JPH029753A - Ceramic composition having high dielectric constant - Google Patents

Ceramic composition having high dielectric constant

Info

Publication number
JPH029753A
JPH029753A JP63158434A JP15843488A JPH029753A JP H029753 A JPH029753 A JP H029753A JP 63158434 A JP63158434 A JP 63158434A JP 15843488 A JP15843488 A JP 15843488A JP H029753 A JPH029753 A JP H029753A
Authority
JP
Japan
Prior art keywords
composition
dielectric constant
high dielectric
ceramic composition
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63158434A
Other languages
Japanese (ja)
Inventor
Kentaro Sawamura
沢村 建太郎
Fumio Uchikoba
文男 内木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP63158434A priority Critical patent/JPH029753A/en
Publication of JPH029753A publication Critical patent/JPH029753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To enable the maintenance of high resistance even by calcining in an atmosphere under a low partial pressure of oxygen by substituting Mg for part of Nb or Ti in compound perovskite represented by a formula Pb(Ni1/3 Nb2/3)O3-PbTiO3-Pb(Zn1/3Nb2/3)O3 so as to obtain a specified compsn. CONSTITUTION:This ceramic compsn. having a high dielectric constant is represented by the general formula (where 0.95<=a<=1.2 and x+y+z=1) and consists of components within a tetragonal range having compsn. points A-D as vertexes corresponding to variables a, b in the triangular coordinates having Pba(Ni1/3-Nb2/3)Oa+2, PbaTiOa+2 and Pba(Zn1/3Nb2/3)Oa+2 as vertexes. The points A-D (x, y, z) are A (0.000, 0.600, 0.400), B (0.005, 0.005, 0.990), C (0.600, 0.000, 0.400) and D (0.600, 0.150, 0.250).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コンデンサ材料として有用な、#還元性の良
い高誘電率セラミックス組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high dielectric constant ceramic composition with good reducibility and useful as a capacitor material.

従来の技術 鉛系複合ペロブスカイト、例えば、 pb(Nj+zユNb273)03−PbTiO*−P
b(Z、、+、’Jbt、’z)0ユの焼結体は、バイ
アス特性、高誘電特性などが優れているため、コンデン
サ材料として利用されている。
Conventional technology lead-based composite perovskite, for example, pb(Nj+zYNb273)03-PbTiO*-P
The sintered body of b(Z,,+,'Jbt,'z)0U is used as a capacitor material because it has excellent bias characteristics, high dielectric properties, etc.

ところで、この鉛系複合ペロブスカイトを用いて′−子
部品を製造するには、通常セラミックス素材と電極との
一体焼成か行われるか、この場合の″:W、棒材料とし
ては酸化を防止するために、白金、パラジウムのような
貴金属を用いることが必要であり、コスト高になるのを
免れない。このような貴金属電極の使用によるコスト高
を避けるために、安価な銀−パラジウム合金を代用する
ことが提案されているが、このものを用いると比抵抗が
著しく上昇し、高周波特性その他の電気特性が低下する
一部、銀の配合割合を多くするとマイグレーションの原
因になり信頼性が損なわれるという欠点を生じる。
By the way, in order to manufacture sub-components using this lead-based composite perovskite, the ceramic material and the electrode are usually fired together, or in this case, W is used as the rod material to prevent oxidation. Therefore, it is necessary to use noble metals such as platinum and palladium, which inevitably increases the cost.In order to avoid the high cost due to the use of such noble metal electrodes, an inexpensive silver-palladium alloy is used instead. However, it has been proposed that using this material will significantly increase the resistivity and degrade high frequency characteristics and other electrical properties, and that increasing the proportion of silver will cause migration and impair reliability. produce defects.

他方、電極材料としてニッケルや銅のような卑金属を用
いる試みもなされている。この場合にはニッケルや銅が
焼成に際して酸化されるのを防ぐために、低酸素分圧雰
囲気中で焼成することが必要であるが、鉛系複合ペロブ
スカイトを低酸素分圧雰囲気中で焼成すると格子中の酸
素が失われ、その結果、過剰の電子を生じてn型半導体
となり抵抗値が低下するのを免れない。
On the other hand, attempts have also been made to use base metals such as nickel and copper as electrode materials. In this case, in order to prevent oxidation of nickel and copper during firing, it is necessary to fire in a low oxygen partial pressure atmosphere, but when lead-based composite perovskite is fired in a low oxygen partial pressure atmosphere, the lattice changes. Oxygen is lost, and as a result, excess electrons are generated, resulting in an n-type semiconductor and a decrease in resistance.

このような欠点を克服するため、鉛系複合ペロブスカイ
トの結晶格子中のAサイトに位置するpbの一部にCa
を導入して、半導体化を抑制したものが提案されている
(特開昭62−87455号公報)。
In order to overcome these drawbacks, Ca is added to a part of pb located at the A site in the crystal lattice of lead-based composite perovskite.
A method has been proposed in which semiconductors are suppressed by introducing (Japanese Unexamined Patent Publication No. 62-87455).

発明が解決しようとする課題 従来の耐還元性鉛系複合ペロブスカイト焼結体は、結晶
格子のAサイトの2価のpb原子の一部にさらに2価の
Ca原子を導入し、Aサイト元素の総量をBサイト元素
の総量より過剰にすることで酸素原子の放出に起因して
発生した電子を捕捉するものであるが、このCa原子の
導入のために新しい成分、例えばCaOを添加しなけれ
ばならない。しかし、この場合Aサイトに位置するpb
原子と新たに導入されるCa原子とはイオン半径が異な
るため、置換しにくい上に、CaOの添加量が増加する
とともに誘電率が低下するという好ましくない傾向があ
る。
Problems to be Solved by the Invention In the conventional reduction-resistant lead-based composite perovskite sintered body, divalent Ca atoms are further introduced into some of the divalent Pb atoms at the A site of the crystal lattice, and the A site elements are By making the total amount in excess of the total amount of B site elements, electrons generated due to the release of oxygen atoms are captured, but if a new component such as CaO is not added to introduce this Ca atom, It won't happen. However, in this case, the pb located at site A
Since the atom and the newly introduced Ca atom have different ionic radii, it is difficult to replace them, and there is an undesirable tendency that the dielectric constant decreases as the amount of CaO added increases.

本発明は、このようなAサイトの成分を置換する代りに
、Bサイトの成分であるMgとNbあるいはTiの中の
Nb 、Tiの一部を軸で置換することにより、Aサイ
トの成分の置換と同等の電子捕捉効果を発生させるとと
もに、異種成分の導入及び置換される金属間のイオン半
径の差異に起因するトラブルを克服しようとするもので
ある。
In the present invention, instead of replacing the components of the A site, Mg and Nb, which are components of the B site, or part of Nb and Ti in Ti are replaced with the axis, thereby replacing the components of the A site. The aim is to generate an electron trapping effect equivalent to that of substitution, and to overcome problems caused by the introduction of different components and differences in ionic radius between substituted metals.

課題を解決するための手段 本発明者らは、鉛系複合ペロブスカイトの耐還元性を改
良するために鋭意研究を重ねた結果、PbO、MgO、
Nb、Us 、TiO2,ZnO、NiO及びMnO2
を所定の割合で混合し、非酸化性雰囲気中で焼成して、 一敗式 %式% で表わされる組成にAサイトの一部をBa 、Srの少
なくとも1種で置換しBサイトにMgを過剰添加した組
成において、 0.95≦a≦1.2 x+y+z=1 0.001≦MgO≦0.1 の条件を満たす焼結体を形成させることによりその目的
を達成しうろことを見出し5本発明をなずに至った。
Means for Solving the Problems As a result of extensive research to improve the reduction resistance of lead-based composite perovskites, the present inventors found that PbO, MgO,
Nb, Us, TiO2, ZnO, NiO and MnO2
are mixed in a predetermined ratio and fired in a non-oxidizing atmosphere to obtain a composition expressed by Ichiro's formula %, with part of the A site replaced with at least one of Ba and Sr, and Mg added to the B site. In the composition of excessive addition, we found that the purpose could be achieved by forming a sintered body that satisfies the following conditions: 0.95≦a≦1.2 x+y+z=1 0.001≦MgO≦0.1 This led to an invention.

すなわち、本発明は、一般式 %式% Aサイトの一部 Ba 、Srで 0.01≦Ba 。That is, the present invention provides the general formula %formula% Part of A site Ba, Sr 0.01≦Ba.

Sr≦0.2置換 Bサイトの一部 MgOで 0.001≦MgO≦0.
02過剰添加 (式中のa、x、yは前記と同じ意味をもつ)で表わさ
れる高誘電率セラミックス組成物を提供するものである
Sr≦0.2 Part of substituted B site MgO 0.001≦MgO≦0.
02 (in the formula, a, x, and y have the same meanings as above), a high dielectric constant ceramic composition is provided.

本発明のセラミックス組成物の中で、特に好適なものは
、一般式 %式% BサイトにMgO過剰添加0.0旧≦MgO≦0,1で
表わされるセラミックス組成物である。
Among the ceramic compositions of the present invention, particularly preferred are ceramic compositions represented by the general formula % Excessive addition of MgO at the B site: 0.0 Old≦MgO≦0.1.

本発明のセラミックス組成物においては、Bサイト成分
中の5価のNb原子あるいは4価のTi原子の一部が2
価のMg原子に置き換わり、その原子価の差によフて、
焼成中に酸素の放出によって生しる過剰分の電子が捕捉
され、n型半導体化が抑制されているものと考えられる
In the ceramic composition of the present invention, some of the pentavalent Nb atoms or tetravalent Ti atoms in the B site component are 2
It replaces the valent Mg atom, and due to the difference in valence,
It is thought that the excess electrons generated by the release of oxygen during firing are captured and the formation of an n-type semiconductor is suppressed.

前記一般式(I)において、その組成物中のAサイト成
分のpb原子が0.95未満あるいは1.20よりも多
くなると鉛系複合ペロブスカイトの結晶構造が不完全に
なる。
In the general formula (I), if the number of pb atoms of the A-site component in the composition is less than 0.95 or more than 1.20, the crystal structure of the lead-based composite perovskite becomes incomplete.

また、Bサイト成分中のMg原子が0.001以Fでは
耐還元性が得られないし、0.1よりも多くなると誘電
率が低下する。
Further, if the Mg atoms in the B site component are 0.001F or less, reduction resistance cannot be obtained, and if the number is more than 0.1, the dielectric constant decreases.

前記一般式(I)のセラミックス組成物はPbO、Mg
O、Nb2O5、NiO、Tie、 、ZnO及びMn
O□あるいは焼成によりこわらの酸化物を生成しつる化
合物を、最終的に所望の組成に相当する原子割合で混合
して仮焼し、この仮焼物を粉砕後所望の形状に成形し、
非酸化性雰囲気中で焼成することにより製造される。こ
の際の非酸化性雰囲気として窒素、アルゴンのような不
活性雰囲気又は−酸化炭素、水素のような還元性雰囲気
が用いられ、酸素分圧は10−4〜10−12気圧、好
ましくは10−’〜10四〇気圧にするのがよい。焼成
温度としては、700〜1300℃、好ましくは800
〜1000℃の範囲が用いられる。
The ceramic composition of the general formula (I) contains PbO, Mg
O, Nb2O5, NiO, Tie, , ZnO and Mn
O□ or a compound that produces a stiff oxide upon firing is mixed in an atomic ratio corresponding to the final desired composition and calcined, and this calcined product is crushed and formed into a desired shape.
Manufactured by firing in a non-oxidizing atmosphere. At this time, an inert atmosphere such as nitrogen or argon or a reducing atmosphere such as -carbon oxide or hydrogen is used as the non-oxidizing atmosphere, and the oxygen partial pressure is 10-4 to 10-12 atm, preferably 10- It is best to set the pressure to ~1040 atmospheres. The firing temperature is 700 to 1300°C, preferably 800°C.
A range of ˜1000° C. is used.

このようにして得られた本発明のセラミックス組成物は
、銅が酸化されない条件、例えば970℃、酸素分圧1
0−7気圧という条件で焼成したものについても101
2Ωcm以上という高い比抵抗値を示す。
The thus obtained ceramic composition of the present invention can be produced under conditions in which copper is not oxidized, for example, at 970°C and an oxygen partial pressure of 1.
101 for those fired under the conditions of 0-7 atm.
It exhibits a high specific resistance value of 2 Ωcm or more.

次に、本発明のセラミックス組成物を用いて、積層コン
デンサを製造するには、例えば原料粉末にバインダーと
溶剤を加えてスラリーとし、15μm程度のシートに成
形し、銅電極ペーストを印刷後積層し切断する。次いで
、熱処理によりバインダーを除去したのち、酸素分圧を
制御して焼成した。焼成体に外部2極として市販の鋼ペ
ースト・を塗布し窒素中で焼付け、また外部電極を同時
焼成することも可能である。
Next, in order to manufacture a multilayer capacitor using the ceramic composition of the present invention, for example, a binder and a solvent are added to raw material powder to make a slurry, formed into a sheet of about 15 μm, and then laminated after printing a copper electrode paste. disconnect. Next, the binder was removed by heat treatment, followed by firing while controlling the oxygen partial pressure. It is also possible to coat the fired body with a commercially available steel paste as the external two electrodes and bake it in nitrogen, or to simultaneously fire the external electrodes.

発明の効果 本発明の鉛系複合ペロブスカイトセラミックス組成物は
低酸素分圧雰囲気下で焼成しても高抵抗値を保つことが
できることから、卑金属電極の使用が可能となり、低コ
スト化が計れる上、従来のチタン酸バリウム−ニッケル
系コンデンサに比へ、同一容量でも小形となり、バイア
ス特性も優わ、さらにまた焼成温度も低下するので、銅
のような比抵抗の小さい電極の使用も可能となり、高周
波特性が向上するのみでなく、焼成コストも低下すると
いう顕著な効果を奏する。
Effects of the Invention The lead-based composite perovskite ceramic composition of the present invention can maintain a high resistance value even when fired in a low oxygen partial pressure atmosphere, making it possible to use base metal electrodes and reducing costs. Compared to conventional barium titanate-nickel capacitors, it is smaller with the same capacity, has better bias characteristics, and also requires lower firing temperatures, making it possible to use electrodes with low resistivity such as copper, making it possible to use high-frequency This has the remarkable effect of not only improving properties but also reducing firing costs.

本発明の鉛系複合ペロブスカイトセラミックス組成物は
コンデンサ材料として有用である。
The lead-based composite perovskite ceramic composition of the present invention is useful as a capacitor material.

実施例 次に実施例によって本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 高純度のPbO、MgO、Nb2O,、NiO、TiO
2,7,nO。
Example 1 High purity PbO, MgO, Nb2O, NiO, TiO
2,7,nO.

MnO2を所定量秤量し、ジルコニアボールを用い純水
を溶媒としてボールミルで15時時間式混合し、吸引ろ
通接乾燥したのち、800℃で2時間仮焼した。得られ
た仮焼物を粗砕し、ジルコニアボールを用い純水を溶媒
としてボールミルで15時間粉砕したのち、吸引ろ通接
乾燥した。以上の仮焼、粉砕、乾燥を数回繰り返し、原
料粉末とした。この粉末にバインダーとしてのポリビニ
ルアルコール6重量%水溶液を粉体量の6重量%加え、
32メツシユふるいを通して造粒し、成形圧力1000
100O信2で乾式プレスにより成形した。この成形物
は空気中700℃で2時間加熱しバインダーをバーンア
ウト(焼却)した後、電気炉によりco−co2混合ガ
各を流して酸素分圧が10×1O−7気圧になるように
謂節しながら、970℃まで400℃/hrで昇温し2
時間保持した後、400℃/hrで降温して鉛系複合ペ
ロブスカイトセラミックス組成物を得た。
A predetermined amount of MnO2 was weighed, mixed for 15 hours in a ball mill using zirconia balls and pure water as a solvent, dried through suction filtration, and then calcined at 800° C. for 2 hours. The obtained calcined product was coarsely crushed, pulverized in a ball mill using zirconia balls and pure water as a solvent for 15 hours, and then dried through suction filtration. The above calcination, pulverization, and drying were repeated several times to obtain a raw material powder. Adding 6% by weight aqueous solution of polyvinyl alcohol as a binder to this powder, 6% by weight of the powder amount,
Granulated through a 32 mesh sieve and molded under a pressure of 1000
It was molded by dry pressing at 100Ox2. This molded product was heated in air at 700°C for 2 hours to burn out the binder, and then heated in an electric furnace with a co-co2 gas mixture so that the oxygen partial pressure became 10 x 1 O-7 atm. The temperature was raised at 400°C/hr to 970°C while
After holding for a period of time, the temperature was lowered at a rate of 400° C./hr to obtain a lead-based composite perovskite ceramic composition.

次の第1表に該組成物の成分の割合(a、x。The following Table 1 shows the proportions (a, x) of the components of the composition.

y、zは Pba(Ni1/ffNb2/3)Jiy(Z口r/3
Nb2/3) ff1Oa4−まただしBサイトに0.
001≦MgO≦0.2と表わしたときの値)、抵抗率
、比誘電率を示した。
y, z are Pba (Ni1/ffNb2/3) Jiy (Z mouth r/3
Nb2/3) ff1Oa4-Madashi 0.
001≦MgO≦0.2), resistivity, and dielectric constant.

なお第1表中水を付したものはこの発明(1)の範囲外
のものである。
It should be noted that those marked with water in Table 1 are outside the scope of this invention (1).

:jt、を図は第1表に示した各試料をPba(Ni+
z:+Nb2/*)0□。2.PbaTiOaや、。
:jt, the figure shows each sample shown in Table 1 as Pba(Ni+
z:+Nb2/*)0□. 2. PbaTiOa, etc.

PbaCZnly、JNb2/3)Oa*zを端成分と
する三角組成図中に示し・たちので、斜線の範囲が発明
の範囲である。
PbaCZnly, JNb2/3)Oa*z is shown in a triangular composition diagram as an end member, so the shaded area is the scope of the invention.

図中のカクコ内の数字は試料陥を示す。Numbers in brackets in the figure indicate sample defects.

第1図において、A〜Dは本発明の範囲である四角形の
頂点であり、各頂点の組成は次の通りである。
In FIG. 1, A to D are the vertices of a quadrangle that is the scope of the present invention, and the composition of each vertex is as follows.

D    O,6000,1500,150(以下余白
D O, 6000, 1500, 150 (margin below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による組成範囲を示す3角組成図である
FIG. 1 is a triangular composition diagram showing the composition range according to the present invention.

Claims (1)

【特許請求の範囲】 (1)一般式 Pb_a(Ni_1_/_3Nb_2_/_3)_xT
i_y(Zn_1_/_3Nb_2_/_3)_zO_
a_+_2(式中0.95≦a≦1.2 x+y+z=1) の範囲内にあり、a、bの値に対し Pb_a(Ni_1_/_3Nb_2_/_3)O_a
_+_2,Pb_aTiO_a_+_2,Pb_a(Z
n_1_/_3Nb_2_/_3)O_a_+_2を頂
点とする三角座標において下記組成点A,B,C,Dを
頂点とする四角形の領域内の組成物からなることを特徴
とする高誘電率セラミックス組成物。     x     y     z A 0.000 0.600 0.400 B 0.005 0.005 0.990 C 0.600 0.000 0.400 D 0.600 0.150 0.150 (2)請求項1の組成のPbの一部を1〜20mol%
のBa,Srの少なくとも1種で置換し更に、Bサイト
にMgOを下記範囲内のモル比で存在させることを特徴
とする高誘電率セラミックス組成物。 0.001≦MgO≦0.1 (3)請求項1または2の組成物に対しMnO_2をモ
ル比で 0.001≦MnO_2≦0.02 の範囲含有することを特徴とする高誘電率セラミックス
組成物。
[Claims] (1) General formula Pb_a(Ni_1_/_3Nb_2_/_3)_xT
i_y(Zn_1_/_3Nb_2_/_3)_zO_
It is within the range of a_+_2 (0.95≦a≦1.2 x+y+z=1), and Pb_a(Ni_1_/_3Nb_2_/_3)O_a for the values of a and b
___+_2, Pb_aTiO_a_+_2, Pb_a(Z
n_1_/_3Nb_2_/_3) A high dielectric constant ceramic composition comprising a composition within a rectangular region having the following composition points A, B, C, and D as vertices in triangular coordinates with O_a_+_2 as the apex. x y z A 0.000 0.600 0.400 B 0.005 0.005 0.990 C 0.600 0.000 0.400 D 0.600 0.150 0.150 (2) Claim 1 Part of the Pb in the composition is 1 to 20 mol%
A high dielectric constant ceramic composition, characterized in that the above is substituted with at least one of Ba and Sr, and further MgO is present at the B site at a molar ratio within the following range. 0.001≦MgO≦0.1 (3) A high dielectric constant ceramic composition containing MnO_2 in a molar ratio of 0.001≦MnO_2≦0.02 with respect to the composition of claim 1 or 2. thing.
JP63158434A 1988-06-27 1988-06-27 Ceramic composition having high dielectric constant Pending JPH029753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158434A JPH029753A (en) 1988-06-27 1988-06-27 Ceramic composition having high dielectric constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63158434A JPH029753A (en) 1988-06-27 1988-06-27 Ceramic composition having high dielectric constant

Publications (1)

Publication Number Publication Date
JPH029753A true JPH029753A (en) 1990-01-12

Family

ID=15671679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158434A Pending JPH029753A (en) 1988-06-27 1988-06-27 Ceramic composition having high dielectric constant

Country Status (1)

Country Link
JP (1) JPH029753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108655A (en) * 1990-08-28 1992-04-09 Nec Corp Porcelain composition
KR100389377B1 (en) * 2000-07-20 2003-06-25 한국전력공사 Composition and fabrication method of electrostrictive ceramic for a high voltage devision and current supplement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108655A (en) * 1990-08-28 1992-04-09 Nec Corp Porcelain composition
KR100389377B1 (en) * 2000-07-20 2003-06-25 한국전력공사 Composition and fabrication method of electrostrictive ceramic for a high voltage devision and current supplement device

Similar Documents

Publication Publication Date Title
US5248640A (en) Non-reducible dielectric ceramic composition
JP2001506425A (en) Ceramic multilayer capacitors
JP7168914B2 (en) Dielectric compositions and electronic components
JP2608921B2 (en) High dielectric constant ceramic composition
JP3419713B2 (en) Manufacturing method of multilayer ceramic chip capacitor
JPH0785460B2 (en) Multilayer porcelain capacitor
KR100340668B1 (en) Laminated Type Semiconductor Ceramic Element and Production Method for the Laminated Type Semiconductor Ceramic Element
JPH029753A (en) Ceramic composition having high dielectric constant
JP2608924B2 (en) High dielectric constant ceramic composition
JPH029751A (en) Ceramic composition having high dielectric constant
JPH07309661A (en) Ceramic composition, sintering method, sintering ceramic body and multilayer capacitor
JPH029754A (en) Ceramic composition having high dielectric constant
JPH029750A (en) Ceramic composition having high dielectric constant
JP2608923B2 (en) High dielectric constant ceramic composition
JPH029757A (en) Ceramic composition having high dielectric constant
JP2608922B2 (en) High dielectric constant ceramic composition
JPH029759A (en) Ceramic composition having high dielectric constant
JPH029752A (en) Ceramic composition having high dielectric constant
JPS61251563A (en) High permittivity ceramic composition
JP2608921C (en)
JPS63117914A (en) Production of metal oxide powder for ptc-thermistor
JP2956791B2 (en) Reduction resistant high dielectric constant ceramic composition
JPH01276506A (en) High permitivity ceramic composition
JPH0878269A (en) Production of insulated grain boundary semiconductor ceramic capacitor
JPS6226705A (en) High permeability ceramic composition