合した形骸粒子であるため混
合解砕時に形骸粒子が順次解砕されながら混合されるの
で非常に混合性がよく、そのため焼結時に均一に各原子
が固溶し、磁器とした場合原子の分布もより均一となり
、磁器中での局所的な特性の変化がなく、全体が均一な
特性を示すことなどが考えられるが、実際には本発明の
原料の選択および製造法、混合解砕方法、焼結方法等で
最も最適な条件になるよう種々の条件を検討した結果、
総合的な効果としてこのような格段の電気的特性を有す
る磁器を得ることができたものである。
Furthermore, since the oxalate calcined body, which is the main component, is a skeleton particle in which fine and uniform primary particles with appropriate strength are combined, the skeleton particles are sequentially crushed and mixed during mixing and crushing, so it is very mixable. As a result, each atom is uniformly dissolved in solid solution during sintering, and when made into porcelain, the distribution of atoms becomes more uniform, and there are no local changes in the characteristics within the porcelain, and the overall characteristics are uniform. However, as a result of actually examining various conditions to obtain the most optimal conditions for the selection of raw materials, manufacturing method, mixing and crushing method, sintering method, etc. of the present invention,
The overall effect was that we were able to obtain porcelain with such outstanding electrical properties.

これらは、定温度発熱用素子、電流制限用素子、温度制
御用素子等の用途として極めて有用である。
These are extremely useful as constant temperature heating elements, current limiting elements, temperature control elements, and the like.

[実施例] 以下、実施例により本発明を具体的に説明するが、本発
明は係る実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 容量が5dのゴムライニング製タンクAに、Ti(DH
)4換算で27.6wt%のTiイオン、HCI換算で
32.8wt%のClイオンを含有するTi溶液650
 Kg、塩化バリウム2水塩389にgおよび純水29
80Kgをゆっくり混合して添加用の溶液とした。一方
容量が7dのゴムライニング製タンクBに、シュウ酸4
29 Kgを2055Kgの純水に溶解し、温度を60
℃まで昇温し、その温度に維持した。
Example 1 Ti (DH) was placed in a rubber-lined tank A with a capacity of 5 d.
) Ti solution 650 containing 27.6 wt% Ti ions in terms of 4 and 32.8 wt% Cl ions in terms of HCI.
Kg, barium chloride dihydrate 389g and pure water 29g
80Kg was slowly mixed to form a solution for addition. On the other hand, in rubber-lined tank B with a capacity of 7 d, oxalic acid 4
Dissolve 29 kg in 2055 kg of pure water and lower the temperature to 60 kg.
The temperature was raised to and maintained at that temperature.

この時のBa/Ti(モル比)=1.03、シュウ酸/
T1(モル比)=2.2 、BaCl2 :8.25 
wt%であった。
At this time, Ba/Ti (molar ratio) = 1.03, oxalic acid/
T1 (molar ratio) = 2.2, BaCl2: 8.25
It was wt%.

タンクAからタンクBへの溶液の添加はチャージポンプ
によって行い、添加方法はバイブの先端に約200個の
穴を設けて、シャワー状で液面に添加することにより行
った。
The solution was added from tank A to tank B using a charge pump, and the solution was added by making about 200 holes at the tip of a vibrator and adding the solution to the liquid surface in a shower-like manner.

この際の攪拌は平板状の2枚の羽根を有する撹拌羽根を
50rμmで回転させることにより行い、この時の攪拌
周速は2.9m/secであった0反応中の溶液は60
℃に維持し、添加時間は4時間であった。
Stirring at this time was performed by rotating a stirring blade having two flat blades at 50 rμm, and the peripheral stirring speed at this time was 2.9 m/sec.
The addition time was 4 hours.

またこの時に生成するシュウ酸チタン酸バリウムの設定
濃度は1)wt%であった。
Further, the set concentration of barium titanate oxalate produced at this time was 1) wt%.

添加終了後、反応液は遠心分離機により濾過し洗浄した
後、50℃で乾燥することによりシュウ酸チタン酸バリ
ウムの結晶592Kgを得た。この時の収率は88.3
wt%で、そのBa/Ti (モル比)は0.999で
あった。
After the addition was completed, the reaction solution was filtered and washed using a centrifuge, and then dried at 50° C. to obtain 592 kg of barium titanate oxalate crystals. The yield at this time was 88.3
In wt%, its Ba/Ti (mole ratio) was 0.999.

得られた粉末は磁器製のるつぼに入れ、空気中900″
Cl2hrで焼成してチタン酸バリウム仮焼粉末を得た
。得られた粉末は、アルカリ土類以外の金属不純物がい
ずれも10ρp1以下で、平均粒径が200μmで、5
0μm以下の粒子が約2wt%であった。この時得られ
た粉末の走査型電子顕微鏡写真(SEN写真)を第2図
に、さらに一部を採取して一次粒子の様子を観察した透
過型電子顕微鏡写真(TEM写真)を第3図に示す。
The resulting powder was placed in a porcelain crucible and heated to 900" in air.
The barium titanate calcined powder was obtained by calcining with Cl2hr. The obtained powder has metal impurities other than alkaline earth metals of 10ρp1 or less, an average particle size of 200 μm, and 5.
Particles with a diameter of 0 μm or less were about 2 wt%. Figure 2 shows a scanning electron micrograph (SEN photograph) of the powder obtained at this time, and Figure 3 shows a transmission electron microscope photograph (TEM photograph) in which a portion of the powder was collected and the appearance of the primary particles was observed. show.

実施例2 容量が5rrrのゴムライニング製タンクAに、Ti(
OH)4換算で39.9社%のTiイオン、HCI換算
で31.9wt%のCIイオンを含有するTi溶液51
6 Kg、塩化ストロンチウム6水塩516Kg、純水
1590にgをゆっ(り混合して添加用の溶液とした。
Example 2 Ti(
Ti solution 51 containing 39.9 wt% Ti ions in terms of OH)4 and 31.9 wt% CI ions in terms of HCI
6 kg of strontium chloride hexahydrate, 516 kg of strontium chloride hexahydrate, and 1590 g of pure water were slowly mixed to prepare a solution for addition.

一方容量が7dのゴムライニング製タンクBにシュウ酸
429 Kgを2147にgの純水に溶解し、温度を7
5℃まで昇温し、その温度に維持した。
On the other hand, in a rubber-lined tank B with a capacity of 7 d, 429 kg of oxalic acid was dissolved in 2147 g of pure water, and the temperature was set to 7 d.
The temperature was raised to 5°C and maintained at that temperature.

この時のSr/Ti (モル比)=1.25、シュウ酸
/Ti(モル比)−2,2,5rC12=12.0 w
t%であった。
At this time, Sr/Ti (molar ratio) = 1.25, oxalic acid/Ti (molar ratio) -2,2,5rC12 = 12.0 w
It was t%.

タンクAからタンクBへの溶液の添加はチャージポンプ
によって行い、添加方法はパイプの先端に約200個の
穴を設けて、シャワー状で液面に添加することにより行
った。
The solution was added from tank A to tank B using a charge pump, and about 200 holes were provided at the tip of a pipe, and the solution was added to the liquid surface in a shower-like manner.

この際の攪拌は平板状の2枚の羽根を存する攪拌羽根を
用い、この時の攪拌周速は4.1■/secであった0
反応中の溶液は75℃に維持し、添加時間は2.5時間
であった。またこの時に生成するシュウ酸チタン酸スト
ロンチウムの設定濃度は12wt%であった。
For stirring at this time, a stirring blade having two flat blades was used, and the peripheral stirring speed at this time was 4.1 ■/sec.
The solution during the reaction was maintained at 75°C and the addition time was 2.5 hours. Further, the set concentration of strontium oxalate titanate produced at this time was 12 wt%.

添加終了後、反応液を20℃/hrの速度で室温まで冷
却した後、遠心分離機により濾過し洗浄し、さらに50
℃で乾燥することによりシュウ酸チタン酸ストロンチウ
ム5水塩の結晶600 Kgを得た。このシュウ酸塩の
Sr/T i (モル比)=0.999 、収率は93
豐t%であった。
After the addition was completed, the reaction solution was cooled to room temperature at a rate of 20°C/hr, filtered and washed with a centrifuge, and further
By drying at ℃, 600 kg of crystals of strontium titanate oxalate pentahydrate were obtained. Sr/T i (molar ratio) of this oxalate = 0.999, yield is 93
%.

得られた粉末は磁器製のるつぼに入れ、空気中900℃
、2hrで焼成してチタン酸ストロンチウム仮焼粉末を
得た。得られた粉末は、アルカリ土類以外の金属不純物
がいずれも10pμm以下で、二次粒子の平均粒子径が
150μm、50μm以下の二次粒子が2.5 wt%
、BET比表面積が26.On?/gであった。
The obtained powder was placed in a porcelain crucible and heated to 900°C in air.
, for 2 hours to obtain calcined strontium titanate powder. The obtained powder contained all metal impurities other than alkaline earth metals of 10 pμm or less, the average particle diameter of secondary particles was 150 μm, and the secondary particles of 50 μm or less were 2.5 wt%.
, BET specific surface area is 26. On? /g.

実施例3 TiC14: 10wt%の溶液を40℃以下になるよ
う冷却しながら、アンモニウム水溶液でPH7になるま
で中和し、ゲル状の水酸化チタンを得た後、これを濾過
、純水により洗浄する。洗浄後のゲルは直ちにシュウ酸
により溶解し、Tiイオンの濃度を測定した後、純水お
よびシュウ酸によりTiイオンの濃度2.4 wt%、
シュウ酸バi(モル比);2゜15に調整し、この溶液
2378Kgを添加用溶液として容量7Mのゴムライニ
ング製タンクAに移液した。一方、容量が5fffのゴ
ムライニング製タンクBに硝酸鉛402 Kgと純水1
086Kgを入れ溶液とした。この時のPb/Ti(モ
ル比)=1.02、生成するシュウ酸チタン酸鉛の設定
濃度: 16.0wt%であった。
Example 3 TiC14: A 10 wt% solution was cooled to below 40°C and neutralized with an ammonium aqueous solution until the pH reached 7 to obtain gel-like titanium hydroxide, which was then filtered and washed with pure water. do. The gel after washing was immediately dissolved with oxalic acid, and after measuring the concentration of Ti ions, the concentration of Ti ions was 2.4 wt% with pure water and oxalic acid.
Oxalic acid bis (molar ratio) was adjusted to 2°15, and 2,378 kg of this solution was transferred to rubber-lined tank A with a capacity of 7 M as an addition solution. On the other hand, 402 kg of lead nitrate and 1 kg of pure water were placed in a rubber-lined tank B with a capacity of 5 fff.
086 kg was added to form a solution. At this time, Pb/Ti (molar ratio) was 1.02, and the set concentration of lead oxalate titanate to be produced was 16.0 wt%.

タンクAからタンクBへの溶液の添加はチャージポンプ
によって行い、添加方法はパイプの先端に約200個の
穴を設けて、シャワー状で液面に添加することにより行
った。
The solution was added from tank A to tank B using a charge pump, and about 200 holes were provided at the tip of a pipe, and the solution was added to the liquid surface in a shower-like manner.

この際の攪拌は平板状の2枚の羽根を有する撹拌羽根を
用い、この時の攪拌周速は2.0■/secであった。
For stirring at this time, a stirring blade having two flat blades was used, and the peripheral stirring speed at this time was 2.0 .mu./sec.

 反応中の溶液は50℃に維持し、添加時間は2.0時
間であった。
The solution during the reaction was maintained at 50°C and the addition time was 2.0 hours.

添加終了後、溶液を濾過洗浄し、さらに50℃で乾燥し
てシュウ酸チタン酸鉛4水塩を得た。収率は97.0w
t%、シュウ酸チタン酸鉛のPb/Ti(モル比)は0
.998であった。
After the addition was completed, the solution was filtered and washed, and further dried at 50°C to obtain lead oxalate titanate tetrahydrate. Yield is 97.0w
t%, Pb/Ti (molar ratio) of lead oxalate titanate is 0
.. It was 998.

得られた粉末は磁器製のるつぼに入れ、空気中600 
’Cl2hrで焼成してチタン酸鉛の仮焼粉末を得た。
The obtained powder was placed in a porcelain crucible and heated to 600 ml in air.
' Calcined with Cl2hr to obtain calcined powder of lead titanate.

得られた粉末は、アルカリ土類以外の金属不純物がいず
れも10pμm以下で、二次粒子の平均粒子径が140
μm150μm以下の二次粒子が3int%であった。
The obtained powder contained all metal impurities other than alkaline earth metals of 10 ppm or less, and the average particle size of the secondary particles was 140 pm.
Secondary particles with a diameter of 150 μm or less were 3 int%.

実施例4〜19 主成分原料として、BaTiO3、SrTiO3 、P
bTiO3は実施例1〜3により製造したシュウ酸塩仮
焼粉末を用い、CaTi0aとしてはCaCO3とTi
O2から固相法により製造した、アルカリ土類以外の金
属不純物がいずれもlopμm以下、平均粒径が0.5
μmの粉末を用いた。
Examples 4 to 19 Main component raw materials include BaTiO3, SrTiO3, P
For bTiO3, the oxalate calcined powder produced in Examples 1 to 3 was used, and for CaTi0a, CaCO3 and Ti were used.
Manufactured from O2 by a solid phase method, all metal impurities other than alkaline earth metals are lop μm or less, and the average particle size is 0.5
Powder of μm was used.

次に、微量成分として酸化ランタン、シュウ酸マンガン
、無水ケイ酸を用いたが、酸化ランタンと無水ケイ酸に
ついては、10μm以下の粒径の粒子を用いた。これら
の各原料を第1表に示すような組成比になるように配合
し、バインダーを添加して50Ilのポリエチレン製の
ボールミル用ポットおよびジルコニア製ボールを使用し
、アルコール溶媒を添加し、24時時間式混合を行った
Next, lanthanum oxide, manganese oxalate, and silicic anhydride were used as trace components, and for lanthanum oxide and silicic anhydride, particles having a particle size of 10 μm or less were used. These raw materials were blended in a composition ratio as shown in Table 1, a binder was added, a 50 Il polyethylene ball mill pot and a zirconia ball were used, an alcohol solvent was added, and the mixture was heated for 24 hours. Timed mixing was performed.

これを脱水乾燥し造粒した後、成形圧力1000kg/
−で円盤状に成形した。さらにこれを1350℃、2時
間焼成し、13■■φの直径で2.5@■の厚さの円盤
状焼結体を得た。 得られた半導体磁器につき両生表面
にIn−Ga合金の電極を付与し、これを試料とした。
After dehydrating and drying this and granulating it, the molding pressure was 1000 kg/
- It was formed into a disk shape. This was further fired at 1350° C. for 2 hours to obtain a disc-shaped sintered body with a diameter of 13×φ and a thickness of 2.5@×. An In-Ga alloy electrode was provided on the amphibian surface of the obtained semiconductor porcelain, and this was used as a sample.

 これらの試料につき、キュリー点、比抵抗値、α値、
耐電圧値を測定した。その結果を第1表に示す。
For these samples, the Curie point, resistivity value, α value,
The withstand voltage value was measured. The results are shown in Table 1.

比較例1〜9 実施例1〜3のそれぞれの方法において、一つの条件だ
けを変化させてそれぞれシュウ酸塩を製造し、同様の方
法で仮焼し、その仮焼粉末を使用した他は、実施例4〜
19と全く同様の組成、方法で磁器を製造してその電気
的特性を測定した。
Comparative Examples 1 to 9 In each method of Examples 1 to 3, oxalates were produced by changing only one condition, calcined in the same manner, and the calcined powder was used. Example 4~
Porcelain was manufactured using the same composition and method as No. 19, and its electrical properties were measured.

その時の条件および電気的特性を第2表に示す。Table 2 shows the conditions and electrical characteristics at that time.

比較例1O〜24 原料の配合組成を第3表で示す割合に設定した他は、実
施例4〜19と同様の操作を行った。得られた磁器の物
性値を第3表に示す。
Comparative Examples 1O to 24 The same operations as in Examples 4 to 19 were performed, except that the raw material composition was set to the proportions shown in Table 3. Table 3 shows the physical properties of the obtained porcelain.

比較例25.26 原料として、その主成分にはBaCO3、CaCO3,
5rC03、Pb30 、、TiO2、半導体化剤とし
てはla203 、添加剤としてはMnCO3,SiO
2を第3表に示す磁器組成になるよう配合した後、実施
例4〜19と全く同じ操作を行った。
Comparative Example 25.26 As a raw material, its main components include BaCO3, CaCO3,
5rC03, Pb30,, TiO2, la203 as a semiconductor agent, MnCO3, SiO as an additive
After blending 2 to give the porcelain composition shown in Table 3, the same operations as in Examples 4 to 19 were performed.

本比較例での各成分の組成、および得られた磁器の物性
値を第3表に示す。
Table 3 shows the composition of each component in this comparative example and the physical property values of the obtained porcelain.

上述の特性において、耐電圧については試料に電圧を印
加した後、徐々にその電圧を上昇させてゆき、試料の破
壊が生じる手前の最高印加電圧値を示したものである。
In the above-mentioned characteristics, the withstand voltage is the voltage that is gradually increased after a voltage is applied to the sample, and indicates the maximum applied voltage value before the sample breaks down.

第1図は、実施例10、実施例18、実施例19で得ら
れた磁器の抵抗温度特性を図に示したものであるが、図
かられかるようにキュリー点を様々に設定できるととも
にそれらの抵抗温度特性をいずれも低比抵抗でかつ高い
α値にたもつことができる。
Figure 1 shows the resistance-temperature characteristics of the porcelains obtained in Example 10, Example 18, and Example 19. Both resistivity and temperature characteristics can be maintained at low specific resistance and high α value.

[発明の効果] 本発明の原料粉末は微細で粒子径の整った一次粒子より
なる独特の形状を有する二次粒子であり、この原料を使
用して焼結することにより得られたチタン酸バリウム系
半導体磁器組成物は、電流制限用素子、温度制御用素子
、定温度発熱用素子等の広範囲な用途が考えられると同
時に、比抵抗値が8(Ω・C■)以下、α値が9(χ/
’C)以上、耐電圧が60 (V/mm)以上という低
抵抗で耐電圧が高く、且つα値も高いという優れた電気
的特性を示すため、特に低電圧用の電流制限用素子とし
ての種々の用途へ、応用できるものである。
[Effects of the Invention] The raw material powder of the present invention is a secondary particle having a unique shape consisting of fine primary particles with a uniform particle size, and barium titanate obtained by sintering using this raw material The system semiconductor ceramic composition can be used in a wide range of applications such as current limiting elements, temperature control elements, constant temperature heating elements, etc., and has a specific resistance value of 8 (Ω・C■) or less and an α value of 9. (χ/
'C) As shown above, it exhibits excellent electrical properties such as low resistance and high withstand voltage of 60 (V/mm) or more, as well as a high α value, so it is particularly suitable as a current limiting element for low voltages. It can be applied to various uses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のチタン酸バリウム系半導体磁器組成
物の抵抗温度特性図であり、第2図は、シュウ酸チタン
酸バリウム仮焼体の粒子構造を示すSEN写真であり、
第3図は第2図と同様の粉末の粒子構造を示すTEN写
真である。 特許出願人  セントラル硝子株式会社手続補正書 1.事件の表示 2、発明の名称 3゜ 補正をする者 平成1年特許願第225061号 チタン酸バリウム系半導体磁器用粉末 およびその製造法 4、代理人 住所 東京都杉並区堀ノ内−丁目8番3−607号8、
補正の内容 (1)明細書の第31頁1行の「収率は88.3%で、
そのBa/Ti(モル比)は0.999 Jなる記載を
[収率は85,3%で、そのBa/Ti(モル比)は0
.999 Jに補正する。 偉)明細書の第31頁15行のr−一−4iWI液51
6 Kg、−m−」なる記載をr −−−−−Ti溶液
449 Kg、−一−」に補正する。 (3)明細書の第39頁の第2表を別紙の通り補正する
FIG. 1 is a resistance temperature characteristic diagram of the barium titanate-based semiconductor ceramic composition of the present invention, and FIG. 2 is an SEN photograph showing the particle structure of a calcined barium titanate oxalate body.
FIG. 3 is a TEN photograph showing the particle structure of the powder similar to FIG. 2. Patent Applicant Central Glass Co., Ltd. Procedural Amendment 1. Case description 2, title of the invention 3. Person making the amendment: Patent Application No. 225061, 1999. Barium titanate powder for semiconductor porcelain and its manufacturing method 4. Agent address: 8-3 Horinouchi-chome, Suginami-ku, Tokyo. 607 No. 8,
Contents of amendment (1) On page 31, line 1 of the specification, ``The yield is 88.3%,
The Ba/Ti (molar ratio) is 0.999 J [yield is 85.3%, Ba/Ti (molar ratio) is 0.
.. Corrected to 999 J. R-1-4iWI liquid 51 on page 31, line 15 of the specification
The description "6 Kg, -m-" is corrected to "r----Ti solution 449 Kg, -1-". (3) Table 2 on page 39 of the specification is amended as shown in the attached sheet.

Claims (8)

【特許請求の範囲】[Claims] (1)0.2μm以下の一次粒子が互に繋がった開気孔
を有する形骸二次粒子でその大きさが平均粒径150〜
250μmであり、かつ50μm以下の形骸二次粒子が
5wt%以下であることを特徴とするチタン酸バリウム
粉末。
(1) A skeletal secondary particle with open pores in which primary particles of 0.2 μm or less are connected to each other, and the average particle size is 150 to 150.
A barium titanate powder having a particle size of 250 μm and containing 5 wt % or less of secondary particles having a size of 50 μm or less.
(2)Ba/Ti(モル比):1.02〜1.05、B
aCl_2:10wt%以下の濃度の四塩化チタンおよ
び塩化バリウムを含む水溶液を、シュウ酸水溶液に添加
する際、シュウ酸/Ti(モル比)=2.1〜2.3、
生成するシュウ酸チタン酸バリウム4水塩の濃度が10
〜12wt%になるように設定し、添加をシャワー状、
4時間以上の時間で行いかつ攪拌周速2.5m/sec
以上、添加中の液温を55〜75℃の温度範囲で定温に
維持して得たシュウ酸チタン酸バリウムを700〜90
0℃で焼成することを特徴とする請求項(1)記載のチ
タン酸バリウム粉末の製造法。
(2) Ba/Ti (molar ratio): 1.02 to 1.05, B
aCl_2: When adding an aqueous solution containing titanium tetrachloride and barium chloride at a concentration of 10 wt% or less to an oxalic acid aqueous solution, oxalic acid/Ti (molar ratio) = 2.1 to 2.3,
The concentration of barium oxalate titanate tetrahydrate produced is 10
The concentration was set to ~12wt%, and the addition was carried out in a shower-like manner.
Performed for 4 hours or more and stirred at a peripheral speed of 2.5 m/sec.
As mentioned above, the barium oxalate titanate obtained by maintaining the liquid temperature during addition at a constant temperature in the temperature range of 55 to 75 °C was 700 to 90 °C.
The method for producing barium titanate powder according to claim 1, wherein the barium titanate powder is fired at 0°C.
(3)0.1μm以下の一次粒子が互に繋がった開気孔
を有する形骸二次粒子でその大きさが平均粒径70〜1
80μmであり、かつそのBET比表面積が20〜30
m^2/gであることを特徴とするチタン酸ストロンチ
ウム粉末。
(3) Substantial secondary particles having open pores in which primary particles of 0.1 μm or less are connected to each other and have an average particle size of 70 to 1
80 μm, and its BET specific surface area is 20 to 30
Strontium titanate powder, characterized in that it has a mass of m^2/g.
(4)Sr/Ti(モル)=1.2以上、SrCl_2
:15wt%以下の四塩化チタンおよび塩化ストロンチ
ウムを含む水溶液を、シュウ酸の水溶液に添加する際、
シュウ酸/Ti:(モル比):2.1〜2.3、生成す
るシュウ酸チタン酸ストロンチウム5水塩の濃度が10
.0〜14.0wt%に設定し、添加をシャワー状、2
時間以上の時間で行いかつ攪拌周速3.0m/sec以
上、添加中の液温を60〜80℃の温度範囲で定温に維
持して得たシュウ酸チタン酸ストロンチウムを、700
〜900℃で焼成することを特徴とする請求項(3)記
載のチタン酸ストロンチウム粉末の製造法。
(4) Sr/Ti (mol) = 1.2 or more, SrCl_2
: When adding an aqueous solution containing 15 wt% or less of titanium tetrachloride and strontium chloride to an aqueous solution of oxalic acid,
Oxalic acid/Ti: (molar ratio): 2.1 to 2.3, the concentration of strontium oxalate titanate pentahydrate produced is 10
.. Set to 0 to 14.0 wt%, add in shower form, 2
Strontium oxalate titanate, which was obtained by stirring at a peripheral speed of 3.0 m/sec or more and maintaining the liquid temperature during addition at a constant temperature in the temperature range of 60 to 80°C, was
The method for producing strontium titanate powder according to claim 3, wherein the strontium titanate powder is fired at a temperature of 900°C to 900°C.
(5)0.2μm以下の一次粒子が互に繋がった開気孔
を有する形骸二次粒子でその大きさが平均50〜150
μmであり、かつ20μm以下の形骸二次粒子が5wt
%以下であることを特徴とするチタン酸鉛粉末。
(5) Formative secondary particles with open pores in which primary particles of 0.2 μm or less are connected to each other, with an average size of 50 to 150
μm, and 5wt of skeletal secondary particles of 20 μm or less
% or less.
(6)四塩化チタンをアンモニアにより中和した後濾過
洗浄し、シュウ酸に溶解したシュウ酸Ti(モル比)=
2.1〜2.3、TiO_2:4wt%以下の水溶液を
硝酸鉛の水溶液に添加する際、Pb/Ti(モル比)=
1.01〜1.03、生成するシュウ酸チタン酸鉛4水
塩の濃度10〜18wt%になるよう設定し、かつ添加
をシャワー状、攪拌周速2.0m/sec、液温45〜
55℃で一定温度に維持しながら、1〜2時間で添加す
ることにより得たシュウ酸チタン酸鉛を、600〜80
0℃で焼成することを特徴とする請求項(5)記載のチ
タン酸鉛粉末の製造法。
(6) Titanium tetrachloride was neutralized with ammonia, filtered and washed, and dissolved in oxalic acid (molar ratio) =
2.1-2.3, TiO_2: When adding an aqueous solution of 4 wt% or less to an aqueous solution of lead nitrate, Pb/Ti (molar ratio) =
1.01 to 1.03, the concentration of lead oxalate titanate tetrahydrate to be produced is set to be 10 to 18 wt%, and addition is performed in a shower manner, stirring peripheral speed is 2.0 m/sec, and liquid temperature is 45 to 1.
Lead oxalate titanate obtained by adding over 1 to 2 hours while maintaining a constant temperature at 55 ° C.
The method for producing lead titanate powder according to claim 5, characterized in that the firing is performed at 0°C.
(7)BaTiO_3、SrTiO_3、CaTiO_
3、PbTiO_3の主成分の内、少なくともBaTi
O_3が請求項(1)または(2)記載のチタン酸バリ
ウム粉末、SrTiO_3が請求項(3)または(4)
記載のチタン酸ストロンチウム粉末よりなり、 その主成分の組成がBaTiO_3:45〜85モル%
、SrTiO_3:1〜20モル%、CaTiO_3:
5〜20モル%、PbTiO_3:1〜20モル%であ
り 前記主成分に対して半導化剤としてY,La,Ceなど
の希土類元素、Nb,Sbのうち少なくとも1種が0.
1〜0.3モル%、 さらにMn:0.006〜0.025モル%、SiO_
2:0.1〜1モル%の組成範囲よりなることを特徴と
するチタン酸バリウム系半導体磁器組成物用原料粉末。
(7) BaTiO_3, SrTiO_3, CaTiO_
3. Among the main components of PbTiO_3, at least BaTi
O_3 is the barium titanate powder according to claim (1) or (2), and SrTiO_3 is the barium titanate powder according to claim (3) or (4).
It consists of the strontium titanate powder described above, and its main component composition is BaTiO_3: 45 to 85 mol%.
, SrTiO_3: 1 to 20 mol%, CaTiO_3:
5 to 20 mol%, PbTiO_3: 1 to 20 mol%, and at least one of rare earth elements such as Y, La, Ce, Nb, and Sb is added as a semiconducting agent to the main component.
1 to 0.3 mol%, further Mn: 0.006 to 0.025 mol%, SiO_
2: Raw material powder for barium titanate-based semiconductor ceramic composition, characterized by having a composition range of 0.1 to 1 mol%.
(8)BaTiO_3、SrTiO_3、CaTiO_
3、PbTiO_3の主成分の内、少なくともBaTi
O_3が請求項(1)または(2)記載のチタン酸バリ
ウム粉末、SrTiO_3が請求項(3)または(4)
記載のチタン酸ストロンチウム粉末、PbTiO_3が
請求項(5)または(6)記載のチタン酸鉛よりなり、 その主成分の組成がBaTiO_3:45〜85モル%
、SrTiO_3:1〜20モル%、CaTiO_3:
5〜20モル%、PbTiO_3:1〜20モル%であ
り 前記主成分に対して半導化剤としてY,La,Ceなど
の希土類元素、Nb,Sbのうち少なくとも1種が0.
1〜0.3モル%、 さらにMn:0.006〜0.025モル%、SiO_
2:0.1〜1モル%の組成範囲よりなることを特徴と
するチタン酸バリウム系半導体磁器組成物用原料粉末。
(8) BaTiO_3, SrTiO_3, CaTiO_
3. Among the main components of PbTiO_3, at least BaTi
O_3 is the barium titanate powder according to claim (1) or (2), and SrTiO_3 is the barium titanate powder according to claim (3) or (4).
The strontium titanate powder described above, PbTiO_3, is composed of lead titanate according to claim (5) or (6), and the main component thereof has a composition of BaTiO_3: 45 to 85 mol%.
, SrTiO_3: 1 to 20 mol%, CaTiO_3:
5 to 20 mol%, PbTiO_3: 1 to 20 mol%, and at least one of rare earth elements such as Y, La, Ce, Nb, and Sb is added as a semiconducting agent to the main component.
1 to 0.3 mol%, further Mn: 0.006 to 0.025 mol%, SiO_
2: Raw material powder for barium titanate-based semiconductor ceramic composition, characterized by having a composition range of 0.1 to 1 mol%.
JP1225061A 1989-02-22 1989-08-31 Barium titanate-based powder for semiconductor porcelain and its manufacturing method Expired - Lifetime JP2558357B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1225061A JP2558357B2 (en) 1989-02-22 1989-08-31 Barium titanate-based powder for semiconductor porcelain and its manufacturing method
DE1990609628 DE69009628T2 (en) 1989-08-31 1990-08-30 Powder composition for sintering in a modified barium titanate semiconducting ceramic.
EP19900116692 EP0415428B1 (en) 1989-08-31 1990-08-30 Powder composition for sintering into modified barium titanate semiconductive ceramic
US07/841,210 US5219811A (en) 1989-08-31 1992-02-27 Powder composition for sintering into modified barium titanate semiconductive ceramic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-42802 1989-02-22
JP4280289 1989-02-22
JP1225061A JP2558357B2 (en) 1989-02-22 1989-08-31 Barium titanate-based powder for semiconductor porcelain and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH02289426A true JPH02289426A (en) 1990-11-29
JP2558357B2 JP2558357B2 (en) 1996-11-27

Family

ID=26382544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225061A Expired - Lifetime JP2558357B2 (en) 1989-02-22 1989-08-31 Barium titanate-based powder for semiconductor porcelain and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2558357B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222139A (en) * 1994-12-28 1996-08-30 Samsung Display Devices Co Ltd Thermoelectron emissive oxide cathode and manufacture thereof
JP2007063050A (en) * 2005-08-30 2007-03-15 Tanaka Chemical Corp Method for manufacturing titanium oxide
WO2016084562A1 (en) * 2014-11-26 2016-06-02 株式会社村田製作所 Barium titanate semiconductor ceramic, barium titanate semiconductor ceramic composition, and ptc thermistor for temperature detection
CN105883910A (en) * 2016-05-13 2016-08-24 浙江大学 Preparation method and product for perovskite SrTiO3 porous nano particles
CN114763308A (en) * 2021-01-15 2022-07-19 日本碍子株式会社 Ceramic body and manufacturing method thereof, heater member, heater unit, heater system, and purge system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148802A1 (en) * 2007-12-05 2009-06-11 Jan Ihle Process for heating a fluid and an injection molded molding
US9034210B2 (en) 2007-12-05 2015-05-19 Epcos Ag Feedstock and method for preparing the feedstock

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222139A (en) * 1994-12-28 1996-08-30 Samsung Display Devices Co Ltd Thermoelectron emissive oxide cathode and manufacture thereof
JP2007063050A (en) * 2005-08-30 2007-03-15 Tanaka Chemical Corp Method for manufacturing titanium oxide
WO2016084562A1 (en) * 2014-11-26 2016-06-02 株式会社村田製作所 Barium titanate semiconductor ceramic, barium titanate semiconductor ceramic composition, and ptc thermistor for temperature detection
CN107001151A (en) * 2014-11-26 2017-08-01 株式会社村田制作所 Barium titanate based semiconductor ceramics, barium titanate based semiconductor ceramic composition and temperature detection positive temperature coefficient thermis
JPWO2016084562A1 (en) * 2014-11-26 2017-09-21 株式会社村田製作所 Barium titanate semiconductor ceramic, barium titanate semiconductor ceramic composition, and temperature sensitive positive temperature coefficient thermistor
TWI618686B (en) * 2014-11-26 2018-03-21 村田製作所股份有限公司 Barium titanate-based semiconductor ceramic, barium titanate-based semiconductor ceramic composition, and positive characteristic thermal resistor for temperature sensing
CN107001151B (en) * 2014-11-26 2020-03-03 株式会社村田制作所 Barium titanate-based semiconductor ceramic, barium titanate-based semiconductor ceramic composition, and positive thermistor for temperature detection
CN105883910A (en) * 2016-05-13 2016-08-24 浙江大学 Preparation method and product for perovskite SrTiO3 porous nano particles
CN114763308A (en) * 2021-01-15 2022-07-19 日本碍子株式会社 Ceramic body and manufacturing method thereof, heater member, heater unit, heater system, and purge system

Also Published As

Publication number Publication date
JP2558357B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US5219811A (en) Powder composition for sintering into modified barium titanate semiconductive ceramic
Jayanthi et al. Extended phase homogeneity and electrical properties of barium calcium titanate prepared by the wet chemical methods
KR100358974B1 (en) Method of producing semiconductor ceramic having positive temperature coefficient
JPH05330824A (en) Barium titanate and its production
JP3608599B2 (en) Barium titanate semiconductor porcelain
Duran et al. Large electromechanical anisotropic modified lead titanate ceramics: Part 1 Processing
JPH0388770A (en) Barium titanate-based semiconductor porcelain composition and thermistor
Stojanovic et al. Mechanically activating formation of layered structured bismuth titanate
JPH02289426A (en) Powder for barium titanate-based semiconductor ceramics and its production
JP3154513B2 (en) Spherical barium titanate-based semiconductor ceramic material powder and method for producing the same
JP4049315B2 (en) Dielectric having high dielectric constant and method for manufacturing the same
KR20050063466A (en) A method for dispersed coating additive on ceramic powder
Wang et al. Fabrication of High‐Curie‐Point Barium‐Lead Titanate PTCR Ceramics
JP2569205B2 (en) Raw material powder for barium titanate-based semiconductor porcelain composition and porcelain composition comprising the same
JP2569208B2 (en) Raw material powders for porcelain-based semiconductor porcelain composition and porcelain composition
JP4752194B2 (en) Method for producing barium titanate fine particles
JP2885599B2 (en) Barium titanate-based powder composition and method for producing semiconductor porcelain composition using the same
WO2000026924A1 (en) PREPARATION METHOD FOR LOW-TEMPERATURE-SINTERABLE Pb-BASED PEROVSKITE DIELECTRIC POWDERS
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JPH05294625A (en) Production of barium titanate based semiconductor ceramic having positive characteristic
JPS63117914A (en) Production of metal oxide powder for ptc-thermistor
JP4038618B2 (en) Manufacturing method of barium titanate semiconductor porcelain
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH07142207A (en) Barium titanate semiconductor ceramic and its manufacture
JPH08203702A (en) Barium titanate semiconductor ceramic and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

EXPY Cancellation because of completion of term