JPH0878269A - Production of insulated grain boundary semiconductor ceramic capacitor - Google Patents

Production of insulated grain boundary semiconductor ceramic capacitor

Info

Publication number
JPH0878269A
JPH0878269A JP20673194A JP20673194A JPH0878269A JP H0878269 A JPH0878269 A JP H0878269A JP 20673194 A JP20673194 A JP 20673194A JP 20673194 A JP20673194 A JP 20673194A JP H0878269 A JPH0878269 A JP H0878269A
Authority
JP
Japan
Prior art keywords
ceramic material
srtio
grain boundary
ceramic capacitor
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20673194A
Other languages
Japanese (ja)
Inventor
Yoichi Ogose
洋一 生越
Iwao Ueno
巌 上野
Keiichi Noi
慶一 野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20673194A priority Critical patent/JPH0878269A/en
Publication of JPH0878269A publication Critical patent/JPH0878269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE: To enhance the reliability by heat treating a specified ceramic material in a reductive atmosphere, shaping the ceramic material and firing in an oxygen atmosphere, and then forming an electrode thereby suppressing fluctuation in the varistor voltage. CONSTITUTION: A material where Sr in SrTiO3 or SrTiO3 is partially substituted by Ca, Mg or Ba is weighed 21 to prepare a first component. The first component is mixed, brushed 22 and then dried 23. First, second and third components are then weighed 24, mixed and dried 25 before being fired 26 in a reductive atmosphere and then crushed 27 and dried. Subsequently, a slurry is prepared 28 and a green sheet is formed 29 on a carrier film which is then dried and cut 30 into a predetermined size. Furthermore, a paste for inner electrode is printed 31 on the green sheet which is then laminated 32, pressed, cut 33 and degreased 34 to form an outer electrode 35. Finally, it is oxidized 36 again and plated 37 thus suppressing fluctuation in the variator voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子機器や電気機器で発
生するノイズ、パルス、静電気などの異常高電圧からこ
れらに使用されているIC、LIなどの半導体素子や電
子回路を保護する粒界絶縁型半導体セラミックコンデン
サの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain boundary for protecting semiconductor elements such as IC and LI and electronic circuits used therein from abnormal high voltage such as noise, pulse and static electricity generated in electronic equipment and electric equipment. The present invention relates to a method for manufacturing an insulating semiconductor ceramic capacitor.

【0002】[0002]

【従来の技術】特開平3−1516号公報に粒界絶縁型
半導体セラミックコンデンサとその製造方法を示してい
る。図2はその粒界絶縁型半導体セラミックコンデンサ
の一部切欠斜視図である。このようなチップタイプの粒
界絶縁型半導体セラミックコンデンサを次のようにして
得ていた。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 3-1516 discloses a grain boundary insulation type semiconductor ceramic capacitor and a method for manufacturing the same. FIG. 2 is a partially cutaway perspective view of the grain boundary insulation type semiconductor ceramic capacitor. Such a chip-type grain boundary insulation type semiconductor ceramic capacitor was obtained as follows.

【0003】まず、出発原料として、Sr(1-x)Bax
Tiのモル比が0.95≦Sr(1-x )Bax/Ti<1.
00となるように、過剰のTiを含有したSr(1-x)
xTiO3(ただし、0<x≦0.3)に、Nb25
Ta25,V25,W25,Dy23,Nd23,Y2
3,La23,CoO2の内少なくとも一種類以上を
0.05〜2.0mol%と、Mn,SiをそれぞれM
nO2,SiO2に換算して、合計で0.2〜5.0mo
l%と、NaAlO2を0.05〜4.0mol%含ま
せた混合粉末を準備した。
First, as a starting material, the molar ratio of Sr (1-x) Ba x to Ti is 0.95 ≦ Sr (1-x ) Ba x / Ti <1.
Sr (1-x) B containing excess Ti so that
a x TiO 3 (provided that, 0 <x ≦ 0.3) in, Nb 2 O 5,
Ta 2 O 5 , V 2 O 5 , W 2 O 5 , Dy 2 O 3 , Nd 2 O 3 , Y 2
At least one of O 3 , La 2 O 3 , and CoO 2 is 0.05 to 2.0 mol%, and Mn and Si are M, respectively.
Converted to nO 2 and SiO 2 , total 0.2 to 5.0 mo
1% and a mixed powder containing NaAlO 2 in an amount of 0.05 to 4.0 mol% were prepared.

【0004】次に、この混合粉末を粉砕、混合、乾燥
し、空気中または窒素雰囲気中で仮焼した後、再度粉砕
して有機バインダーとともに溶媒中に分散させたものを
用いて、生シート1を形成した。
Next, this mixed powder is pulverized, mixed, dried, calcined in air or a nitrogen atmosphere, and then pulverized again and dispersed in a solvent together with an organic binder. Was formed.

【0005】次に、図3に示すように、生シート1の上
に内部電極用ペーストを一方が端縁に至るように印刷し
(ただし、最上層、最下層用の生シート1には印刷せ
ず)、その後、この内部電極2の印刷された生シート1
を内部電極2が交互に相対向する端縁に至るように積
層、加圧、圧着して成形体を得た。
Next, as shown in FIG. 3, the internal electrode paste is printed on the green sheet 1 so that one end reaches the edge (however, the green sheet 1 for the uppermost layer and the lowermost layer is printed. No), and then the printed green sheet 1 of this internal electrode 2
Was laminated, pressed, and pressure-bonded so that the internal electrodes 2 reached the opposite edges alternately, to obtain a molded body.

【0006】次に、この成形体を空気中で仮焼した後、
還元雰囲気または窒素雰囲気中で焼成し、その後、空気
中で再酸化させた。次に、これを面取りし、図2に示す
ように内部電極2を露出させた両端面に、外部電極用ペ
ーストを塗布し、焼き付けて外部電極3を形成した。最
後に、この外部電極3の表面に半田などのメッキを行っ
ていた。
Next, after calcining the molded body in air,
It was fired in a reducing atmosphere or a nitrogen atmosphere and then reoxidized in air. Next, this was chamfered, and as shown in FIG. 2, external electrode paste was applied to both end surfaces where the internal electrodes 2 were exposed, and baked to form external electrodes 3. Finally, the surface of the external electrode 3 was plated with solder or the like.

【0007】[0007]

【発明が解決しようとする課題】上記構成では、積層体
を還元焼成し半導体化を図っているが、還元雰囲気が積
層体内部に十分に入らず、そのため粒子1個1個の還元
状態が不均一になり、均一に半導体化できていなかっ
た。そのため、還元された粒子表面(粒界)を再酸化さ
せ抵抗値をもたせることでバリスタ効果を発生させる
際、酸化の度合が一様にならないため、すなわち酸化に
よる抵抗値が場所によって異なってくるため、バリスタ
電圧にバラツキが生じるという問題点を有していた。
In the above structure, the laminated body is reduced and fired to be a semiconductor, but the reducing atmosphere is not sufficiently inside the laminated body, and therefore the reduced state of each particle is unsatisfactory. It became uniform and could not be made into a semiconductor uniformly. Therefore, when the varistor effect is generated by re-oxidizing the reduced particle surface (grain boundary) to give a resistance value, the degree of oxidation is not uniform, that is, the resistance value due to oxidation varies depending on the location. However, there is a problem that the varistor voltage varies.

【0008】本発明はバリスタ電圧のバラツキの少ない
信頼性に優れた粒界絶縁型半導体セラミックコンデンサ
を提供することを目的とするものである。
It is an object of the present invention to provide a grain boundary insulation type semiconductor ceramic capacitor which has little variation in varistor voltage and is excellent in reliability.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に本発明は、SrTiO3またはSrTiO3のSrの一
部をCa,Mg,Baで置換したものおよびこれらの混
合物を主成分とするセラミック材料を還元雰囲気中で熱
処理し、次に、このセラミック材料を成形して酸素雰囲
気中で焼成した後、電極を形成するものである。
In order to achieve this object, the present invention provides a ceramic containing SrTiO 3 or SrTiO 3 in which a part of Sr is replaced by Ca, Mg, Ba and a mixture thereof. The material is heat treated in a reducing atmosphere, then the ceramic material is shaped and fired in an oxygen atmosphere before forming the electrodes.

【0010】[0010]

【作用】この方法によると、セラミック材料をあらかじ
め十分に還元焼成し、粒子1個1個の還元状態が均一に
なっているので、積層体を再酸化させるとき均一に酸化
させることができる。その結果、抵抗値が安定するので
バリスタ電圧のバラツキがなくなる。
According to this method, the ceramic material is sufficiently reduced and fired in advance, and the reduced state of each particle is uniform, so that the layered product can be uniformly oxidized when reoxidized. As a result, the resistance value is stabilized, so that there is no variation in the varistor voltage.

【0011】[0011]

【実施例】以下、本発明の一実施例について説明する。EXAMPLES An example of the present invention will be described below.

【0012】従来と同じ部分には同一番号が付してあ
る。図1は本実施例における粒界絶縁型半導体セラミッ
クコンデンサの製造工程図である。
The same parts as in the prior art are designated by the same reference numerals. FIG. 1 is a manufacturing process diagram of a grain boundary insulation type semiconductor ceramic capacitor in the present embodiment.

【0013】まず、SrTiO3,CaCO3,BaCO
3,MgCo3,TiO2を(表1)に示す試料No.1〜1
6の組成比になるようにそれぞれ秤量し(21)、第1
成分とした。
First, SrTiO 3 , CaCO 3 , and BaCO
Sample Nos. 1 to 1 showing 3 , 3 , MgCo 3 , and TiO 2 in (Table 1)
Weigh each to a composition ratio of 6 (21), and
As an ingredient.

【0014】[0014]

【表1】 [Table 1]

【0015】次に、これらの第1成分を試料No.ごとに
ボールミルなどに入れ、攪拌・粉砕をするために耐摩耗
性に優れているジルコニア製玉石を使用し、必要量の純
水を投入し20時間混合後、粉砕(22)し、乾燥(2
3)した。このときの乾燥粉は、平均粒径が1μm以下
が望ましい。
Next, each of the first components is put into a ball mill etc. for each sample No., and a zirconia boulder having excellent wear resistance is used for stirring and crushing, and a necessary amount of pure water is added. After mixing for 20 hours, pulverize (22) and dry (2
3) I did. At this time, the dry powder preferably has an average particle diameter of 1 μm or less.

【0016】次に、(表1)、(表2)の試料No.1〜
16に示したモル比になるように、この第1成分と第2
成分と第3成分とを秤量し(24)、上記の第1成分の
ときと同様の処理を行い、混合乾燥粉(25)を得た。
Next, sample Nos. 1 to 1 of (Table 1) and (Table 2)
The first component and the second component are mixed so that the molar ratio shown in 16 is obtained.
The component and the third component were weighed (24), and the same treatment as in the case of the first component was performed to obtain a mixed dry powder (25).

【0017】[0017]

【表2】 [Table 2]

【0018】その後、1100℃、たとえばN2:H2
10:1の還元雰囲気中で4時間焼成し(26)、再び
ボールミルなどで75時間粉砕後(27)、乾燥した。
このときの粉の粒径は1.0μm以下であればよい。さ
らに、このとき、図4に示すように、平均粒径が0.6
〜0.8μmであるともっとも効果的であることがわか
る。また、粒径が0.6μm未満であると基本特性であ
るバリスタ電圧が上昇してしまい、一方、1.0μmを
越えるとポアが増え、酸化が進みバリスタ電圧が上昇し
てしまい、内部電極間に存在する粒子数が減少しバリス
タ電圧のバラツキが増加してしまう。
Thereafter, at 1100 ° C., for example N 2 : H 2 =
It was baked in a reducing atmosphere of 10: 1 for 4 hours (26), pulverized again in a ball mill or the like for 75 hours (27), and dried.
The particle size of the powder at this time may be 1.0 μm or less. Further, at this time, as shown in FIG.
It can be seen that the most effective value is about 0.8 μm. Further, if the particle size is less than 0.6 μm, the varistor voltage, which is a basic characteristic, rises, while if it exceeds 1.0 μm, pores increase, oxidation progresses, and the varistor voltage rises. The number of particles existing in the area decreases, and the variation in varistor voltage increases.

【0019】次に、試料No.ごとにボールミルなどで2
0時間混合し、乾燥後、ブチラール系の樹脂および酢酸
ブチルなどの有機溶剤と混合し、スラリーを作製した
(28)。このスラリーを用いてドクターブレード法な
どにより、例えば50μmの厚みを持つポリエステル製
キャリアフィルム上に生シート1を成形後(29)、乾
燥し、所定の大きさに裁断した(30)。
Next, 2 for each sample No. with a ball mill etc.
The mixture was mixed for 0 hour, dried and then mixed with a butyral resin and an organic solvent such as butyl acetate to prepare a slurry (28). Using this slurry, a raw sheet 1 was formed on a polyester carrier film having a thickness of, for example, 50 μm by a doctor blade method (29), dried, and cut into a predetermined size (30).

【0020】次に、積層体の最上層、最下層用以外の生
シート1上に、Ag−Pdからなる内部電極用ペースト
を一方が端縁まで至るようにスクリーン印刷した(3
1)。その後、図3に示すように、生シート1を内部電
極用ペーストが相対向する端縁に交互に至るように、例
えば30層積層し(32)、加圧、圧着後、所定の大き
さに裁断した(33)。次に、空気中で600℃で十分
脱脂し(34)、内部電極2が露出した両端面に、図2
に示すようにAg−Pdからなる外部電極用ペーストを
塗布した。これを、金属製鞘網上にまんべんなく広げ、
酸化炉などを用いて酸化雰囲気中、200〜400℃/
hで昇温し、850℃で1時間焼成して再酸化(36)
と外部電極3の形成を行った(35)。
Next, on the green sheet 1 other than the uppermost layer and the lowermost layer of the laminate, the internal electrode paste made of Ag-Pd was screen-printed so that one end reaches the edge (3).
1). After that, as shown in FIG. 3, for example, 30 layers of the green sheet 1 are laminated so that the internal electrode paste alternately reaches the opposite edges (32), and after pressurization and pressure bonding, a predetermined size is obtained. Cut (33). Next, degreasing was sufficiently carried out at 600 ° C. in air (34), and the internal electrodes 2 were exposed to both end faces as shown in FIG.
The external electrode paste made of Ag-Pd was applied as shown in FIG. Spread this evenly over the metal sheath net,
200-400 ° C / in an oxidizing atmosphere using an oxidizing furnace
Reheat by heating at 850 h and baking at 850 ° C for 1 hour (36)
Then, the external electrode 3 was formed (35).

【0021】その後、外部電極3上に例えば、電解メッ
キ法などによりNiメッキをし、さらに半田メッキを行
った(37)。
After that, Ni plating was performed on the external electrodes 3 by, for example, an electrolytic plating method, and then solder plating was performed (37).

【0022】このようにして得た粒界絶縁型半導体積層
セラミックコンデンサは、通常3216と呼ばれている
大きさである。
The grain boundary insulating type semiconductor monolithic ceramic capacitor thus obtained has a size generally called 3216.

【0023】また、セラミック材料を、酸素雰囲気中で
仮焼して反応させ、次に、微粉砕して粒径を0.6から
1.0μmにした後、還元雰囲気中で焼成して、生シー
ト1を形成した後、上記と同様にして粒界絶縁型半導体
セラミックコンデンサを形成してもよい。
The ceramic material is calcined in an oxygen atmosphere for reaction, and then finely pulverized to a particle size of 0.6 to 1.0 μm, and then fired in a reducing atmosphere to produce a raw material. After forming the sheet 1, a grain boundary insulating semiconductor ceramic capacitor may be formed in the same manner as above.

【0024】このようにして得た粒界絶縁型半導体セラ
ミックコンデンサは、粒子1個1個が均一に酸化されて
いるので、バリスタ電圧のバラツキのないものである。
The grain boundary insulation type semiconductor ceramic capacitor thus obtained has no varistor voltage variation because each grain is uniformly oxidized.

【0025】また、本実施例において、積層型について
説明したが、ディスク型のものであっても同様の効果が
得られると思われる。
In the present embodiment, the laminated type has been described, but it is considered that the same effect can be obtained even if it is a disc type.

【0026】また、内部電極2、外部電極3の材料とし
てAg−Pdを用いたが、Ag,Pd,Pt,Ni,C
u,Zn,In,Ga,Na,K,Liの内1種類以上
の金属や合金あるいは酸化物を用いても構わない。
Although Ag-Pd is used as the material for the internal electrode 2 and the external electrode 3, Ag, Pd, Pt, Ni, C are used.
One or more metals, alloys or oxides of u, Zn, In, Ga, Na, K and Li may be used.

【0027】さらに、外部電極3のメッキの種類につい
ては、一部の金属についてのみ示したが、どのような種
類の金属のメッキでもかまわず、その形成方法も酸性メ
ッキ、塩基性メッキ、電解メッキ、無電解メッキでもか
まわない。
Further, the type of plating of the external electrode 3 is shown only for some metals, but any type of metal plating may be used, and the forming method thereof may be acid plating, basic plating, electrolytic plating. , Electroless plating is also acceptable.

【0028】また、外部電極3は、粒界絶縁型積層半導
体セラミックコンデンサを半田付けする際、外部電極喰
われしない材料であれば、半田メッキを行わなくても構
わない。
Further, the external electrode 3 may not be solder-plated as long as it is a material that is not eaten by the external electrode when soldering the grain boundary insulation type laminated semiconductor ceramic capacitor.

【0029】[0029]

【発明の効果】以上のように本発明によると、バリスタ
電圧のバラツキの小さい粒界絶縁型積層半導体セラミッ
クコンデンサを得ることができる。
As described above, according to the present invention, it is possible to obtain a grain boundary insulation type laminated semiconductor ceramic capacitor having a small variation in varistor voltage.

【0030】また、本発明はプロセス的にも容易である
ので、実用上の効果は、きわめて大きいものである。
Further, since the present invention is easy in terms of process, the practical effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における粒界絶縁型積層半導
体セラミックコンデンサの製造工程図
FIG. 1 is a manufacturing process diagram of a grain boundary insulating type multilayer semiconductor ceramic capacitor according to an embodiment of the present invention.

【図2】本発明の一実施例と従来の粒界絶縁型積層半導
体セラミックコンデンサの一部切欠斜視図
FIG. 2 is a partially cutaway perspective view of an example of the present invention and a conventional grain boundary insulating type laminated semiconductor ceramic capacitor.

【図3】本発明の一実施例と従来の積層体の分解斜視図FIG. 3 is an exploded perspective view of an example of the present invention and a conventional laminated body.

【図4】本発明の一実施例におけるセラミック還元粉の
粒径とバリスタ電圧との関係図
FIG. 4 is a diagram showing the relationship between the particle size of the ceramic reduced powder and the varistor voltage in one example of the present invention.

【符号の説明】[Explanation of symbols]

1 生シート 2 内部電極 3 外部電極 1 Raw sheet 2 Internal electrode 3 External electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 SrTiO3またはSrTiO3のSrの
一部をCa,Mg,Baで置換したものおよびこれらの
混合物を主成分とするセラミック材料を還元雰囲気中で
熱処理し、次に、前記セラミック材料を成形して、酸素
雰囲気中で焼成し、電極を形成する粒界絶縁型半導体セ
ラミックコンデンサの製造方法。
1. A ceramic material containing SrTiO 3 or SrTiO 3 in which a part of Sr is replaced by Ca, Mg, Ba and a mixture thereof as a main component is heat-treated in a reducing atmosphere, and then the ceramic material is used. A method for manufacturing a grain boundary insulation type semiconductor ceramic capacitor, which comprises molding and firing in an oxygen atmosphere to form electrodes.
【請求項2】 SrTiO3またはSrTiO3のSrの
一部をCa,Mg,Baで置換したものおよびこれらの
混合物を主成分とするセラミック材料を還元雰囲気中で
熱処理し、次に、このセラミック材料の平均粒径が0.
6から1.0μmになるように微粉砕した後成形し、そ
の後、酸化雰囲気中で焼成し、電極を形成する粒界絶縁
型半導体セラミックコンデンサの製造方法。
2. A ceramic material containing SrTiO 3 or SrTiO 3 in which a part of Sr is replaced by Ca, Mg, Ba and a mixture thereof as a main component is heat-treated in a reducing atmosphere, and then this ceramic material is used. Has an average particle size of 0.
A method for manufacturing a grain boundary insulation type semiconductor ceramic capacitor, which comprises finely pulverizing to 6 to 1.0 μm, molding, and then firing in an oxidizing atmosphere to form electrodes.
【請求項3】 SrTiO3またはSrTiO3のSrの
一部をCa,Mg,Baで置換したものおよびこれらの
混合物を主成分とするセラミック材料を酸素雰囲気中で
仮焼して反応させ、次に、前記セラミック材料を還元雰
囲気中で熱処理後成形し、酸化雰囲気中で焼成し、電極
を形成する粒界絶縁型半導体セラミックコンデンサの製
造方法。
3. SrTiO 3 or SrTiO 3 in which a part of Sr is replaced by Ca, Mg, Ba and a ceramic material containing a mixture thereof as a main component are calcined in an oxygen atmosphere to react, A method for manufacturing a grain boundary insulation type semiconductor ceramic capacitor, wherein the ceramic material is heat-treated in a reducing atmosphere, molded, and fired in an oxidizing atmosphere to form electrodes.
【請求項4】 SrTiO3またはSrTiO3のSrの
一部をCa,Mg,Baで置換したものおよびこれらの
混合物を主成分とするセラミック材料を還元雰囲気中で
熱処理し、次に、前記セラミック材料を用いて生シート
を形成した後前記生シート上に内部電極を形成し、次
に、複数の前記生シートを前記内部電極が相対向する端
面に露出するように積層して積層体を形成して酸素雰囲
気中で焼成し、次に、前記積層体の前記端面に外部電極
を形成する粒界絶縁型半導体セラミックコンデンサの製
造方法。
4. A ceramic material containing SrTiO 3 or SrTiO 3 in which a part of Sr is substituted with Ca, Mg, Ba and a mixture thereof as a main component is heat-treated in a reducing atmosphere, and then the ceramic material is added. After forming a green sheet using, the internal electrodes are formed on the green sheet, and then a plurality of the green sheets are laminated so that the internal electrodes are exposed at opposite end surfaces to form a laminate. And an external electrode is formed on the end face of the laminate, and a method for manufacturing a grain boundary insulation type semiconductor ceramic capacitor.
【請求項5】 SrTiO3またはSrTiO3のSrの
一部をCa,Mg,Baで置換したものおよびこれらの
混合物を主成分とするセラミック材料を還元雰囲気中で
熱処理した後、平均粒径が0.6から1.0μmになる
ように微粉砕し、次に、前記セラミック材料を用いて生
シートを形成した後前記生シート上に内部電極を形成
し、次に、複数の前記生シートを前記内部電極が相対向
する端面に露出するように積層して積層体を形成して酸
素雰囲気中で焼成し、次に、前記積層体の前記端面に外
部電極を形成する粒界絶縁型半導体セラミックコンデン
サの製造方法。
5. An average particle size of SrTiO 3 or SrTiO 3 in which a part of Sr is replaced by Ca, Mg, Ba and a ceramic material containing a mixture thereof as a main component are heat-treated in a reducing atmosphere and have an average particle size of 0. .6 to 1.0 μm, then a green sheet is formed using the ceramic material, and then internal electrodes are formed on the green sheet. Grain boundary insulation type semiconductor ceramic capacitor in which internal electrodes are laminated so as to be exposed at opposite end faces to form a laminated body, which is fired in an oxygen atmosphere, and then external electrodes are formed at the end faces of the laminated body. Manufacturing method.
【請求項6】 SrTiO3またはSrTiO3のSrの
一部をCa,Mg,Baで置換したものおよびこれらの
混合物を主成分とするセラミック材料を酸素雰囲気中で
仮焼して反応させ、次に、前記セラミック材料を還元雰
囲気中で熱処理後生シートを形成した後、前記生シート
上に内部電極を形成し、次に、複数の前記生シートを前
記内部電極が相対向する端面に露出するように積層して
積層体を形成して酸素雰囲気中で焼成し、次に、前記積
層体の前記端面に外部電極を形成する粒界絶縁型半導体
セラミックコンデンサの製造方法。
6. A ceramic material containing SrTiO 3 or SrTiO 3 in which a part of Sr is replaced by Ca, Mg, Ba and a mixture of these as a main component are calcined and reacted in an oxygen atmosphere, and then, After heat-treating the ceramic material in a reducing atmosphere, forming a green sheet, forming internal electrodes on the green sheet, and then exposing the plurality of green sheets to end faces where the internal electrodes face each other. A method for manufacturing a grain boundary insulation type semiconductor ceramic capacitor, comprising forming a laminated body by laminating, firing in an oxygen atmosphere, and then forming an external electrode on the end face of the laminated body.
JP20673194A 1994-08-31 1994-08-31 Production of insulated grain boundary semiconductor ceramic capacitor Pending JPH0878269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20673194A JPH0878269A (en) 1994-08-31 1994-08-31 Production of insulated grain boundary semiconductor ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20673194A JPH0878269A (en) 1994-08-31 1994-08-31 Production of insulated grain boundary semiconductor ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH0878269A true JPH0878269A (en) 1996-03-22

Family

ID=16528178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20673194A Pending JPH0878269A (en) 1994-08-31 1994-08-31 Production of insulated grain boundary semiconductor ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH0878269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028281A (en) * 2000-10-09 2002-04-17 박호군 Dielectric composition for low temperature sintered SrTiO3 varistor-capacitor multifunctional device
KR100371056B1 (en) * 2000-10-09 2003-02-06 한국과학기술연구원 Fabrication method of SrTiO3 SMD-type varistor-capacitor multifunctional device
JP2014187102A (en) * 2013-03-22 2014-10-02 Tdk Corp Laminated semiconductor ceramic capacitor with varistor function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028281A (en) * 2000-10-09 2002-04-17 박호군 Dielectric composition for low temperature sintered SrTiO3 varistor-capacitor multifunctional device
KR100371056B1 (en) * 2000-10-09 2003-02-06 한국과학기술연구원 Fabrication method of SrTiO3 SMD-type varistor-capacitor multifunctional device
JP2014187102A (en) * 2013-03-22 2014-10-02 Tdk Corp Laminated semiconductor ceramic capacitor with varistor function

Similar Documents

Publication Publication Date Title
EP0423738B1 (en) Ceramic multilayer chip capacitor and method for making
EP1156498B1 (en) Multi-layer ceramic electronic device and method for producing same
JPH065460A (en) Porcelain capacitor and manufacture thereof
JP7131955B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP7506467B2 (en) Manufacturing method for ceramic electronic components
EP0437613B1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
KR20190118957A (en) Multilayer ceramic capacitor and manufacturing method of the same
JP2022108636A (en) Dielectric, ceramic electronic component, manufacturing method of dielectric, and manufacturing method of ceramic electronic component
EP0548394B1 (en) A laminated semiconductor ceramic capacitor with a grain boundary-insulated structure and a method for producing the same
EP0429653B1 (en) Laminated and grain boundary insulated type semiconductive ceramic capacitor and method of producing the same
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP2001230148A (en) Laminated ceramic capacitor and method of manufacturing it
JP3838845B2 (en) Multilayer ceramic capacitor
JPS62256422A (en) Laminated type porcelain capacitor
JP3134024B2 (en) Multilayer ceramic chip capacitors
JPH0645182A (en) Multilayer ceramic chip capacitor
JPH0878269A (en) Production of insulated grain boundary semiconductor ceramic capacitor
JP3317246B2 (en) Composite ceramic and composite ceramic element
US20020105022A1 (en) Monolithic semiconducting ceramic electronic component
JP2725357B2 (en) Ceramic capacitor and method of manufacturing the same
JP2850355B2 (en) Ceramic capacitor and method of manufacturing the same
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JP2872454B2 (en) Manufacturing method of grain boundary insulated semiconductor laminated ceramic capacitor
JP3744739B2 (en) Multilayer ceramic capacitor
JP3921177B2 (en) Composite electronic components