JPS63117914A - Production of metal oxide powder for ptc-thermistor - Google Patents

Production of metal oxide powder for ptc-thermistor

Info

Publication number
JPS63117914A
JPS63117914A JP26219386A JP26219386A JPS63117914A JP S63117914 A JPS63117914 A JP S63117914A JP 26219386 A JP26219386 A JP 26219386A JP 26219386 A JP26219386 A JP 26219386A JP S63117914 A JPS63117914 A JP S63117914A
Authority
JP
Japan
Prior art keywords
alkoxide
powder
metal oxide
ptc
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26219386A
Other languages
Japanese (ja)
Inventor
Seiji Adachi
成司 安達
Takahiro Wada
隆博 和田
Shunichiro Kawashima
俊一郎 河島
Toshihiro Mihara
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26219386A priority Critical patent/JPS63117914A/en
Publication of JPS63117914A publication Critical patent/JPS63117914A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To easily obtain the titled powder with high purity and high reliability by mixing >=one kind among Ba alkoxide, etc., and Ti alkoxide and mixing alkoxide of semiconductor element M, then hydrolyzing the mixture to prepare a powder of a specified composition. CONSTITUTION:A combined material is obtained by combining >=one kind among Ba alkoxide and Sr alkoxide, Ti alkoxide and the alkoxide of semiconductor element M (Nb or Y) in order to form a composition expressed by the formula (1>=x>=0, n>=0, 0.0040>=z>=0) in an inert atmosphere, etc. Then the precipitation of the hydrolyzed product is obtained by allowing the combined product to mix and hydrolyze in the solvent contg. water at <=40 deg.C. And then a molded body is obtained by molding a calcined powder by calcining the precipitation at about 1,100 deg.C for about 2hr after drying. Then the metal oxide powder for PTC-thermistor is obtained by sintering the molded body at about 1,300 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、PTCサーミスタに用いられるチタン酸バリ
ウムを主成分とする酸化物粉末の製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing oxide powder containing barium titanate as a main component and used in PTC thermistors.

従来の技術 チタン酸バリウムはキ。り一点付近で高誘電率を示し、
主にコンデンザ材料として利用されてきた。キュリー点
は、チタン酸ストロンチウムを固溶させることにより低
温側に、ヂタン酸鉛を固溶させることにより高温側に移
動できる。また、ニオブ、イツトリウム等の添加物を結
晶粒内に微量固溶させることにより原子価制御が行われ
、半導体化する。電気抵抗の温度係数は負であるが、粒
界の効果でキュリー点イ1近で温度係数が正の部分が出
現する。この現象はPTC効果と呼ばれ、無接点スイッ
チ素子、サーミスタ等の製品に応用されている。(増補
版rチタバリ系半導体」、ニレセラ出版委員会編、技献
(1980) )PTCサーミスタの製造には、多くの
場合、所定量の炭酸バリウム、酸化チタン、酸化ニオブ
等を混合し、仮焼および焼成の段階で脱炭酸、相互拡散
させる手法(固相法)がとられている。反応を充分進行
させるためには仮焼を高温で長時間行うのが最も効果的
であるが、仮焼後の粉末が硬くなり粉砕に多大なエネル
ギーを要し、また粉砕時に粉砕装置から不純物が混入し
、特性の制御が困難となる。ナトリウム、カリウム、鉄
、マンガン、クロム等が結晶粒内に共存すると、原子価
補償を起こし、半導体化のために加えた元素の効果が打
ち消されてしまう。最低の電気抵抗を与える半導体化元
素の添加量は、大略0.2〜0.4atlという微量か
つ狭い範囲である。つまり、不純物混入はPTCサーミ
スタの特性に決定的な影響を及ぼすと言える。
Conventional technology barium titanate is ki. shows a high dielectric constant near one point,
It has been mainly used as a capacitor material. The Curie point can be moved to the low temperature side by dissolving strontium titanate in solid solution, and to the high temperature side by dissolving lead ditanate in solid solution. In addition, valence control is performed by solidly dissolving small amounts of additives such as niobium and yttrium within crystal grains, thereby converting the material into a semiconductor. Although the temperature coefficient of electrical resistance is negative, a portion where the temperature coefficient is positive appears near the Curie point I1 due to the effect of grain boundaries. This phenomenon is called the PTC effect, and is applied to products such as non-contact switching elements and thermistors. (Enlarged edition of "Titabari-based Semiconductors", edited by Nilesera Publishing Committee, Technical Reference (1980)) In many cases, PTC thermistors are manufactured by mixing a predetermined amount of barium carbonate, titanium oxide, niobium oxide, etc., and then calcining the mixture. A method of decarboxylation and interdiffusion (solid phase method) is used during the firing stage. In order for the reaction to proceed sufficiently, it is most effective to perform calcination at high temperature for a long time, but the powder after calcination becomes hard and requires a large amount of energy to grind, and impurities are released from the grinding equipment during grinding. It becomes difficult to control the characteristics. When sodium, potassium, iron, manganese, chromium, etc. coexist within crystal grains, valence compensation occurs and the effect of the elements added for semiconductor formation is canceled out. The amount of the semiconductor-forming element that provides the lowest electrical resistance is within a small and narrow range of about 0.2 to 0.4 atl. In other words, it can be said that the inclusion of impurities has a decisive effect on the characteristics of the PTC thermistor.

発明が解決しようとする問題点 近年、人工衛星搭載用のPTCザーミスタとして、従来
よりも低抵抗かつ高信頼性のものが要求されている。従
来の固相法によるならば、焼結体への不純物混入の問題
は避けられず、電気抵抗が高くなり、信頼性には難があ
った。本発明はこれらの問題点を解決するものである。
Problems to be Solved by the Invention In recent years, there has been a demand for PTC thermistors to be mounted on artificial satellites that have lower resistance and higher reliability than conventional ones. If the conventional solid phase method is used, the problem of impurities being mixed into the sintered body is unavoidable, resulting in high electrical resistance and poor reliability. The present invention solves these problems.

問題点を解決するだめの手段 バリウムアルコキシドおよびストロンチウムアルコキシ
ドのうちの少なくとも一種と、チタンアルコキシドと半
導体化元素M(ニオブあるいはイツトリウム)のアルコ
キシドの混合、加水分解を含む工程により、 (BaxSr+−x)TiOa −n H2O+2M(
ただし、■≧X≧0、n≧0.0.0040≧z≧0)
なる組成のPTCサーミスタ用金属酸化物粉末を製造す
る。
As a means to solve the problem, (BaxSr+-x)TiOa is produced by a process including mixing and hydrolyzing at least one of barium alkoxide and strontium alkoxide, titanium alkoxide, and an alkoxide of the semiconductor element M (niobium or yttrium). -n H2O+2M(
However, ■≧X≧0, n≧0.0.0040≧z≧0)
A metal oxide powder for a PTC thermistor having the following composition is manufactured.

作用 本発明によれば、ニオブまたはイツトリウムを半導体化
元素として含有し、バリウムあるいはストロンチウムと
、チタン七を主成分とするPTCサーミスタ用金属酸化
物粉末を容易に製造することができる。得られた粉末を
原料とし、仮焼、成形、焼成することにより、電気抵抗
が低(高信頼性のPTCサーミスタ材料を得ることがで
きる。
According to the present invention, a metal oxide powder for a PTC thermistor containing niobium or yttrium as a semiconductor element, barium or strontium, and titanium 7 as main components can be easily produced. By using the obtained powder as a raw material and calcining, molding, and firing, a PTC thermistor material with low electrical resistance (high reliability) can be obtained.

実施例 実施例1 バリウムイソプロポキシドおよびストロンチウムイソプ
ロポキシドと、チタンイソプロポキシドとニオブイソプ
ロポキシドを (BaxSr1−x)TiO3+zN b(x−0,6,0,0040≧z≧0)なる組成とな
るように不活性雰囲気中で配合し、その合計重量の2O
倍のベンゼンを溶媒として加え、80℃に保持して撹拌
した。約2時間後、温度を80℃に保持したまま、水を
10重量%含むイソプロピルアルコールを滴下した。滴
下量は配合したアルコキシドがすべて加水分解されるの
に最低限必要な水量の3倍の水量とした。温度を80℃
に保持し、6 時間撹拌し、白色の沈殿を得た。24 
 時間放置し得られた沈殿を沈降させ、うわずみ液を捨
てた。乾燥は空気中で150℃で5時間行った。乾燥後
の粉末のBET粒径は約10nmであった。X線回折パ
ターンはぺL1ブスカイト構造を示し、副成分は認めら
れなかった。
Examples Example 1 Composition of barium isopropoxide and strontium isopropoxide, titanium isopropoxide and niobium isopropoxide (BaxSr1-x)TiO3+zN b (x-0,6,0,0040≧z≧0) Blend in an inert atmosphere so that the total weight of 2O
Double the amount of benzene was added as a solvent, and the mixture was kept at 80°C and stirred. After about 2 hours, isopropyl alcohol containing 10% by weight of water was added dropwise while maintaining the temperature at 80°C. The amount of water added was three times the minimum amount of water required to completely hydrolyze the blended alkoxide. Temperature 80℃
The mixture was kept at a temperature of 100.degree. C. and stirred for 6 hours to obtain a white precipitate. 24
The resulting precipitate was allowed to settle for a period of time, and the suspension was discarded. Drying was performed in air at 150°C for 5 hours. The BET particle size of the powder after drying was approximately 10 nm. The X-ray diffraction pattern showed a PeL1 buskite structure, and no subcomponents were observed.

乾燥後の粉末を1100℃で2時間仮焼した。仮焼後の
粉末は青味かかった白色を呈していた。発光分光分析に
より不純物は無視できるほど少なく、かつ配合組成どお
りの仮焼粉末が得られていることが確認できた。仮焼粉
末のX線回折パターンは、非常に鋭いペロブスカイトの
ピークのみであった。BET粒径は約100r+mであ
った。仮焼粉末に対し約5重量%の3%ポリビニルアル
コール水溶液を加え、32メツシユのふるいにかけ、−
軸加工プレスにより成形した。
The dried powder was calcined at 1100° C. for 2 hours. The powder after calcining had a bluish white color. It was confirmed by emission spectroscopic analysis that impurities were negligible and that a calcined powder with the same composition was obtained. The X-ray diffraction pattern of the calcined powder contained only very sharp perovskite peaks. The BET particle size was approximately 100 r+m. Approximately 5% by weight of a 3% polyvinyl alcohol aqueous solution was added to the calcined powder, and the mixture was sieved through a 32-mesh sieve.
It was molded using a shaft processing press.

成形体を室温から1100℃までは400℃/hr11
100℃から1300℃までは100℃/hrで昇温し
、1300℃で1時間保持した後、400℃/hrで降
温し、濃い青色をした焼結体を得た。密度は理論密度の
95%であった。インジウム−ガリウム合金を含む銀電
極を焼き付け、その上に銀電極を焼き付け、リード線を
はんだ付けした。ニオブの添加量2が0.0032の時
の電気抵抗−温度特性を図に示す。固相法による原料粉
末から作製されたものと比べて、−桁以上比抵抗が低い
ものを得ることができた。(E。
400℃/hr11 for molded products from room temperature to 1100℃
The temperature was raised from 100°C to 1300°C at a rate of 100°C/hr, held at 1300°C for 1 hour, and then lowered at a rate of 400°C/hr to obtain a dark blue sintered body. The density was 95% of the theoretical density. A silver electrode containing an indium-gallium alloy was baked, a silver electrode was baked on top of the silver electrode, and a lead wire was soldered. The figure shows the electrical resistance-temperature characteristics when the amount of niobium added is 0.0032. It was possible to obtain a product with a specific resistance that is more than 100% lower than that produced from raw material powder by the solid phase method. (E.

アンドリッチ(Andrich ) 、エレクトロニッ
ク アプリケーションズ(Electronic A+
)+)lications) 。
Andrich, Electronic Applications (Electronic A+)
)+)lications).

しかし、最低の比抵抗を与えるニオブの添加量は、固相
法の場合のそれに比べて多かった。信頼性の評価として
125℃放置試験を行った。500時間後、1000時
間後の抵抗変化率はそれぞれ、1.86%、2.71%
であった。
However, the amount of niobium added that gave the lowest resistivity was higher than that in the solid phase method. As a reliability evaluation, a 125°C storage test was conducted. The resistance change rate after 500 hours and 1000 hours is 1.86% and 2.71%, respectively.
Met.

実施例2 はじめに、ニオブイソプロポキシドをベンゼン溶媒中に
溶かし、撹拌した。溶媒の量は、後に加えるバリウムイ
ソプロポキシド、ストロンチウムイソプロポキシドおよ
びチタンイソプロポキシドの合計重量の2O倍とした。
Example 2 First, niobium isopropoxide was dissolved in a benzene solvent and stirred. The amount of solvent was 20 times the total weight of barium isopropoxide, strontium isopropoxide, and titanium isopropoxide to be added later.

約2時間後、ニオブイソプロポキシドがすべて加水分解
されるのに最低限必要な水量を含む、10重量%H2O
−イソプロピルアルコールを滴下した。6時間後にバリ
ウムイソプロポキシド、ストロンチウムイソプロポキシ
ドおにびチタンイソプロポキシドを、(BaxSr1−
x)TiOa+zN b(x−0,6,0,002O≧Z≧0)なる組成とな
るように加えた。2時間後、アルコキシドがすべて加水
分解されるのに最低限必要な水量の3倍の水量を含む1
0重量%H2O−イソプロピルアルコールを滴下した。
After about 2 hours, add 10% H2O by weight containing the minimum amount of water necessary for all of the niobium isopropoxide to be hydrolyzed.
- Isopropyl alcohol was added dropwise. After 6 hours, barium isopropoxide, strontium isopropoxide, and titanium isopropoxide were added to (BaxSr1-
x) TiOa+zN b (x-0,6,0,002O≧Z≧0). After 2 hours, 1 containing three times the minimum amount of water required for all the alkoxides to be hydrolyzed.
0% by weight H2O-isopropyl alcohol was added dropwise.

6時間撹拌し、白色の沈殿を得た。以−Hの工程は温度
を80℃に保持したまま行った。得られた沈殿を、実施
例1の場合と同様にして、乾燥した。乾燥後の粉末の8
61粒径は約1OnI11で、X線回折パターンはペロ
ブスカイト構造を示し、副成分は認められなかった。
After stirring for 6 hours, a white precipitate was obtained. Steps from to to H were performed while maintaining the temperature at 80°C. The obtained precipitate was dried in the same manner as in Example 1. Powder 8 after drying
61 grain size was about 1 OnI11, the X-ray diffraction pattern showed a perovskite structure, and no subcomponents were observed.

得られた粉末を、実施例1の場合と同様にして、仮焼、
成形、焼成した。
The obtained powder was calcined and
Shaped and fired.

得られた焼結体の密度は理論密度の95%であった。ニ
オブの添加fttzが0.0008の時、電気抵抗が最
低のものが得られた。その比抵抗−温度特性は、図に示
したものとほぼ同様であった。125℃における500
時間後、1000時間後の抵抗変化率はそれぞれ1.5
7%、2.2O%であった。
The density of the obtained sintered body was 95% of the theoretical density. When the niobium addition fttz was 0.0008, the lowest electrical resistance was obtained. Its resistivity-temperature characteristics were almost the same as those shown in the figure. 500 at 125℃
The resistance change rate after 1000 hours is 1.5, respectively.
7% and 2.2O%.

実施例3 ニオブの添加量Zを0.0032とし、実施例1の場合
と同様にして、金属アルコキシドの混合から沈殿を得る
までの工程を40℃に保持したまま行った。乾燥後の粉
末の861粒径は約6nmで、X線回折パターンは、半
値幅の広いペロブスカイトのピークのみであった。得ら
れた粉末を同様にして仮焼、成形、焼成した。得られた
焼結体の密度は理論密度の98.9%以上であった。−
25℃における比抵抗値は9.82Ω・Cll1であっ
た。125℃における500時間後、1000時間後の
抵抗変化率はそれぞれ0.86%、1.49%であった
Example 3 The amount Z of niobium added was set to 0.0032, and the steps from mixing the metal alkoxide to obtaining the precipitate were carried out in the same manner as in Example 1 while maintaining the temperature at 40°C. The 861 particle size of the powder after drying was about 6 nm, and the X-ray diffraction pattern had only a perovskite peak with a wide half-width. The obtained powder was calcined, shaped and fired in the same manner. The density of the obtained sintered body was 98.9% or more of the theoretical density. −
The specific resistance value at 25°C was 9.82Ω·Cll1. The resistance change rates after 500 hours and 1000 hours at 125°C were 0.86% and 1.49%, respectively.

実施例4 ニオブの添加量2を0.0008とし、実施例2の場合
と同様にして、ニオブアルコキシドと溶媒との混合から
沈殿を得るまでの工程を40℃に保持したまま行った。
Example 4 The addition amount 2 of niobium was set to 0.0008, and the steps from mixing niobium alkoxide and a solvent to obtaining a precipitate were performed in the same manner as in Example 2 while maintaining the temperature at 40°C.

乾燥後の粉末の861粒径は約5nmで、X線回折パタ
ーンは、半値幅の広いペロブスカイトのピークのみであ
った。得られた粉末を同様にして仮焼、成形、焼成した
。得られた焼結体の密度は理論密度の99.1%以上で
あった。−25℃における比抵抗値は7.55Ω・cm
であった。125℃における500時間後、1000時
間後の抵抗変化率はそれぞれ0.83%、1.21%で
あった。
The 861 particle size of the powder after drying was about 5 nm, and the X-ray diffraction pattern had only a perovskite peak with a wide half-width. The obtained powder was calcined, shaped and fired in the same manner. The density of the obtained sintered body was 99.1% or more of the theoretical density. Specific resistance value at -25℃ is 7.55Ω・cm
Met. The resistance change rates after 500 hours and 1000 hours at 125°C were 0.83% and 1.21%, respectively.

実施例5 半導体化元素をイツトリウムとし、実施例2の場合と同
様にして、イツトリウムアルコキシドと溶媒との混合か
ら沈殿を得るまでの工程を40℃に保持したまま行った
。乾燥後の粉末の861粒径は約5nmで、X線回折パ
ターンは、半値幅の広いペロブスカイI・のピークのみ
であった。得られた粉末を同様にして仮焼、成形、焼成
した。得られた焼結体の密度は理論密度の98.8%以
上であった。イツトリウムの添加量Zが0.0010の
時、電気抵抗が最低のものが得られた。−25℃におけ
る比抵抗値は9.11Ω・C111であった。125℃
における500時間後、1000時間後の抵抗変化率は
それぞれ0.89%、1.34%であった。
Example 5 Yttrium was used as the semiconductor element, and the steps from mixing yttrium alkoxide and a solvent to obtaining a precipitate were carried out in the same manner as in Example 2 while maintaining the temperature at 40°C. The 861 particle size of the powder after drying was about 5 nm, and the X-ray diffraction pattern had only a perovskie I peak with a wide half-width. The obtained powder was calcined, shaped and fired in the same manner. The density of the obtained sintered body was 98.8% or more of the theoretical density. When the amount Z of yttrium added was 0.0010, the lowest electrical resistance was obtained. The specific resistance value at -25°C was 9.11Ω·C111. 125℃
The resistance change rates after 500 hours and 1000 hours were 0.89% and 1.34%, respectively.

比較例 −]O=− 比較のために、固相法により原料を製造し、その焼結体
を作製し、特性を調べた。炭酸バリウム、炭酸ストロン
チウム、酸化チタンおよび酸化ニオブを (BaxSrs−x)TiOs+zNb(x−0,6、
z−0,0022) なる組成となるように配合し、さらにその8mo 1%
にあたるアルミナ、シリカ、酸化チタンを1/3 Al
 2Oa :  3/45i02:  l/4 TiO
2なる割合で添加し、蒸留水を溶媒としてポリエチレン
製容器とメノウを用いてIO時間混合した。乾燥は、2
O0℃で6時間行った。1100℃で2時間仮焼した後
、混合と同様にして3時間粉砕を行った。
Comparative Example-]O=- For comparison, a raw material was produced by a solid phase method, a sintered body thereof was produced, and its properties were investigated. Barium carbonate, strontium carbonate, titanium oxide and niobium oxide (BaxSrs-x)TiOs+zNb(x-0,6,
z-0,0022) and further add 8mo 1%
1/3 of alumina, silica, and titanium oxide
2Oa: 3/45i02: l/4 TiO
They were added in two ratios and mixed for 10 hours using a polyethylene container and agate using distilled water as a solvent. Drying is 2
The test was carried out at 00°C for 6 hours. After calcining at 1100° C. for 2 hours, pulverization was performed in the same manner as mixing for 3 hours.

成形、焼成は実施例1の場合と同様にして行った。得ら
れた焼結体の密度は理論密度の92%であった。比抵抗
は一26℃で極小値840Ω・canを示した。125
℃における500時間後、1000時間後の抵抗変化率
はそれぞれ2.53%、3.76%であった。
Molding and firing were performed in the same manner as in Example 1. The density of the obtained sintered body was 92% of the theoretical density. The specific resistance showed a minimum value of 840 Ω·can at -26°C. 125
The resistance change rates after 500 hours and 1000 hours at °C were 2.53% and 3.76%, respectively.

発明の効果 本発明によれば、ニオブまたはイツトリウムを半導体化
元素として含有し、バリウムあるいはストロンチウムと
、チタンとを主成分とするPTCザーミスタ用金属酸化
物粉末を容易に製造することができる。得られた粉末は
高純度のものであり、これを原料とし仮焼、成形、焼成
することにより電気抵抗が低くかつ高信頼性のPTCサ
ーミスタ材料を得ることができる。
Effects of the Invention According to the present invention, a metal oxide powder for a PTC thermistor containing niobium or yttrium as a semiconductor element and having barium or strontium and titanium as main components can be easily produced. The obtained powder is of high purity, and by using it as a raw material and calcining, molding, and firing, a PTC thermistor material with low electrical resistance and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例において製造されたPTCサーミ
スタ用金純金属酸化物粉末作製した焼結体の比抵抗と温
度の関係を示すグラフである。
The figure is a graph showing the relationship between specific resistance and temperature of a sintered body made of pure gold metal oxide powder for a PTC thermistor manufactured in an example of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)バリウムアルコキシドおよびストロンチウムアル
コキシドのうちの少なくとも一種と、チタンアルコキシ
ドと半導体化元素M(ニオブあるいはイットリウム)の
アルコキシドを混合、加水分解する工程を含み、 (BaxSr_1_−_x)TiO_3・nH_2O+
ZM(ただし、1≧x≧0、n≧0、0.0040≧z
≧0)なる組成の粉末を作製することを特徴とするPT
Cサーミスタ用金属酸化物粉末の製造方法。
(1) Includes a step of mixing and hydrolyzing at least one of barium alkoxide and strontium alkoxide, titanium alkoxide and alkoxide of semiconductor element M (niobium or yttrium), (BaxSr_1_-_x)TiO_3・nH_2O+
ZM (however, 1≧x≧0, n≧0, 0.0040≧z
PT characterized by producing a powder having a composition of ≧0)
Method for manufacturing metal oxide powder for C thermistor.
(2)はじめに半導体化元素のアルコキシドの混合、加
水分解を行った後に、バリウムアルコキシドおよびスト
ロンチウムアルコキシドのうちの少なくとも一種と、チ
タンアルコキシドとを加え、混合、加水分解することを
特徴とする特許請求の範囲第1項記載のPTCサーミス
タ用金属酸化物粉末の製造方法。
(2) After first mixing and hydrolyzing alkoxides of semiconductor-forming elements, at least one of barium alkoxide and strontium alkoxide and titanium alkoxide are added, mixed, and hydrolyzed. A method for producing a metal oxide powder for a PTC thermistor according to Item 1.
(3)混合および加水分解時の温度が40℃以下である
特許請求の範囲第1項記載のPTCサーミスタ用金属酸
化物粉末の製造方法。
(3) The method for producing metal oxide powder for PTC thermistors according to claim 1, wherein the temperature during mixing and hydrolysis is 40° C. or lower.
JP26219386A 1986-11-04 1986-11-04 Production of metal oxide powder for ptc-thermistor Pending JPS63117914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26219386A JPS63117914A (en) 1986-11-04 1986-11-04 Production of metal oxide powder for ptc-thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26219386A JPS63117914A (en) 1986-11-04 1986-11-04 Production of metal oxide powder for ptc-thermistor

Publications (1)

Publication Number Publication Date
JPS63117914A true JPS63117914A (en) 1988-05-21

Family

ID=17372366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26219386A Pending JPS63117914A (en) 1986-11-04 1986-11-04 Production of metal oxide powder for ptc-thermistor

Country Status (1)

Country Link
JP (1) JPS63117914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013043A1 (en) * 1990-02-28 1991-09-05 E.I. Du Pont De Nemours And Company Improved ceramic dielectric compositions and method for enhancing dielectric properties
WO1991013042A1 (en) * 1990-02-28 1991-09-05 E.I. Du Pont De Nemours And Company Improved ceramic dielectric composition and method of preparation
WO1993004490A1 (en) * 1991-08-26 1993-03-04 Nippon Tungsten Co., Ltd. Heating apparatus using ptc thermistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013043A1 (en) * 1990-02-28 1991-09-05 E.I. Du Pont De Nemours And Company Improved ceramic dielectric compositions and method for enhancing dielectric properties
WO1991013042A1 (en) * 1990-02-28 1991-09-05 E.I. Du Pont De Nemours And Company Improved ceramic dielectric composition and method of preparation
WO1993004490A1 (en) * 1991-08-26 1993-03-04 Nippon Tungsten Co., Ltd. Heating apparatus using ptc thermistor
US5592647A (en) * 1991-08-26 1997-01-07 Nippon Tungsten Co., Ltd. PTC panel heater with small rush current characteristic and highly heat insulating region corresponding to heater location to prevent local overheating

Similar Documents

Publication Publication Date Title
KR100318398B1 (en) Barium titanate semiconductive ceramic
JPH029755A (en) Ceramic composition having high dielectric constant
JP3154513B2 (en) Spherical barium titanate-based semiconductor ceramic material powder and method for producing the same
JPH0388770A (en) Barium titanate-based semiconductor porcelain composition and thermistor
JPS63117914A (en) Production of metal oxide powder for ptc-thermistor
JPS61242903A (en) Production of compound oxide ceramic powder
JPH0660721A (en) Dielectric porcelain and its manufacture
JP2885599B2 (en) Barium titanate-based powder composition and method for producing semiconductor porcelain composition using the same
JP2649341B2 (en) Grain boundary insulated semiconductor porcelain
JPH0210089B2 (en)
WO2004092071A1 (en) Method for producing barium titanate powder
US4175060A (en) Composition and processing procedure for making thermistors
JPH0733440A (en) Production of porcelain composition
JPH029760A (en) Ceramic composition having high dielectric constant
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JP2861659B2 (en) Method for producing dielectric porcelain composition
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JPS61232217A (en) Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPH0784346B2 (en) Method for producing perovskite ceramics containing niobium
JPS6325223A (en) Production of ceramic raw material powder
JPH029754A (en) Ceramic composition having high dielectric constant
JPH029753A (en) Ceramic composition having high dielectric constant
JPS63225403A (en) Manufacture of dielectric ceramics
JPS61127624A (en) Production of perovskite type oxide solid